Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A75 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 10.0 | 2.17 3 | 5.35 3 | 1.92 3 | 1.56 3 | 6.39 13 | 1.67 7 | 1.51 5 | 3.67 6 | 1.61 5 | 1.20 26 | 4.36 8 | 1.02 25 | 2.30 3 | 3.18 2 | 1.73 5 | 2.16 22 | 6.35 6 | 2.39 37 | 2.54 11 | 4.18 6 | 2.17 21 | 0.81 6 | 1.50 11 | 0.67 3 |
NN-field [73] | 10.7 | 2.31 6 | 5.94 9 | 1.98 4 | 1.83 17 | 7.21 22 | 1.97 21 | 1.54 6 | 3.55 5 | 1.68 8 | 0.96 8 | 3.04 3 | 0.75 6 | 2.30 3 | 3.25 3 | 1.69 4 | 1.72 7 | 3.81 1 | 1.65 6 | 3.12 32 | 4.76 31 | 2.60 30 | 0.79 4 | 1.58 19 | 0.59 2 |
Epistemic [84] | 12.1 | 2.12 2 | 6.18 11 | 1.80 2 | 1.67 10 | 4.82 3 | 1.91 18 | 1.34 1 | 4.01 7 | 1.47 1 | 0.88 2 | 4.74 9 | 0.72 4 | 2.99 15 | 4.35 18 | 1.96 10 | 2.03 14 | 11.2 44 | 1.96 12 | 2.90 25 | 4.62 27 | 1.90 11 | 0.93 16 | 1.56 18 | 0.89 10 |
TC/T-Flow [80] | 12.8 | 2.06 1 | 7.42 20 | 1.55 1 | 1.61 8 | 6.77 19 | 1.52 2 | 1.46 3 | 4.33 10 | 1.56 3 | 0.88 2 | 6.96 23 | 0.69 2 | 2.91 11 | 4.35 18 | 1.88 8 | 1.47 2 | 6.12 5 | 1.61 5 | 2.22 4 | 3.98 3 | 4.00 63 | 1.06 28 | 1.99 30 | 1.19 37 |
ALD-Flow [68] | 14.5 | 2.26 4 | 5.81 6 | 2.07 5 | 1.56 3 | 5.71 7 | 1.66 5 | 1.46 3 | 4.64 16 | 1.66 7 | 0.95 7 | 7.15 25 | 0.80 8 | 3.18 23 | 4.57 24 | 1.76 6 | 1.51 3 | 7.63 10 | 1.60 4 | 2.61 13 | 4.27 10 | 3.90 60 | 1.04 26 | 2.22 38 | 1.18 34 |
ADF [67] | 14.5 | 2.51 10 | 7.51 21 | 2.23 9 | 1.75 13 | 5.78 9 | 1.84 15 | 1.54 6 | 5.12 23 | 1.86 13 | 0.88 2 | 6.26 17 | 0.66 1 | 3.09 21 | 4.54 23 | 1.97 11 | 1.71 6 | 7.98 15 | 1.49 3 | 2.99 28 | 4.68 29 | 2.74 34 | 0.93 16 | 1.54 15 | 0.86 8 |
nLayers [57] | 15.4 | 2.33 7 | 5.14 1 | 2.17 8 | 2.75 57 | 7.22 23 | 3.07 59 | 1.69 15 | 4.04 8 | 2.21 44 | 0.88 2 | 2.83 2 | 0.70 3 | 2.08 1 | 3.25 3 | 1.30 1 | 1.88 9 | 6.06 4 | 1.85 9 | 2.89 24 | 4.59 24 | 2.28 23 | 0.92 15 | 1.48 9 | 0.94 19 |
MDP-Flow2 [70] | 15.9 | 3.08 29 | 6.23 12 | 2.73 27 | 1.55 2 | 4.80 2 | 1.64 4 | 1.63 10 | 3.27 3 | 1.61 5 | 1.37 32 | 5.15 12 | 1.15 35 | 2.91 11 | 4.19 12 | 2.20 14 | 2.24 26 | 6.43 7 | 2.17 28 | 2.62 14 | 4.35 13 | 1.88 10 | 1.08 30 | 1.66 21 | 0.95 22 |
OFLADF [82] | 15.9 | 2.77 26 | 5.70 5 | 2.49 15 | 1.76 14 | 5.35 5 | 1.84 15 | 1.54 6 | 2.69 1 | 1.72 11 | 1.30 28 | 3.55 6 | 1.12 32 | 2.30 3 | 3.62 6 | 1.64 3 | 2.23 25 | 5.93 2 | 2.06 19 | 2.81 19 | 4.29 11 | 2.99 39 | 1.15 35 | 1.69 22 | 1.18 34 |
Layers++ [37] | 18.5 | 2.70 23 | 6.40 14 | 2.83 31 | 2.33 42 | 6.62 16 | 2.54 43 | 1.65 12 | 3.24 2 | 2.02 27 | 0.92 6 | 2.48 1 | 0.75 6 | 2.12 2 | 3.11 1 | 1.50 2 | 2.06 17 | 8.25 17 | 1.94 11 | 3.59 49 | 5.41 53 | 3.21 43 | 0.89 10 | 1.32 3 | 0.90 13 |
LME [72] | 18.5 | 2.90 28 | 5.83 7 | 2.30 12 | 1.60 6 | 4.45 1 | 1.74 11 | 1.71 18 | 4.14 9 | 2.00 23 | 1.35 29 | 6.61 18 | 1.13 33 | 3.07 18 | 4.32 17 | 2.57 27 | 2.08 18 | 8.09 16 | 2.00 17 | 2.78 18 | 4.53 21 | 2.29 24 | 1.06 28 | 1.74 23 | 0.96 23 |
TC-Flow [46] | 19.7 | 2.45 9 | 6.60 16 | 2.39 14 | 1.25 1 | 5.24 4 | 1.32 1 | 1.45 2 | 4.40 11 | 1.50 2 | 1.15 23 | 8.13 32 | 1.04 26 | 3.22 24 | 4.77 29 | 2.06 12 | 1.94 11 | 8.65 22 | 2.09 23 | 2.33 7 | 4.51 19 | 3.82 59 | 1.24 41 | 2.18 37 | 1.50 48 |
Sparse-NonSparse [56] | 20.7 | 2.62 14 | 7.58 23 | 2.60 20 | 2.18 33 | 8.74 34 | 2.46 38 | 1.68 14 | 4.86 21 | 2.00 23 | 1.04 9 | 7.97 30 | 0.81 9 | 3.13 22 | 4.45 20 | 2.42 22 | 1.98 13 | 8.53 20 | 1.87 10 | 3.13 33 | 4.32 12 | 3.51 49 | 0.88 8 | 1.41 5 | 0.91 14 |
IROF++ [58] | 20.8 | 2.66 20 | 6.82 17 | 2.58 18 | 2.17 32 | 9.07 39 | 2.41 33 | 1.75 24 | 5.03 22 | 2.06 30 | 1.11 17 | 7.65 27 | 0.90 22 | 2.92 13 | 4.18 11 | 2.25 16 | 2.13 20 | 9.85 30 | 1.98 14 | 2.53 10 | 4.53 21 | 1.43 3 | 0.97 22 | 1.58 19 | 0.94 19 |
FC-2Layers-FF [77] | 21.4 | 2.63 15 | 5.87 8 | 2.68 26 | 2.19 36 | 8.07 30 | 2.39 32 | 1.65 12 | 3.42 4 | 2.05 29 | 1.10 14 | 3.11 4 | 0.88 16 | 2.57 6 | 3.49 5 | 2.30 18 | 2.26 29 | 7.68 12 | 2.17 28 | 3.70 51 | 5.18 49 | 3.73 54 | 0.90 13 | 1.41 5 | 0.93 17 |
COFM [59] | 22.9 | 2.28 5 | 7.19 19 | 2.08 7 | 1.78 15 | 6.57 14 | 1.93 20 | 1.56 9 | 5.33 27 | 2.19 43 | 0.86 1 | 4.90 10 | 0.73 5 | 3.76 33 | 4.80 30 | 3.87 58 | 2.03 14 | 7.67 11 | 1.72 7 | 2.76 17 | 4.21 7 | 4.04 65 | 1.62 51 | 1.87 28 | 2.04 54 |
FESL [75] | 23.0 | 2.63 15 | 5.15 2 | 2.77 29 | 2.62 51 | 9.27 40 | 2.73 50 | 1.72 21 | 4.77 19 | 2.07 32 | 1.15 23 | 3.36 5 | 0.98 24 | 2.75 10 | 3.93 9 | 2.20 14 | 1.95 12 | 7.12 9 | 1.98 14 | 3.40 42 | 5.71 61 | 2.89 37 | 0.88 8 | 1.55 16 | 0.87 9 |
SCR [74] | 23.0 | 2.61 13 | 6.15 10 | 2.58 18 | 2.28 41 | 9.38 43 | 2.54 43 | 1.71 18 | 4.44 12 | 2.17 42 | 1.12 20 | 5.12 11 | 0.88 16 | 3.08 20 | 4.27 14 | 2.50 24 | 2.10 19 | 7.75 14 | 1.97 13 | 3.64 50 | 4.98 43 | 3.67 51 | 0.84 7 | 1.34 4 | 0.84 7 |
Efficient-NL [60] | 23.7 | 2.38 8 | 5.67 4 | 2.07 5 | 2.45 46 | 8.54 32 | 2.55 45 | 1.64 11 | 4.63 15 | 1.95 18 | 1.04 9 | 5.76 16 | 0.81 9 | 2.74 8 | 4.14 10 | 1.94 9 | 2.87 46 | 8.58 21 | 2.23 32 | 3.30 38 | 5.12 47 | 3.05 41 | 1.15 35 | 1.83 27 | 1.19 37 |
LSM [39] | 24.2 | 2.60 12 | 7.70 25 | 2.61 22 | 2.19 36 | 8.77 35 | 2.44 37 | 1.70 16 | 4.78 20 | 2.06 30 | 1.08 11 | 8.13 32 | 0.86 12 | 3.05 17 | 4.30 15 | 2.47 23 | 2.18 23 | 8.66 25 | 2.08 21 | 3.56 48 | 4.68 29 | 3.74 55 | 0.90 13 | 1.43 7 | 0.93 17 |
Classic+NL [31] | 25.1 | 2.63 15 | 7.57 22 | 2.64 24 | 2.18 33 | 9.04 38 | 2.41 33 | 1.71 18 | 4.70 17 | 2.09 33 | 1.08 11 | 7.69 28 | 0.88 16 | 3.04 16 | 4.31 16 | 2.41 21 | 2.27 30 | 8.65 22 | 2.09 23 | 3.79 54 | 5.12 47 | 3.81 58 | 0.89 10 | 1.44 8 | 0.89 10 |
Ramp [62] | 25.5 | 2.64 19 | 7.64 24 | 2.56 17 | 2.20 38 | 8.90 37 | 2.46 38 | 1.73 23 | 4.74 18 | 2.09 33 | 1.11 17 | 6.81 21 | 0.88 16 | 3.07 18 | 4.46 21 | 2.38 20 | 2.28 31 | 8.52 19 | 2.15 27 | 3.40 42 | 4.25 8 | 4.16 68 | 0.94 18 | 1.53 14 | 0.97 24 |
Levin3 [90] | 26.3 | 2.52 11 | 6.42 15 | 2.38 13 | 2.25 39 | 9.70 46 | 2.47 41 | 1.72 21 | 4.57 13 | 2.02 27 | 1.10 14 | 7.75 29 | 0.86 12 | 2.92 13 | 4.19 12 | 2.35 19 | 2.25 27 | 8.38 18 | 2.09 23 | 3.96 61 | 5.01 44 | 4.19 69 | 0.98 24 | 1.52 12 | 1.00 28 |
Adaptive [20] | 27.9 | 2.63 15 | 8.08 27 | 2.23 9 | 2.18 33 | 8.66 33 | 2.27 29 | 2.04 36 | 9.57 45 | 2.09 33 | 1.12 20 | 10.6 45 | 0.87 14 | 4.47 60 | 5.30 42 | 4.44 67 | 1.55 4 | 8.65 22 | 1.43 2 | 3.32 39 | 5.51 55 | 2.14 20 | 0.77 3 | 1.52 12 | 0.75 5 |
PMF [76] | 28.2 | 3.22 34 | 6.34 13 | 2.60 20 | 1.95 22 | 6.66 18 | 1.92 19 | 1.85 27 | 4.58 14 | 1.83 12 | 1.62 43 | 4.27 7 | 1.37 43 | 2.61 7 | 3.74 8 | 1.83 7 | 3.18 50 | 9.94 32 | 3.34 55 | 5.29 77 | 8.26 84 | 5.58 77 | 0.68 2 | 1.21 2 | 0.67 3 |
TV-L1-MCT [64] | 28.9 | 2.68 22 | 6.83 18 | 2.61 22 | 2.68 53 | 10.3 51 | 2.80 51 | 1.78 25 | 5.24 24 | 2.24 45 | 1.13 22 | 5.44 14 | 0.87 14 | 3.39 28 | 4.69 28 | 2.96 37 | 2.45 36 | 9.14 27 | 2.31 36 | 2.64 15 | 4.37 14 | 2.04 15 | 1.08 30 | 1.74 23 | 1.36 43 |
SimpleFlow [49] | 29.7 | 2.74 25 | 8.28 30 | 2.73 27 | 2.50 47 | 9.73 47 | 2.83 52 | 1.89 30 | 6.81 34 | 2.35 49 | 1.11 17 | 10.4 43 | 0.89 21 | 3.27 25 | 4.47 22 | 2.63 29 | 3.03 47 | 8.91 26 | 2.39 37 | 3.10 31 | 4.25 8 | 2.76 35 | 0.89 10 | 1.49 10 | 0.89 10 |
IROF-TV [53] | 30.1 | 2.89 27 | 8.67 34 | 2.81 30 | 2.25 39 | 9.54 45 | 2.51 42 | 1.79 26 | 5.50 29 | 2.15 39 | 1.53 40 | 11.5 47 | 1.27 39 | 3.33 26 | 4.62 25 | 2.85 34 | 2.78 41 | 13.5 56 | 2.57 41 | 2.15 3 | 4.14 5 | 1.37 2 | 0.94 18 | 1.55 16 | 0.94 19 |
Occlusion-TV-L1 [63] | 30.2 | 3.15 31 | 8.42 32 | 2.50 16 | 2.03 25 | 7.42 25 | 2.14 25 | 2.24 45 | 9.79 46 | 2.16 40 | 1.35 29 | 9.59 38 | 1.11 30 | 4.10 46 | 5.77 59 | 3.22 44 | 1.68 5 | 9.21 28 | 2.08 21 | 2.69 16 | 4.59 24 | 1.70 8 | 1.05 27 | 2.36 41 | 0.98 25 |
MDP-Flow [26] | 30.9 | 3.14 30 | 9.81 40 | 2.83 31 | 2.06 26 | 6.10 11 | 2.43 35 | 1.87 29 | 6.10 32 | 2.10 36 | 1.44 33 | 8.90 35 | 1.15 35 | 3.37 27 | 4.62 25 | 2.54 26 | 2.35 33 | 10.4 36 | 2.23 32 | 2.88 23 | 4.83 35 | 1.94 13 | 1.27 42 | 2.62 44 | 1.09 32 |
Correlation Flow [79] | 30.9 | 3.18 33 | 7.85 26 | 2.85 33 | 1.74 12 | 5.77 8 | 1.69 10 | 1.94 31 | 5.25 25 | 1.70 10 | 1.47 36 | 5.67 15 | 1.26 38 | 3.66 30 | 5.20 36 | 2.53 25 | 3.06 48 | 9.57 29 | 3.10 50 | 3.42 45 | 4.94 41 | 4.03 64 | 1.17 38 | 1.80 25 | 1.16 33 |
OFH [38] | 33.0 | 3.60 43 | 10.3 42 | 3.80 52 | 1.58 5 | 7.05 20 | 1.66 5 | 1.70 16 | 9.23 41 | 1.58 4 | 1.19 25 | 10.1 40 | 1.08 27 | 3.98 37 | 5.22 39 | 3.57 49 | 2.80 42 | 12.6 49 | 3.12 51 | 2.30 6 | 4.60 26 | 2.35 26 | 1.41 47 | 2.90 49 | 1.75 50 |
CostFilter [40] | 34.4 | 3.59 40 | 8.35 31 | 3.26 43 | 2.12 27 | 6.60 15 | 2.16 26 | 2.00 35 | 5.56 30 | 2.01 25 | 2.04 56 | 7.05 24 | 1.89 56 | 2.74 8 | 3.70 7 | 2.27 17 | 3.29 52 | 10.3 35 | 3.33 54 | 5.22 75 | 9.79 88 | 6.16 79 | 0.38 1 | 1.08 1 | 0.35 1 |
Classic++ [32] | 35.1 | 2.66 20 | 8.18 29 | 2.65 25 | 2.13 28 | 7.96 29 | 2.43 35 | 1.85 27 | 9.39 44 | 2.10 36 | 1.09 13 | 10.4 43 | 0.88 16 | 3.97 36 | 5.60 52 | 2.89 36 | 2.36 34 | 13.6 59 | 2.10 26 | 4.03 62 | 5.20 50 | 4.33 70 | 0.99 25 | 2.05 31 | 0.92 16 |
Direct ZNCC [66] | 35.6 | 3.28 35 | 8.68 35 | 2.91 35 | 1.71 11 | 6.65 17 | 1.67 7 | 1.94 31 | 5.56 30 | 1.68 8 | 1.47 36 | 6.88 22 | 1.28 40 | 4.17 48 | 5.67 54 | 3.23 45 | 3.22 51 | 10.2 34 | 3.28 52 | 3.48 46 | 4.91 40 | 4.12 67 | 1.20 40 | 2.11 34 | 1.19 37 |
TV-L1-improved [17] | 40.2 | 2.70 23 | 9.05 37 | 2.29 11 | 1.85 18 | 7.06 21 | 1.97 21 | 1.94 31 | 9.28 43 | 1.90 17 | 1.10 14 | 8.96 36 | 0.85 11 | 4.07 44 | 5.60 52 | 2.75 30 | 5.44 77 | 17.3 68 | 6.29 79 | 4.75 71 | 6.82 75 | 4.73 74 | 1.13 33 | 2.68 47 | 1.06 31 |
Sparse Occlusion [54] | 40.8 | 3.36 36 | 8.08 27 | 2.90 34 | 2.61 50 | 7.68 26 | 3.01 57 | 2.10 38 | 6.40 33 | 2.13 38 | 1.45 34 | 6.80 19 | 1.14 34 | 4.01 39 | 5.31 43 | 2.81 32 | 2.55 38 | 10.4 36 | 2.21 31 | 6.70 86 | 8.26 84 | 4.34 71 | 1.15 35 | 2.08 32 | 0.99 27 |
Complementary OF [21] | 42.6 | 4.47 61 | 12.4 52 | 4.63 63 | 1.60 6 | 6.16 12 | 1.67 7 | 2.10 38 | 6.85 35 | 2.16 40 | 2.27 59 | 9.76 39 | 2.19 62 | 4.00 38 | 5.10 33 | 3.71 52 | 3.96 62 | 12.9 51 | 3.32 53 | 2.83 20 | 4.46 18 | 3.08 42 | 2.04 61 | 3.33 57 | 2.86 62 |
EP-PM [83] | 42.6 | 4.03 55 | 13.7 59 | 3.25 42 | 1.91 20 | 7.71 27 | 1.83 13 | 2.14 42 | 7.85 38 | 1.96 19 | 1.80 49 | 10.2 41 | 1.63 53 | 3.72 32 | 4.62 25 | 3.24 46 | 3.93 61 | 13.2 54 | 3.79 64 | 4.35 65 | 5.68 60 | 7.45 82 | 0.97 22 | 1.93 29 | 0.98 25 |
Aniso. Huber-L1 [22] | 44.8 | 3.17 32 | 9.57 39 | 3.05 37 | 3.72 62 | 11.5 55 | 4.38 62 | 2.86 57 | 10.5 48 | 3.80 61 | 1.70 47 | 11.6 48 | 1.42 45 | 4.04 43 | 5.58 50 | 2.98 38 | 2.34 32 | 9.88 31 | 2.05 18 | 4.49 66 | 5.91 65 | 3.42 47 | 1.08 30 | 2.10 33 | 1.02 29 |
Rannacher [23] | 45.2 | 3.60 43 | 11.3 47 | 3.27 44 | 2.41 45 | 9.53 44 | 2.63 46 | 2.60 52 | 11.9 51 | 2.58 53 | 1.36 31 | 12.1 49 | 1.09 28 | 4.22 51 | 5.90 65 | 3.14 42 | 3.63 57 | 16.1 64 | 2.75 45 | 3.72 52 | 5.24 51 | 3.70 53 | 0.96 21 | 2.16 36 | 0.91 14 |
F-TV-L1 [15] | 45.3 | 5.69 68 | 13.3 55 | 6.62 72 | 2.71 55 | 12.0 57 | 2.86 54 | 2.76 55 | 12.6 53 | 2.43 51 | 2.41 62 | 16.3 60 | 2.02 60 | 4.17 48 | 5.27 41 | 3.74 53 | 2.41 35 | 10.8 42 | 2.49 40 | 3.04 29 | 4.84 39 | 2.26 22 | 0.79 4 | 1.81 26 | 0.76 6 |
ComplOF-FED-GPU [35] | 45.5 | 4.09 56 | 12.8 53 | 4.09 56 | 1.61 8 | 9.86 48 | 1.62 3 | 2.12 40 | 8.39 39 | 1.87 15 | 1.85 51 | 12.4 51 | 1.70 55 | 3.95 35 | 5.25 40 | 3.25 47 | 3.54 55 | 15.1 62 | 3.60 60 | 3.93 58 | 4.83 35 | 4.60 73 | 1.55 50 | 2.93 51 | 1.80 51 |
TCOF [71] | 45.8 | 3.95 51 | 11.0 46 | 4.20 57 | 2.56 49 | 9.31 41 | 2.68 48 | 2.71 54 | 12.8 55 | 3.34 59 | 2.30 60 | 6.80 19 | 2.33 64 | 4.50 62 | 6.28 74 | 2.58 28 | 1.89 10 | 6.02 3 | 2.06 19 | 4.72 70 | 6.30 69 | 2.58 29 | 1.37 45 | 2.63 45 | 1.22 41 |
Deep-Matching [85] | 45.9 | 4.79 64 | 14.1 61 | 5.21 68 | 2.62 51 | 10.9 53 | 2.88 55 | 3.58 65 | 15.5 58 | 4.31 63 | 2.20 58 | 15.9 59 | 1.98 58 | 3.54 29 | 5.08 32 | 2.17 13 | 1.73 8 | 10.6 38 | 1.83 8 | 2.52 9 | 3.96 2 | 3.04 40 | 2.52 71 | 3.87 68 | 3.99 70 |
ACK-Prior [27] | 46.2 | 4.28 58 | 9.53 38 | 3.85 53 | 1.87 19 | 5.68 6 | 1.83 13 | 1.97 34 | 5.25 25 | 1.96 19 | 1.98 55 | 5.26 13 | 1.65 54 | 4.08 45 | 5.12 34 | 3.79 56 | 4.53 70 | 13.0 52 | 3.61 61 | 5.63 79 | 6.40 73 | 8.50 85 | 1.92 58 | 2.90 49 | 2.64 60 |
NL-TV-NCC [25] | 46.3 | 3.89 50 | 8.49 33 | 3.34 47 | 2.52 48 | 8.44 31 | 2.38 31 | 2.25 46 | 5.49 28 | 1.99 21 | 1.87 52 | 7.61 26 | 1.53 50 | 4.36 56 | 5.91 66 | 2.78 31 | 4.12 64 | 13.0 52 | 3.58 59 | 3.85 56 | 5.74 62 | 3.79 57 | 1.63 52 | 2.81 48 | 1.46 45 |
LDOF [28] | 48.1 | 3.72 46 | 14.9 65 | 3.59 50 | 2.38 44 | 14.0 65 | 2.46 38 | 2.69 53 | 14.4 56 | 2.55 52 | 1.48 39 | 33.9 76 | 1.10 29 | 4.24 53 | 5.59 51 | 3.75 54 | 2.04 16 | 16.4 66 | 1.99 16 | 2.83 20 | 4.83 35 | 2.43 27 | 2.28 68 | 4.02 71 | 3.38 64 |
CRTflow [88] | 49.1 | 3.65 45 | 14.0 60 | 3.10 39 | 2.16 30 | 7.88 28 | 2.23 27 | 2.25 46 | 11.2 49 | 1.99 21 | 1.56 41 | 12.7 52 | 1.35 41 | 4.02 41 | 5.53 49 | 3.01 39 | 6.86 81 | 19.6 77 | 8.64 83 | 3.29 36 | 5.53 56 | 3.23 44 | 2.05 62 | 3.95 70 | 2.71 61 |
LocallyOriented [52] | 49.5 | 3.46 39 | 14.6 63 | 3.01 36 | 2.84 59 | 13.3 60 | 2.85 53 | 2.92 58 | 17.6 62 | 3.05 57 | 1.63 45 | 10.6 45 | 1.43 46 | 4.23 52 | 5.79 60 | 3.19 43 | 2.48 37 | 7.69 13 | 2.87 47 | 3.41 44 | 5.63 58 | 3.25 45 | 1.65 53 | 3.48 61 | 1.86 52 |
SIOF [69] | 49.5 | 4.00 53 | 8.74 36 | 3.46 48 | 2.00 24 | 13.6 62 | 2.13 24 | 3.02 62 | 15.7 60 | 3.38 60 | 2.55 64 | 13.5 56 | 2.50 65 | 4.27 54 | 5.70 55 | 3.70 51 | 3.55 56 | 11.5 45 | 4.01 65 | 3.17 34 | 4.64 28 | 2.12 19 | 1.85 57 | 3.29 56 | 2.15 55 |
Brox et al. [5] | 49.9 | 4.01 54 | 14.7 64 | 4.49 61 | 2.75 57 | 11.5 55 | 3.21 60 | 2.33 49 | 12.2 52 | 2.34 48 | 1.46 35 | 19.9 64 | 1.19 37 | 4.62 66 | 5.71 56 | 4.89 72 | 2.13 20 | 13.3 55 | 2.28 35 | 2.87 22 | 4.78 33 | 1.55 5 | 2.30 69 | 3.68 66 | 3.31 63 |
DPOF [18] | 49.9 | 4.32 59 | 16.2 68 | 3.30 45 | 2.69 54 | 10.2 49 | 2.69 49 | 2.44 51 | 7.17 36 | 2.61 54 | 1.95 54 | 10.2 41 | 1.55 51 | 3.85 34 | 5.20 36 | 3.03 40 | 2.84 44 | 11.1 43 | 2.67 42 | 4.71 69 | 4.83 35 | 8.84 86 | 1.73 54 | 3.03 52 | 1.86 52 |
Dynamic MRF [7] | 51.3 | 4.55 63 | 13.6 56 | 5.02 67 | 1.81 16 | 8.86 36 | 1.82 12 | 2.13 41 | 12.6 53 | 1.87 15 | 1.62 43 | 13.2 54 | 1.45 47 | 4.61 64 | 5.80 63 | 4.32 64 | 4.14 65 | 21.3 80 | 4.42 68 | 3.22 35 | 4.41 17 | 5.01 75 | 2.11 63 | 3.92 69 | 3.51 65 |
Second-order prior [8] | 51.5 | 3.40 37 | 13.6 56 | 3.19 40 | 2.16 30 | 13.8 64 | 2.34 30 | 2.43 50 | 17.1 61 | 2.26 46 | 1.20 26 | 15.7 57 | 0.96 23 | 4.44 58 | 6.10 70 | 3.08 41 | 3.41 54 | 19.7 78 | 2.67 42 | 5.42 78 | 6.02 66 | 5.40 76 | 1.44 48 | 3.44 60 | 1.48 46 |
Local-TV-L1 [65] | 52.1 | 4.95 65 | 13.2 54 | 5.40 69 | 4.37 65 | 14.6 67 | 5.04 65 | 4.59 67 | 17.8 64 | 5.96 66 | 2.42 63 | 16.9 62 | 2.25 63 | 3.68 31 | 5.03 31 | 2.82 33 | 2.25 27 | 10.6 38 | 2.24 34 | 2.55 12 | 4.37 14 | 2.91 38 | 2.73 72 | 4.10 72 | 7.77 79 |
CLG-TV [48] | 52.4 | 3.59 40 | 9.91 41 | 3.24 41 | 4.16 64 | 11.1 54 | 4.96 63 | 3.12 63 | 11.5 50 | 3.97 62 | 2.31 61 | 13.0 53 | 1.99 59 | 4.56 63 | 6.11 71 | 3.95 59 | 2.85 45 | 12.2 47 | 2.78 46 | 4.23 64 | 5.87 64 | 2.86 36 | 1.17 38 | 2.45 43 | 1.04 30 |
Bartels [41] | 52.4 | 4.23 57 | 10.7 45 | 4.70 65 | 2.37 43 | 5.83 10 | 2.66 47 | 2.21 44 | 7.42 37 | 2.42 50 | 2.59 65 | 8.46 34 | 2.53 66 | 4.33 55 | 5.50 47 | 4.37 65 | 3.69 58 | 14.6 61 | 4.80 71 | 4.75 71 | 6.30 69 | 7.59 83 | 1.13 33 | 2.33 40 | 1.32 42 |
TriangleFlow [30] | 52.6 | 3.96 52 | 11.5 48 | 4.08 55 | 2.14 29 | 10.2 49 | 2.07 23 | 2.16 43 | 9.80 47 | 1.86 13 | 1.47 36 | 9.22 37 | 1.11 30 | 5.37 78 | 7.25 81 | 4.72 70 | 4.49 69 | 13.7 60 | 4.62 70 | 3.78 53 | 7.33 82 | 4.11 66 | 1.73 54 | 3.48 61 | 2.30 57 |
p-harmonic [29] | 52.7 | 4.47 61 | 14.4 62 | 4.52 62 | 2.71 55 | 9.33 42 | 2.89 56 | 3.40 64 | 15.0 57 | 3.02 56 | 1.93 53 | 24.1 69 | 1.59 52 | 4.15 47 | 5.18 35 | 3.66 50 | 3.37 53 | 16.0 63 | 3.54 57 | 3.90 57 | 5.36 52 | 2.71 33 | 1.29 43 | 2.41 42 | 1.38 44 |
FastOF [78] | 52.8 | 3.83 49 | 10.5 43 | 4.22 58 | 2.86 60 | 13.5 61 | 3.03 58 | 2.93 59 | 15.6 59 | 4.49 64 | 1.78 48 | 8.00 31 | 1.45 47 | 4.01 39 | 5.20 36 | 3.83 57 | 3.86 60 | 17.4 70 | 3.71 63 | 3.82 55 | 4.82 34 | 3.43 48 | 1.81 56 | 3.28 55 | 2.24 56 |
CBF [12] | 53.5 | 3.59 40 | 10.5 43 | 3.68 51 | 4.72 66 | 10.4 52 | 6.02 69 | 2.28 48 | 9.24 42 | 2.96 55 | 1.63 45 | 12.2 50 | 1.36 42 | 4.48 61 | 5.75 58 | 3.99 60 | 2.70 40 | 10.7 41 | 2.48 39 | 6.13 84 | 7.02 76 | 5.92 78 | 1.45 49 | 2.65 46 | 1.66 49 |
SuperFlow [89] | 54.6 | 3.40 37 | 11.5 48 | 3.31 46 | 3.97 63 | 12.2 58 | 5.00 64 | 3.01 61 | 17.9 65 | 7.70 68 | 2.66 66 | 18.1 63 | 2.64 67 | 4.17 48 | 5.42 45 | 4.16 63 | 2.19 24 | 10.6 38 | 2.20 30 | 4.22 63 | 6.11 68 | 2.45 28 | 2.12 65 | 3.64 65 | 3.59 67 |
StereoFlow [44] | 58.0 | 21.8 90 | 37.8 86 | 27.4 89 | 24.3 88 | 37.6 89 | 22.4 86 | 28.3 89 | 39.2 86 | 28.8 85 | 24.0 88 | 47.7 84 | 21.6 87 | 5.15 77 | 5.49 46 | 6.01 81 | 0.95 1 | 6.87 8 | 1.06 1 | 1.68 1 | 3.70 1 | 0.92 1 | 1.29 43 | 2.32 39 | 1.49 47 |
Learning Flow [11] | 58.5 | 3.80 48 | 11.9 50 | 3.58 49 | 3.02 61 | 13.0 59 | 3.34 61 | 2.84 56 | 17.9 65 | 3.18 58 | 1.82 50 | 34.6 78 | 1.50 49 | 5.44 80 | 7.32 82 | 4.61 69 | 3.10 49 | 18.8 73 | 3.04 49 | 3.94 59 | 6.38 72 | 3.65 50 | 1.37 45 | 3.38 58 | 1.18 34 |
Fusion [6] | 58.6 | 3.76 47 | 16.9 69 | 4.07 54 | 1.99 23 | 7.37 24 | 2.26 28 | 2.07 37 | 8.51 40 | 2.28 47 | 1.59 42 | 24.8 70 | 1.37 43 | 5.00 75 | 6.36 76 | 4.98 75 | 4.70 72 | 16.2 65 | 5.01 74 | 6.00 83 | 7.50 83 | 4.38 72 | 2.97 75 | 3.74 67 | 3.55 66 |
Shiralkar [42] | 59.3 | 4.46 60 | 18.3 73 | 4.36 59 | 1.93 21 | 16.4 68 | 1.87 17 | 2.99 60 | 17.6 62 | 2.01 25 | 2.10 57 | 21.0 66 | 1.96 57 | 4.36 56 | 5.72 57 | 3.55 48 | 5.65 78 | 19.4 75 | 5.11 76 | 4.90 74 | 5.57 57 | 7.14 81 | 2.11 63 | 4.71 75 | 2.53 59 |
SegOF [10] | 60.7 | 5.62 67 | 17.1 70 | 3.08 38 | 8.33 77 | 20.9 72 | 10.1 78 | 7.44 72 | 21.7 69 | 13.3 75 | 5.42 76 | 21.0 66 | 4.47 73 | 4.81 72 | 5.51 48 | 5.74 80 | 4.97 75 | 17.1 67 | 4.83 72 | 2.12 2 | 4.38 16 | 1.46 4 | 2.17 66 | 3.23 53 | 3.74 69 |
Ad-TV-NDC [36] | 62.4 | 8.75 79 | 15.3 67 | 12.3 82 | 10.5 80 | 24.2 79 | 12.3 80 | 8.96 76 | 28.2 73 | 11.5 70 | 5.31 75 | 22.8 68 | 5.55 76 | 4.03 42 | 5.79 60 | 2.86 35 | 2.80 42 | 10.0 33 | 2.87 47 | 3.04 29 | 4.52 20 | 2.66 32 | 4.62 82 | 5.79 82 | 30.9 88 |
Modified CLG [34] | 65.3 | 6.79 73 | 24.7 78 | 6.63 73 | 7.09 74 | 17.4 69 | 9.40 76 | 10.1 77 | 29.2 75 | 16.6 77 | 4.48 74 | 27.5 71 | 3.86 70 | 4.80 70 | 6.31 75 | 4.48 68 | 2.65 39 | 17.6 71 | 2.69 44 | 2.92 26 | 4.94 41 | 2.07 16 | 3.19 77 | 5.17 78 | 5.78 75 |
Filter Flow [19] | 66.8 | 6.76 72 | 17.6 72 | 4.37 60 | 5.01 68 | 17.6 70 | 5.49 67 | 5.98 69 | 26.3 71 | 18.4 80 | 7.23 78 | 29.9 74 | 6.91 78 | 5.12 76 | 6.23 73 | 5.36 77 | 5.23 76 | 11.9 46 | 4.95 73 | 6.64 85 | 8.75 86 | 3.75 56 | 0.95 20 | 2.15 35 | 1.21 40 |
IAOF2 [51] | 67.0 | 5.05 66 | 13.6 56 | 4.64 64 | 4.90 67 | 14.5 66 | 5.78 68 | 3.68 66 | 18.6 67 | 5.15 65 | 12.3 83 | 34.1 77 | 13.8 83 | 4.65 67 | 6.21 72 | 3.78 55 | 4.47 68 | 13.5 56 | 3.70 62 | 5.73 80 | 7.13 78 | 3.98 62 | 1.96 59 | 3.53 64 | 2.35 58 |
BlockOverlap [61] | 67.5 | 6.80 74 | 12.1 51 | 5.94 71 | 5.51 70 | 13.6 62 | 6.58 70 | 5.32 68 | 22.2 70 | 7.30 67 | 4.20 70 | 16.7 61 | 4.06 72 | 4.45 59 | 5.39 44 | 5.11 76 | 4.91 73 | 12.5 48 | 4.34 67 | 6.77 87 | 7.13 78 | 9.52 87 | 2.02 60 | 3.24 54 | 9.49 81 |
HBpMotionGpu [43] | 68.4 | 5.92 69 | 15.0 66 | 4.79 66 | 7.78 76 | 22.4 76 | 9.04 75 | 7.17 71 | 39.2 86 | 17.3 79 | 3.31 68 | 13.4 55 | 3.14 68 | 4.71 68 | 5.88 64 | 4.84 71 | 3.74 59 | 13.5 56 | 3.54 57 | 5.96 82 | 7.17 80 | 3.68 52 | 2.24 67 | 3.43 59 | 4.65 71 |
2D-CLG [1] | 68.8 | 9.69 81 | 37.7 85 | 7.18 75 | 11.1 81 | 21.9 75 | 13.9 82 | 19.0 85 | 34.8 79 | 28.7 84 | 13.0 84 | 46.7 83 | 12.8 82 | 4.97 74 | 5.79 60 | 5.47 79 | 4.08 63 | 21.2 79 | 4.32 66 | 2.29 5 | 4.00 4 | 1.64 6 | 4.47 81 | 5.51 81 | 6.55 77 |
GroupFlow [9] | 68.9 | 9.15 80 | 25.8 79 | 10.5 81 | 11.6 82 | 30.0 84 | 12.3 80 | 10.2 78 | 35.4 81 | 11.9 71 | 3.50 69 | 15.8 58 | 3.39 69 | 5.48 81 | 6.56 78 | 4.42 66 | 9.25 85 | 24.8 82 | 10.8 87 | 2.35 8 | 4.58 23 | 1.67 7 | 2.93 74 | 5.22 79 | 4.99 72 |
SPSA-learn [13] | 69.0 | 6.87 75 | 21.3 76 | 7.92 78 | 6.02 72 | 21.1 74 | 6.96 72 | 7.55 73 | 27.5 72 | 12.7 74 | 4.44 72 | 29.2 72 | 4.59 75 | 4.80 70 | 5.92 67 | 4.93 74 | 4.94 74 | 17.3 68 | 5.02 75 | 3.37 41 | 5.01 44 | 2.29 24 | 4.14 80 | 4.97 77 | 6.49 76 |
GraphCuts [14] | 69.7 | 6.34 70 | 17.1 70 | 5.55 70 | 5.30 69 | 20.9 72 | 5.26 66 | 6.05 70 | 20.4 68 | 12.4 73 | 2.85 67 | 20.9 65 | 2.15 61 | 4.74 69 | 5.95 68 | 4.90 73 | 8.69 84 | 12.6 49 | 5.19 77 | 5.79 81 | 6.40 73 | 6.80 80 | 2.45 70 | 3.48 61 | 3.59 67 |
Black & Anandan [4] | 70.3 | 7.19 76 | 18.9 75 | 8.40 79 | 5.96 71 | 22.6 77 | 6.69 71 | 8.73 75 | 28.7 74 | 12.1 72 | 4.46 73 | 29.4 73 | 4.52 74 | 4.91 73 | 6.59 79 | 4.09 61 | 4.18 66 | 19.4 75 | 4.44 69 | 4.69 67 | 6.36 71 | 2.01 14 | 3.13 76 | 4.46 73 | 5.06 73 |
IAOF [50] | 70.9 | 6.54 71 | 18.3 73 | 7.13 74 | 6.99 73 | 18.4 71 | 7.90 74 | 7.71 74 | 32.3 77 | 8.44 69 | 8.21 80 | 31.8 75 | 9.78 80 | 4.61 64 | 6.01 69 | 4.14 62 | 4.35 67 | 18.9 74 | 3.43 56 | 4.69 67 | 6.08 67 | 3.31 46 | 3.23 78 | 4.69 74 | 15.9 86 |
Nguyen [33] | 74.2 | 8.16 77 | 23.0 77 | 7.57 77 | 16.5 84 | 22.7 78 | 19.3 84 | 16.8 82 | 36.0 82 | 20.7 83 | 13.8 85 | 39.5 79 | 14.7 85 | 5.40 79 | 6.44 77 | 6.70 82 | 4.54 71 | 18.5 72 | 5.42 78 | 3.50 47 | 5.02 46 | 2.08 17 | 4.00 79 | 5.50 80 | 8.53 80 |
SILK [87] | 76.0 | 10.7 82 | 31.4 83 | 13.1 83 | 8.77 78 | 26.6 81 | 9.80 77 | 13.6 80 | 34.9 80 | 16.7 78 | 6.53 77 | 45.4 81 | 6.08 77 | 6.11 83 | 7.36 84 | 6.71 83 | 6.96 82 | 29.4 86 | 7.39 81 | 2.97 27 | 4.77 32 | 3.96 61 | 5.00 83 | 6.99 83 | 10.7 82 |
Horn & Schunck [3] | 77.0 | 8.40 78 | 27.2 80 | 9.62 80 | 7.28 75 | 28.3 83 | 7.55 73 | 13.3 79 | 31.9 76 | 15.8 76 | 7.35 79 | 48.5 85 | 7.69 79 | 5.84 82 | 7.34 83 | 5.45 78 | 5.80 79 | 25.8 84 | 6.79 80 | 5.25 76 | 7.11 77 | 2.11 18 | 5.21 84 | 8.30 85 | 6.66 78 |
Periodicity [86] | 79.4 | 12.3 84 | 51.4 90 | 7.39 76 | 9.23 79 | 38.3 90 | 11.1 79 | 34.7 90 | 48.1 90 | 36.0 89 | 4.27 71 | 57.7 89 | 3.99 71 | 24.4 90 | 73.2 90 | 16.2 89 | 29.6 90 | 74.3 90 | 29.4 90 | 3.29 36 | 5.67 59 | 1.90 11 | 6.64 86 | 44.8 90 | 21.5 87 |
TI-DOFE [24] | 80.4 | 16.4 88 | 34.0 84 | 21.2 88 | 21.5 87 | 31.9 85 | 25.3 88 | 24.4 88 | 41.0 88 | 33.0 88 | 22.8 87 | 46.3 82 | 25.2 88 | 6.25 84 | 7.67 86 | 6.82 84 | 6.37 80 | 25.6 83 | 7.87 82 | 3.94 59 | 5.78 63 | 1.78 9 | 8.49 88 | 9.86 87 | 12.5 83 |
SLK [47] | 80.6 | 12.3 84 | 43.0 89 | 16.5 85 | 19.8 86 | 32.9 87 | 22.4 86 | 21.4 86 | 38.4 84 | 29.3 87 | 41.6 90 | 51.6 87 | 44.5 90 | 6.87 86 | 7.63 85 | 8.94 86 | 8.09 83 | 31.2 88 | 9.56 84 | 3.34 40 | 5.41 53 | 2.60 30 | 8.13 87 | 9.23 86 | 13.9 85 |
Adaptive flow [45] | 83.9 | 16.4 88 | 28.7 82 | 16.7 86 | 17.2 85 | 25.5 80 | 19.6 85 | 18.8 84 | 37.6 83 | 36.5 90 | 11.2 82 | 43.6 80 | 11.9 81 | 7.11 87 | 7.79 87 | 7.88 85 | 10.1 88 | 24.1 81 | 10.1 86 | 16.1 90 | 14.2 90 | 22.1 90 | 2.92 73 | 4.89 76 | 5.22 74 |
PGAM+LK [55] | 85.2 | 14.0 86 | 40.6 87 | 18.8 87 | 14.9 83 | 33.1 88 | 17.8 83 | 14.4 81 | 32.9 78 | 19.3 81 | 15.7 86 | 63.6 90 | 14.9 86 | 6.36 85 | 6.81 80 | 9.14 87 | 9.83 87 | 30.7 87 | 9.83 85 | 10.4 89 | 12.2 89 | 10.3 88 | 5.30 85 | 7.26 84 | 13.0 84 |
FOLKI [16] | 85.8 | 11.0 83 | 41.0 88 | 14.5 84 | 24.9 89 | 32.3 86 | 36.7 89 | 18.7 83 | 43.8 89 | 20.5 82 | 10.9 81 | 50.5 86 | 13.8 83 | 7.42 88 | 8.28 88 | 10.6 88 | 9.75 86 | 36.9 89 | 12.1 88 | 4.77 73 | 7.29 81 | 11.0 89 | 12.2 89 | 11.4 88 | 36.4 89 |
Pyramid LK [2] | 87.6 | 15.8 87 | 28.2 81 | 30.4 90 | 35.8 90 | 28.0 82 | 49.6 90 | 22.3 87 | 38.6 85 | 29.1 86 | 31.8 89 | 51.7 88 | 39.0 89 | 18.3 89 | 24.8 89 | 24.1 90 | 26.7 89 | 28.6 85 | 26.7 89 | 7.19 88 | 8.98 87 | 7.70 84 | 32.7 90 | 40.6 89 | 57.0 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |