Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R10.0 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 5.8 | 3.83 2 | 16.9 5 | 1.87 3 | 2.64 6 | 16.1 6 | 1.33 6 | 3.02 2 | 10.7 2 | 1.33 10 | 2.79 10 | 18.9 12 | 1.11 11 | 4.82 1 | 6.85 1 | 1.73 1 | 4.13 3 | 14.6 2 | 2.27 2 | 0.52 11 | 5.08 38 | 0.00 1 | 0.28 2 | 1.04 2 | 0.04 1 |
OFLADF [82] | 6.2 | 3.84 3 | 17.2 6 | 1.99 9 | 2.48 4 | 14.1 4 | 1.41 7 | 2.96 1 | 10.1 1 | 1.17 9 | 2.36 5 | 14.7 4 | 0.82 5 | 5.15 2 | 7.90 5 | 2.15 2 | 6.43 19 | 18.2 8 | 4.98 14 | 0.27 2 | 2.42 4 | 0.07 11 | 0.79 6 | 1.88 5 | 1.81 13 |
MDP-Flow2 [70] | 7.5 | 3.86 4 | 17.2 6 | 1.90 6 | 2.06 1 | 12.6 1 | 1.04 2 | 3.22 4 | 11.0 3 | 1.16 8 | 3.27 18 | 21.7 18 | 1.19 14 | 6.35 12 | 8.86 10 | 3.12 8 | 5.40 8 | 15.7 3 | 5.11 16 | 0.38 7 | 3.75 17 | 0.02 3 | 0.49 3 | 1.80 4 | 0.13 3 |
NN-field [73] | 8.5 | 4.31 12 | 18.6 13 | 2.22 14 | 3.13 10 | 18.3 16 | 1.79 14 | 3.16 3 | 11.1 4 | 1.40 11 | 2.08 3 | 16.7 6 | 0.78 3 | 5.28 3 | 7.44 2 | 2.25 3 | 2.53 1 | 8.92 1 | 0.92 1 | 0.89 26 | 6.39 52 | 0.02 3 | 0.27 1 | 0.98 1 | 0.04 1 |
ADF [67] | 14.8 | 4.73 21 | 19.9 19 | 2.19 12 | 2.84 8 | 16.8 9 | 1.69 12 | 5.34 25 | 17.4 23 | 2.28 18 | 3.70 22 | 22.6 25 | 1.41 22 | 5.89 10 | 9.03 11 | 2.36 4 | 7.52 28 | 21.2 15 | 5.57 19 | 0.52 11 | 3.29 12 | 0.02 3 | 0.87 8 | 2.63 10 | 1.18 7 |
nLayers [57] | 15.0 | 4.08 8 | 16.2 2 | 2.80 27 | 4.71 39 | 19.3 20 | 3.82 45 | 4.64 11 | 15.2 11 | 3.96 42 | 1.99 2 | 13.2 1 | 0.80 4 | 5.34 5 | 7.57 4 | 3.22 10 | 5.85 15 | 16.8 5 | 4.64 10 | 0.87 24 | 3.68 16 | 0.96 32 | 0.84 7 | 2.94 15 | 0.75 4 |
Epistemic [84] | 15.0 | 4.03 6 | 17.7 9 | 2.19 12 | 2.17 3 | 13.1 3 | 1.26 5 | 3.86 7 | 13.2 7 | 1.58 13 | 2.85 11 | 18.0 8 | 1.03 9 | 6.68 16 | 9.59 16 | 4.14 22 | 8.35 44 | 27.3 43 | 8.34 51 | 0.60 14 | 4.03 20 | 0.52 23 | 0.76 5 | 2.22 7 | 1.09 6 |
LME [72] | 15.9 | 3.70 1 | 16.1 1 | 1.69 1 | 2.13 2 | 13.0 2 | 1.19 4 | 5.91 31 | 15.4 12 | 7.43 57 | 3.23 15 | 22.4 22 | 1.19 14 | 6.60 15 | 9.12 12 | 4.39 29 | 6.11 16 | 20.8 13 | 6.60 32 | 0.52 11 | 4.96 36 | 0.07 11 | 1.09 10 | 3.28 19 | 1.86 16 |
FC-2Layers-FF [77] | 16.4 | 4.03 6 | 16.3 3 | 2.39 21 | 4.23 28 | 20.9 27 | 3.21 29 | 3.40 6 | 11.4 5 | 2.64 21 | 2.74 9 | 17.1 7 | 1.03 9 | 5.73 8 | 8.29 8 | 3.31 12 | 7.49 26 | 20.5 11 | 6.66 34 | 1.30 36 | 6.84 55 | 0.34 18 | 0.64 4 | 1.78 3 | 1.20 8 |
Layers++ [37] | 19.7 | 4.39 13 | 17.8 10 | 3.14 30 | 3.70 20 | 18.0 14 | 2.84 24 | 3.37 5 | 11.5 6 | 2.65 22 | 2.38 6 | 14.1 3 | 0.82 5 | 5.33 4 | 7.52 3 | 3.78 18 | 7.58 29 | 22.0 19 | 6.13 25 | 1.81 49 | 7.08 57 | 0.54 24 | 1.45 23 | 2.46 9 | 4.56 54 |
FESL [75] | 19.8 | 3.91 5 | 16.6 4 | 2.13 11 | 5.68 50 | 23.5 39 | 4.23 49 | 5.17 20 | 16.8 18 | 2.99 28 | 2.41 7 | 15.8 5 | 0.89 8 | 5.76 9 | 8.62 9 | 4.05 21 | 5.81 12 | 17.6 7 | 5.32 17 | 1.09 31 | 5.68 47 | 1.21 38 | 1.35 15 | 2.89 13 | 1.72 11 |
ALD-Flow [68] | 20.6 | 4.22 9 | 18.2 11 | 1.93 8 | 3.20 12 | 16.8 9 | 1.59 11 | 5.21 21 | 17.4 23 | 1.13 7 | 3.70 22 | 22.9 27 | 1.26 16 | 6.54 14 | 9.31 14 | 3.14 9 | 5.25 7 | 21.5 16 | 4.98 14 | 0.88 25 | 4.67 28 | 4.48 65 | 2.69 36 | 6.66 35 | 4.79 55 |
Correlation Flow [79] | 21.4 | 4.57 14 | 20.5 21 | 1.87 3 | 2.71 7 | 16.2 7 | 1.16 3 | 5.74 30 | 17.9 27 | 0.66 1 | 1.91 1 | 13.5 2 | 0.85 7 | 8.00 40 | 12.0 45 | 4.57 32 | 8.69 47 | 23.8 28 | 8.93 56 | 0.84 21 | 4.74 29 | 0.96 32 | 1.38 19 | 3.81 24 | 1.91 17 |
TC/T-Flow [80] | 21.5 | 4.57 14 | 20.6 22 | 2.00 10 | 3.45 16 | 18.7 18 | 1.52 9 | 4.30 9 | 14.3 8 | 0.67 2 | 3.97 34 | 23.1 29 | 1.80 30 | 6.35 12 | 9.50 15 | 3.36 14 | 4.48 4 | 15.7 3 | 4.78 12 | 1.30 36 | 6.94 56 | 5.07 68 | 2.08 32 | 5.10 31 | 2.83 31 |
PMF [76] | 21.6 | 4.65 18 | 18.3 12 | 2.34 17 | 3.37 14 | 18.2 15 | 1.92 15 | 4.20 8 | 14.6 9 | 1.01 6 | 3.24 16 | 18.6 10 | 1.11 11 | 5.50 6 | 8.09 6 | 2.43 5 | 6.99 21 | 24.8 31 | 6.27 28 | 6.87 74 | 17.3 84 | 8.77 77 | 0.91 9 | 2.06 6 | 2.06 20 |
Efficient-NL [60] | 22.6 | 4.24 10 | 17.4 8 | 2.24 15 | 4.30 29 | 21.8 30 | 2.75 23 | 5.26 23 | 16.9 19 | 2.67 23 | 3.43 20 | 21.0 17 | 1.74 26 | 6.02 11 | 9.16 13 | 3.31 12 | 7.84 36 | 21.7 18 | 6.26 27 | 1.36 39 | 6.79 54 | 1.03 35 | 1.48 25 | 3.08 17 | 1.77 12 |
TC-Flow [46] | 23.3 | 4.27 11 | 19.0 16 | 1.91 7 | 2.85 9 | 16.6 8 | 1.45 8 | 5.05 17 | 16.9 19 | 0.80 5 | 4.05 36 | 23.9 33 | 1.74 26 | 6.73 17 | 9.68 17 | 2.93 7 | 5.83 13 | 22.9 25 | 5.68 21 | 1.39 41 | 4.87 34 | 7.32 73 | 2.46 34 | 6.13 33 | 4.49 50 |
SCR [74] | 23.8 | 4.57 14 | 18.7 14 | 2.57 23 | 4.70 37 | 23.8 42 | 3.26 30 | 4.51 10 | 15.1 10 | 2.92 27 | 3.26 17 | 20.8 16 | 1.38 21 | 7.05 21 | 9.87 21 | 4.58 33 | 7.11 22 | 20.5 11 | 6.04 23 | 1.23 33 | 5.66 46 | 1.48 42 | 1.41 20 | 2.84 11 | 2.46 26 |
IROF++ [58] | 26.8 | 4.68 19 | 19.4 17 | 2.70 25 | 4.66 34 | 23.1 35 | 3.42 38 | 5.25 22 | 17.2 22 | 3.79 39 | 3.95 33 | 23.2 30 | 2.05 41 | 6.97 20 | 9.84 19 | 4.64 34 | 7.99 40 | 24.6 30 | 7.05 43 | 0.44 9 | 4.30 24 | 0.00 1 | 1.37 18 | 3.26 18 | 2.83 31 |
COFM [59] | 27.0 | 4.75 22 | 20.2 20 | 2.63 24 | 3.40 15 | 18.3 16 | 2.14 18 | 6.19 35 | 19.3 33 | 4.00 43 | 3.04 13 | 18.8 11 | 1.11 11 | 7.45 31 | 10.1 23 | 7.01 58 | 8.80 49 | 20.9 14 | 6.68 35 | 1.41 42 | 3.66 15 | 2.76 56 | 1.22 12 | 2.28 8 | 3.72 45 |
Sparse-NonSparse [56] | 27.6 | 4.98 24 | 20.8 23 | 4.09 46 | 4.63 33 | 22.9 33 | 3.41 37 | 5.02 16 | 16.7 17 | 3.47 34 | 3.89 29 | 22.6 25 | 1.91 34 | 7.17 23 | 10.2 25 | 4.30 27 | 7.66 32 | 22.3 21 | 6.80 38 | 0.69 18 | 3.53 14 | 0.89 29 | 1.52 27 | 3.56 22 | 2.97 35 |
CostFilter [40] | 28.2 | 5.29 32 | 22.0 29 | 2.85 28 | 3.54 17 | 17.7 13 | 2.16 19 | 4.64 11 | 16.0 14 | 1.75 15 | 3.68 21 | 22.5 23 | 1.27 17 | 5.67 7 | 8.14 7 | 2.85 6 | 7.76 34 | 25.9 36 | 6.80 38 | 6.98 77 | 24.2 88 | 12.9 79 | 1.43 21 | 4.11 27 | 2.02 19 |
Classic+NL [31] | 28.8 | 5.07 27 | 21.0 24 | 4.22 49 | 4.70 37 | 23.4 38 | 3.27 31 | 4.98 15 | 16.5 16 | 3.48 35 | 3.75 25 | 22.5 23 | 1.68 24 | 7.21 25 | 10.2 25 | 4.32 28 | 7.82 35 | 22.4 22 | 6.71 36 | 1.47 43 | 6.39 52 | 1.18 37 | 1.12 11 | 2.87 12 | 2.27 22 |
LSM [39] | 29.0 | 5.00 26 | 21.2 27 | 3.93 44 | 4.62 32 | 22.9 33 | 3.37 34 | 5.13 19 | 17.1 21 | 3.26 31 | 3.80 26 | 22.9 27 | 1.87 32 | 6.92 19 | 9.78 18 | 4.41 31 | 7.71 33 | 22.4 22 | 6.74 37 | 1.00 29 | 4.76 31 | 1.16 36 | 1.68 29 | 3.94 25 | 2.90 34 |
Direct ZNCC [66] | 29.0 | 4.90 23 | 22.3 33 | 1.88 5 | 3.34 13 | 19.3 20 | 2.02 17 | 5.95 34 | 18.9 32 | 0.71 4 | 2.88 12 | 20.3 15 | 1.34 18 | 8.60 47 | 12.8 58 | 4.67 35 | 8.80 49 | 25.5 34 | 8.93 56 | 0.95 27 | 5.31 42 | 2.22 45 | 1.89 31 | 5.41 32 | 1.85 15 |
Ramp [62] | 29.2 | 5.12 28 | 21.1 25 | 3.82 43 | 4.68 36 | 23.2 36 | 3.47 40 | 4.89 14 | 16.3 15 | 3.46 33 | 3.83 27 | 22.3 21 | 1.93 36 | 7.23 26 | 10.2 25 | 4.80 40 | 7.61 31 | 22.1 20 | 6.80 38 | 1.20 32 | 5.04 37 | 1.43 41 | 1.36 16 | 2.98 16 | 2.31 25 |
Levin3 [90] | 29.2 | 4.58 17 | 19.4 17 | 2.55 22 | 5.04 44 | 24.4 46 | 3.53 42 | 4.70 13 | 15.4 12 | 2.79 25 | 4.00 35 | 23.4 31 | 2.01 39 | 6.86 18 | 9.84 19 | 3.99 20 | 7.50 27 | 21.6 17 | 6.82 41 | 2.53 54 | 7.35 59 | 2.22 45 | 1.36 16 | 2.90 14 | 2.50 28 |
NL-TV-NCC [25] | 29.8 | 5.44 34 | 21.7 28 | 2.24 15 | 4.00 24 | 21.9 31 | 1.69 12 | 5.27 24 | 17.8 26 | 0.67 2 | 2.52 8 | 19.1 13 | 0.67 2 | 8.37 46 | 12.5 52 | 5.12 45 | 11.5 64 | 32.0 59 | 9.19 59 | 0.86 22 | 4.93 35 | 1.35 39 | 2.16 33 | 6.46 34 | 1.63 9 |
TV-L1-MCT [64] | 31.2 | 4.69 20 | 18.9 15 | 3.60 39 | 5.64 49 | 25.6 51 | 4.21 47 | 5.53 27 | 18.1 29 | 3.23 29 | 3.04 13 | 19.9 14 | 1.35 19 | 7.49 32 | 10.6 31 | 4.91 42 | 8.34 42 | 22.8 24 | 7.50 47 | 0.79 20 | 2.61 6 | 3.57 61 | 1.73 30 | 3.45 21 | 3.26 40 |
MDP-Flow [26] | 31.4 | 5.65 38 | 24.7 40 | 4.93 56 | 3.70 20 | 17.6 12 | 3.40 36 | 5.47 26 | 18.7 31 | 4.66 45 | 3.87 28 | 24.3 36 | 1.88 33 | 7.12 22 | 9.89 22 | 5.00 44 | 6.17 17 | 25.9 36 | 4.66 11 | 0.61 15 | 5.65 45 | 0.05 8 | 3.28 44 | 8.39 44 | 3.45 44 |
IROF-TV [53] | 32.2 | 5.22 30 | 22.6 35 | 3.59 38 | 4.80 41 | 24.2 44 | 3.73 44 | 5.71 29 | 18.4 30 | 3.64 37 | 4.19 39 | 25.7 47 | 1.92 35 | 7.63 37 | 10.7 33 | 5.26 46 | 9.22 52 | 30.2 49 | 6.60 32 | 0.30 5 | 2.86 9 | 0.02 3 | 1.32 14 | 3.76 23 | 2.27 22 |
OFH [38] | 33.8 | 6.38 43 | 25.7 42 | 4.69 55 | 3.90 22 | 20.6 25 | 2.24 20 | 7.85 41 | 24.2 42 | 2.27 17 | 4.11 38 | 25.1 40 | 1.72 25 | 7.44 30 | 10.4 28 | 4.69 36 | 8.13 41 | 28.9 46 | 8.44 54 | 0.44 9 | 4.25 22 | 0.12 14 | 2.80 37 | 8.82 53 | 2.74 30 |
Sparse Occlusion [54] | 34.1 | 4.99 25 | 21.1 25 | 2.79 26 | 4.13 26 | 20.1 24 | 3.00 27 | 5.94 33 | 19.4 34 | 2.15 16 | 3.41 19 | 21.8 19 | 1.35 19 | 8.17 43 | 12.1 47 | 4.74 38 | 7.87 38 | 25.6 35 | 6.34 29 | 11.4 85 | 17.7 85 | 2.71 55 | 1.64 28 | 4.70 30 | 1.81 13 |
Occlusion-TV-L1 [63] | 34.2 | 5.23 31 | 22.2 31 | 2.36 20 | 4.40 30 | 21.2 28 | 3.39 35 | 8.46 45 | 24.8 46 | 3.83 40 | 3.92 31 | 24.8 38 | 1.74 26 | 9.11 57 | 13.1 64 | 5.75 50 | 4.65 5 | 23.9 29 | 3.52 5 | 1.27 35 | 3.13 11 | 0.44 21 | 3.56 49 | 8.92 54 | 3.28 41 |
Adaptive [20] | 34.4 | 5.12 28 | 22.0 29 | 2.34 17 | 4.82 42 | 23.2 36 | 3.50 41 | 8.67 48 | 24.5 45 | 3.56 36 | 4.19 39 | 25.3 45 | 1.83 31 | 7.40 28 | 10.6 31 | 3.63 15 | 5.84 14 | 23.2 27 | 3.75 7 | 3.25 60 | 8.86 64 | 0.89 29 | 2.87 39 | 6.69 36 | 3.14 39 |
ACK-Prior [27] | 35.9 | 5.49 36 | 24.0 38 | 1.81 2 | 2.55 5 | 15.7 5 | 0.83 1 | 5.07 18 | 17.7 25 | 1.52 12 | 2.14 4 | 18.1 9 | 0.50 1 | 8.64 49 | 11.6 41 | 7.10 59 | 14.6 77 | 30.7 51 | 11.7 67 | 8.46 82 | 11.5 75 | 19.5 84 | 3.68 52 | 7.25 39 | 2.64 29 |
SimpleFlow [49] | 36.4 | 5.65 38 | 22.4 34 | 4.93 56 | 5.47 48 | 24.5 47 | 4.28 50 | 6.88 40 | 21.0 37 | 3.95 41 | 4.74 47 | 25.2 41 | 3.02 52 | 7.19 24 | 10.1 23 | 4.70 37 | 8.34 42 | 23.1 26 | 7.16 44 | 1.02 30 | 4.61 27 | 0.89 29 | 1.29 13 | 3.44 20 | 2.47 27 |
Complementary OF [21] | 37.9 | 7.27 51 | 30.0 52 | 4.31 50 | 3.18 11 | 18.9 19 | 1.52 9 | 5.91 31 | 20.2 35 | 2.31 19 | 4.22 42 | 24.8 38 | 2.05 41 | 7.50 33 | 10.4 28 | 4.99 43 | 12.3 68 | 31.7 58 | 8.87 55 | 0.61 15 | 2.69 8 | 1.72 43 | 3.33 45 | 9.22 59 | 4.88 57 |
TCOF [71] | 39.8 | 7.04 49 | 26.9 46 | 3.54 37 | 4.93 43 | 23.7 41 | 3.45 39 | 9.94 54 | 27.8 53 | 7.40 56 | 3.74 24 | 23.7 32 | 1.55 23 | 10.0 67 | 14.3 74 | 4.40 30 | 4.91 6 | 17.0 6 | 5.53 18 | 5.08 68 | 9.68 67 | 4.19 63 | 1.43 21 | 4.44 28 | 1.69 10 |
EP-PM [83] | 42.8 | 8.62 61 | 33.5 65 | 3.62 40 | 3.58 18 | 19.7 22 | 1.93 16 | 6.19 35 | 20.5 36 | 1.64 14 | 4.64 46 | 25.2 41 | 2.54 46 | 7.60 36 | 10.4 28 | 5.81 51 | 11.2 62 | 31.6 56 | 9.82 62 | 6.91 76 | 8.93 65 | 15.9 82 | 1.48 25 | 4.06 26 | 2.01 18 |
ComplOF-FED-GPU [35] | 43.5 | 6.96 47 | 30.7 54 | 3.33 32 | 4.74 40 | 24.9 48 | 2.66 22 | 6.71 38 | 22.4 38 | 2.45 20 | 4.44 44 | 26.2 51 | 2.05 41 | 7.50 33 | 10.7 33 | 4.20 24 | 9.78 53 | 34.0 63 | 9.47 61 | 2.42 53 | 4.74 29 | 6.63 72 | 3.09 42 | 9.17 58 | 3.91 47 |
F-TV-L1 [15] | 43.6 | 8.70 62 | 31.4 58 | 8.47 70 | 7.61 57 | 27.3 56 | 5.86 57 | 11.0 56 | 28.0 54 | 5.73 50 | 5.75 56 | 28.7 62 | 3.32 58 | 7.28 27 | 10.8 35 | 3.72 17 | 6.59 20 | 26.4 40 | 4.38 9 | 1.26 34 | 5.30 41 | 0.44 21 | 3.04 41 | 7.76 41 | 2.29 24 |
SIOF [69] | 43.8 | 5.37 33 | 22.6 35 | 2.34 17 | 6.11 51 | 28.4 59 | 4.30 51 | 12.6 62 | 29.2 56 | 14.4 63 | 5.52 54 | 27.4 56 | 3.00 51 | 8.96 56 | 12.6 54 | 6.02 52 | 8.72 48 | 27.9 44 | 7.93 48 | 0.38 7 | 3.48 13 | 0.02 3 | 3.09 42 | 7.58 40 | 4.85 56 |
TV-L1-improved [17] | 44.0 | 5.52 37 | 23.4 37 | 3.42 34 | 4.13 26 | 20.8 26 | 2.96 25 | 8.29 44 | 24.2 42 | 3.64 37 | 4.06 37 | 24.4 37 | 1.77 29 | 8.34 45 | 12.1 47 | 4.15 23 | 13.7 73 | 38.4 71 | 14.9 75 | 4.40 66 | 10.1 69 | 2.14 44 | 3.33 45 | 8.42 45 | 3.40 42 |
Aniso. Huber-L1 [22] | 45.0 | 5.98 40 | 24.2 39 | 3.23 31 | 8.53 62 | 27.3 56 | 7.91 62 | 9.64 52 | 25.6 48 | 5.52 48 | 5.00 51 | 25.7 47 | 2.75 49 | 8.66 50 | 12.8 58 | 4.74 38 | 7.60 30 | 24.8 31 | 3.51 4 | 3.65 62 | 7.24 58 | 3.00 59 | 2.57 35 | 6.69 36 | 2.86 33 |
DPOF [18] | 45.4 | 9.01 64 | 34.7 66 | 3.68 42 | 6.16 52 | 25.4 50 | 4.32 52 | 5.55 28 | 17.9 27 | 3.36 32 | 3.92 31 | 25.3 45 | 2.00 38 | 8.14 42 | 11.0 38 | 6.05 53 | 10.5 58 | 27.9 44 | 8.16 50 | 9.33 83 | 6.19 50 | 21.0 86 | 1.46 24 | 4.57 29 | 0.80 5 |
LocallyOriented [52] | 45.9 | 8.05 56 | 30.6 53 | 3.63 41 | 8.09 59 | 30.8 66 | 6.17 59 | 12.3 61 | 32.3 62 | 7.04 54 | 4.88 50 | 25.2 41 | 2.88 50 | 8.80 54 | 12.7 56 | 4.27 26 | 5.41 9 | 20.4 9 | 6.07 24 | 1.35 38 | 6.03 49 | 0.99 34 | 3.73 54 | 8.62 48 | 4.18 48 |
Classic++ [32] | 46.1 | 5.46 35 | 22.2 31 | 4.35 52 | 4.66 34 | 22.1 32 | 3.57 43 | 8.00 42 | 24.3 44 | 5.06 46 | 4.21 41 | 25.2 41 | 2.01 39 | 8.77 52 | 12.7 56 | 5.47 47 | 9.03 51 | 30.2 49 | 7.29 45 | 2.92 58 | 7.73 61 | 3.10 60 | 3.83 55 | 8.53 46 | 3.87 46 |
CRTflow [88] | 48.6 | 7.63 54 | 31.8 61 | 3.42 34 | 4.40 30 | 21.2 28 | 2.97 26 | 8.99 49 | 26.6 49 | 4.11 44 | 4.86 49 | 26.5 52 | 2.57 47 | 7.99 39 | 11.7 42 | 3.26 11 | 18.0 81 | 40.2 75 | 22.2 83 | 1.47 43 | 4.45 25 | 2.51 53 | 4.73 61 | 11.4 67 | 7.30 63 |
Rannacher [23] | 49.2 | 6.99 48 | 27.1 47 | 5.36 60 | 5.27 45 | 24.3 45 | 4.22 48 | 9.51 51 | 27.1 51 | 5.54 49 | 4.76 48 | 25.7 47 | 2.58 48 | 8.80 54 | 12.9 61 | 4.82 41 | 11.0 60 | 35.7 66 | 9.36 60 | 2.33 51 | 4.76 31 | 2.39 51 | 2.82 38 | 8.01 42 | 3.13 38 |
Brox et al. [5] | 49.4 | 8.32 58 | 32.6 63 | 6.95 65 | 6.23 53 | 26.9 55 | 5.23 55 | 9.13 50 | 27.6 52 | 6.55 53 | 5.85 58 | 28.2 61 | 3.26 56 | 10.2 69 | 12.9 61 | 11.0 77 | 5.43 10 | 29.3 48 | 4.79 13 | 0.86 22 | 4.00 19 | 0.12 14 | 4.32 58 | 10.2 63 | 4.54 53 |
Local-TV-L1 [65] | 49.4 | 9.60 66 | 30.8 55 | 7.89 69 | 12.7 67 | 30.2 65 | 13.3 67 | 15.9 67 | 32.3 62 | 17.3 64 | 6.19 61 | 28.0 60 | 3.84 59 | 7.55 35 | 10.9 37 | 4.22 25 | 7.48 25 | 26.4 40 | 6.02 22 | 0.28 3 | 1.87 1 | 0.15 16 | 9.10 76 | 10.8 65 | 20.5 79 |
Deep-Matching [85] | 50.0 | 9.08 65 | 31.8 61 | 7.47 68 | 8.22 61 | 26.2 53 | 7.35 61 | 12.0 60 | 30.4 58 | 11.8 62 | 6.91 66 | 27.5 59 | 4.93 67 | 7.41 29 | 10.8 35 | 3.69 16 | 6.20 18 | 25.9 36 | 6.59 31 | 0.73 19 | 2.29 2 | 2.44 52 | 8.08 74 | 11.6 69 | 15.4 78 |
SuperFlow [89] | 50.3 | 7.15 50 | 27.4 48 | 3.52 36 | 10.4 64 | 27.8 58 | 11.2 64 | 14.5 66 | 31.5 61 | 22.4 68 | 5.93 59 | 31.6 65 | 3.23 55 | 8.77 52 | 11.9 43 | 8.59 68 | 5.61 11 | 25.9 36 | 3.72 6 | 3.76 63 | 11.1 73 | 0.37 20 | 3.59 50 | 8.96 56 | 3.01 36 |
Bartels [41] | 50.4 | 6.83 46 | 26.2 44 | 5.19 58 | 3.93 23 | 17.4 11 | 3.30 32 | 6.63 37 | 22.6 39 | 3.25 30 | 4.45 45 | 23.9 33 | 2.48 45 | 9.12 58 | 12.1 47 | 8.25 65 | 10.6 59 | 31.1 52 | 12.3 71 | 5.74 70 | 10.4 70 | 18.9 83 | 5.34 63 | 9.52 60 | 8.47 68 |
Dynamic MRF [7] | 50.9 | 7.74 55 | 31.6 60 | 4.44 54 | 4.12 25 | 23.6 40 | 2.47 21 | 8.49 46 | 28.0 54 | 2.83 26 | 4.25 43 | 27.4 56 | 2.41 44 | 8.61 48 | 12.0 45 | 6.08 54 | 14.5 76 | 43.2 79 | 14.9 75 | 0.64 17 | 2.35 3 | 4.51 66 | 9.85 78 | 15.6 80 | 15.3 76 |
FastOF [78] | 53.7 | 6.78 45 | 26.0 43 | 6.78 64 | 8.18 60 | 29.4 61 | 6.46 60 | 13.9 64 | 31.1 59 | 17.8 65 | 6.30 62 | 22.0 20 | 4.67 65 | 7.90 38 | 11.3 40 | 6.22 56 | 12.3 68 | 38.5 72 | 12.2 69 | 2.39 52 | 4.56 26 | 1.38 40 | 4.49 59 | 8.71 50 | 4.49 50 |
CBF [12] | 53.9 | 6.32 41 | 26.2 44 | 3.35 33 | 11.1 65 | 25.6 51 | 13.7 68 | 8.51 47 | 24.1 41 | 7.12 55 | 5.12 52 | 26.0 50 | 3.04 54 | 10.3 70 | 13.6 70 | 9.59 73 | 7.85 37 | 26.4 40 | 4.25 8 | 11.8 86 | 13.8 78 | 14.2 81 | 3.54 48 | 8.06 43 | 5.32 58 |
CLG-TV [48] | 54.1 | 6.33 42 | 24.7 40 | 4.13 47 | 9.08 63 | 26.6 54 | 9.31 63 | 9.85 53 | 26.8 50 | 5.82 51 | 5.30 53 | 26.5 52 | 3.03 53 | 10.4 72 | 14.6 78 | 7.57 61 | 7.95 39 | 31.1 52 | 6.51 30 | 5.92 71 | 11.4 74 | 4.36 64 | 3.41 47 | 8.81 52 | 3.06 37 |
TriangleFlow [30] | 54.8 | 7.35 52 | 28.2 50 | 4.31 50 | 5.35 47 | 25.2 49 | 3.36 33 | 8.00 42 | 24.8 46 | 2.70 24 | 3.90 30 | 24.1 35 | 1.97 37 | 12.9 81 | 17.8 86 | 10.7 75 | 13.1 71 | 32.3 61 | 13.9 74 | 4.71 67 | 16.1 83 | 4.04 62 | 3.65 51 | 8.73 51 | 5.69 59 |
p-harmonic [29] | 55.1 | 8.47 59 | 36.3 69 | 7.17 66 | 5.27 45 | 24.1 43 | 4.39 53 | 11.2 57 | 31.4 60 | 8.13 61 | 7.18 67 | 32.4 66 | 5.24 68 | 8.04 41 | 11.1 39 | 6.89 57 | 9.82 54 | 36.4 68 | 10.6 64 | 2.61 55 | 5.51 44 | 0.54 24 | 4.07 57 | 9.01 57 | 4.34 49 |
LDOF [28] | 58.3 | 8.22 57 | 31.4 58 | 4.08 45 | 7.64 58 | 29.4 61 | 5.87 58 | 10.7 55 | 30.3 57 | 7.99 60 | 7.80 68 | 36.8 72 | 4.86 66 | 9.14 59 | 12.4 51 | 8.24 64 | 8.58 45 | 32.0 59 | 8.38 52 | 1.75 48 | 5.26 40 | 5.02 67 | 5.52 65 | 12.9 73 | 6.04 61 |
SegOF [10] | 58.7 | 12.6 70 | 34.9 67 | 7.20 67 | 21.3 77 | 36.9 75 | 25.3 78 | 21.6 72 | 40.5 71 | 31.8 77 | 14.1 76 | 37.7 74 | 10.8 71 | 10.3 70 | 12.5 52 | 12.6 80 | 10.2 56 | 40.2 75 | 11.2 66 | 0.29 4 | 2.91 10 | 0.07 11 | 2.90 40 | 8.68 49 | 2.07 21 |
Fusion [6] | 59.4 | 8.51 60 | 37.6 71 | 6.69 63 | 3.62 19 | 20.0 23 | 3.08 28 | 6.82 39 | 22.6 39 | 6.47 52 | 5.78 57 | 31.3 64 | 4.29 62 | 11.2 77 | 14.7 79 | 10.6 74 | 14.0 74 | 35.2 64 | 15.0 77 | 7.88 79 | 14.3 81 | 2.22 45 | 5.35 64 | 11.0 66 | 8.56 69 |
Learning Flow [11] | 60.4 | 6.74 44 | 28.1 49 | 3.03 29 | 6.37 54 | 28.7 60 | 5.02 54 | 11.8 58 | 32.6 65 | 7.93 59 | 6.87 65 | 33.2 69 | 4.32 63 | 12.5 80 | 17.4 84 | 7.78 62 | 9.98 55 | 35.2 64 | 8.41 53 | 2.66 56 | 10.9 72 | 2.24 48 | 6.76 69 | 13.7 75 | 6.41 62 |
Ad-TV-NDC [36] | 61.9 | 21.2 79 | 36.8 70 | 34.1 82 | 25.9 80 | 38.5 77 | 29.9 80 | 23.5 76 | 41.0 72 | 27.1 70 | 13.3 73 | 32.4 66 | 13.3 76 | 8.75 51 | 13.2 65 | 3.82 19 | 7.43 24 | 25.1 33 | 6.92 42 | 1.50 45 | 4.84 33 | 0.34 18 | 17.1 85 | 15.9 82 | 37.2 88 |
StereoFlow [44] | 62.4 | 58.0 90 | 76.4 90 | 63.7 87 | 51.8 90 | 66.9 90 | 48.3 86 | 51.0 90 | 73.0 90 | 41.6 85 | 63.5 90 | 83.4 90 | 56.7 89 | 13.3 83 | 13.7 71 | 19.1 85 | 3.63 2 | 20.4 9 | 2.73 3 | 0.26 1 | 2.49 5 | 0.05 8 | 4.06 56 | 8.57 47 | 5.81 60 |
Second-order prior [8] | 62.5 | 7.35 52 | 31.2 57 | 4.16 48 | 6.80 56 | 29.5 63 | 5.27 56 | 11.8 58 | 33.3 67 | 7.78 58 | 6.05 60 | 27.2 55 | 3.90 60 | 9.67 65 | 13.8 72 | 5.74 49 | 14.0 74 | 41.8 78 | 11.7 67 | 6.86 73 | 9.72 68 | 7.61 75 | 4.72 60 | 10.1 62 | 7.78 66 |
HBpMotionGpu [43] | 62.8 | 11.7 68 | 32.8 64 | 6.34 62 | 18.9 74 | 35.4 73 | 22.0 75 | 22.3 73 | 42.7 74 | 31.1 76 | 5.62 55 | 26.7 54 | 3.31 57 | 9.47 61 | 13.0 63 | 8.55 67 | 8.68 46 | 31.2 54 | 5.58 20 | 6.88 75 | 11.9 76 | 0.64 26 | 7.67 72 | 11.4 67 | 15.2 74 |
SPSA-learn [13] | 64.2 | 15.7 75 | 48.8 79 | 16.5 75 | 16.6 71 | 35.0 72 | 17.5 72 | 21.4 71 | 42.3 73 | 29.7 73 | 12.6 71 | 37.4 73 | 12.3 74 | 9.64 63 | 12.8 58 | 9.16 70 | 11.0 60 | 37.9 70 | 12.2 69 | 0.98 28 | 3.88 18 | 0.05 8 | 8.38 75 | 11.6 69 | 15.2 74 |
Shiralkar [42] | 64.5 | 9.76 67 | 46.6 77 | 4.40 53 | 6.53 55 | 31.3 68 | 4.04 46 | 12.7 63 | 37.5 69 | 5.34 47 | 6.47 63 | 32.9 68 | 4.34 64 | 8.33 44 | 11.9 43 | 5.58 48 | 17.4 80 | 43.3 80 | 15.5 78 | 6.82 72 | 8.77 63 | 14.0 80 | 7.36 71 | 15.7 81 | 7.83 67 |
Filter Flow [19] | 65.5 | 14.6 72 | 38.2 73 | 8.96 72 | 12.4 66 | 34.6 71 | 11.3 65 | 20.2 70 | 38.3 70 | 30.1 74 | 19.2 78 | 43.4 79 | 18.6 78 | 10.0 67 | 13.4 67 | 9.43 72 | 10.3 57 | 31.4 55 | 9.08 58 | 8.21 81 | 19.6 86 | 0.79 28 | 3.72 53 | 6.85 38 | 3.41 43 |
Modified CLG [34] | 66.4 | 15.7 75 | 43.7 74 | 12.2 73 | 19.1 75 | 33.3 70 | 23.7 76 | 25.1 77 | 47.4 77 | 35.6 81 | 13.2 72 | 35.5 71 | 11.1 72 | 10.7 73 | 14.4 76 | 9.36 71 | 7.26 23 | 35.8 67 | 6.19 26 | 1.66 47 | 5.21 39 | 6.43 70 | 5.94 67 | 13.8 77 | 7.73 65 |
GraphCuts [14] | 67.1 | 12.6 70 | 36.1 68 | 5.46 61 | 14.7 70 | 39.4 79 | 12.5 66 | 17.8 69 | 35.6 68 | 29.1 72 | 6.86 64 | 33.7 70 | 4.15 61 | 9.33 60 | 12.6 54 | 8.69 69 | 23.0 84 | 31.6 56 | 15.5 78 | 3.52 61 | 7.38 60 | 11.7 78 | 5.33 62 | 9.87 61 | 8.75 70 |
IAOF2 [51] | 67.2 | 8.72 63 | 30.9 56 | 5.32 59 | 13.9 69 | 31.1 67 | 15.4 70 | 14.1 65 | 33.0 66 | 18.2 66 | 30.8 83 | 42.2 78 | 36.4 85 | 9.74 66 | 13.8 72 | 6.09 55 | 12.0 66 | 33.4 62 | 7.96 49 | 7.92 80 | 13.9 79 | 7.49 74 | 5.69 66 | 10.6 64 | 4.51 52 |
2D-CLG [1] | 67.8 | 24.4 81 | 51.8 82 | 19.4 79 | 27.4 81 | 38.7 78 | 33.8 82 | 34.6 84 | 57.7 82 | 42.2 87 | 33.4 85 | 57.1 86 | 32.9 84 | 9.64 63 | 12.2 50 | 11.0 77 | 11.2 62 | 40.2 75 | 12.8 72 | 0.31 6 | 2.62 7 | 0.25 17 | 6.33 68 | 13.7 75 | 7.33 64 |
BlockOverlap [61] | 69.0 | 12.3 69 | 29.2 51 | 8.49 71 | 13.7 68 | 29.6 64 | 15.3 69 | 16.2 68 | 32.5 64 | 20.0 67 | 8.87 69 | 27.4 56 | 7.62 69 | 10.9 75 | 13.4 67 | 12.5 79 | 13.3 72 | 29.1 47 | 10.3 63 | 11.8 86 | 14.4 82 | 23.8 87 | 10.6 79 | 8.92 54 | 24.8 81 |
IAOF [50] | 70.5 | 14.7 73 | 37.8 72 | 14.8 74 | 17.3 73 | 33.2 69 | 18.7 73 | 22.7 74 | 44.3 75 | 23.3 69 | 20.9 79 | 38.7 76 | 24.5 80 | 9.60 62 | 13.3 66 | 8.28 66 | 13.0 70 | 38.8 73 | 7.37 46 | 4.20 65 | 7.90 62 | 2.59 54 | 14.5 82 | 13.4 74 | 32.0 86 |
Black & Anandan [4] | 71.2 | 15.1 74 | 45.4 76 | 18.1 78 | 16.6 71 | 36.3 74 | 16.9 71 | 23.3 75 | 44.9 76 | 27.8 71 | 13.5 74 | 38.1 75 | 13.1 75 | 11.1 76 | 15.7 80 | 7.97 63 | 11.6 65 | 39.6 74 | 11.0 65 | 5.17 69 | 9.06 66 | 2.27 49 | 7.28 70 | 12.3 71 | 10.2 71 |
GroupFlow [9] | 72.7 | 22.9 80 | 47.1 78 | 26.7 81 | 28.4 82 | 50.0 85 | 30.8 81 | 25.4 78 | 52.4 78 | 30.6 75 | 9.32 70 | 29.6 63 | 8.14 70 | 10.7 73 | 13.4 67 | 7.16 60 | 23.0 84 | 46.3 81 | 27.8 87 | 1.56 46 | 5.72 48 | 2.76 56 | 8.00 73 | 12.5 72 | 15.3 76 |
Nguyen [33] | 73.0 | 20.0 78 | 44.7 75 | 17.4 77 | 39.5 86 | 37.5 76 | 52.5 87 | 34.0 83 | 56.0 81 | 38.8 83 | 35.6 86 | 47.9 81 | 41.1 86 | 12.1 78 | 14.3 74 | 16.5 83 | 12.0 66 | 37.8 69 | 13.8 73 | 1.37 40 | 4.27 23 | 0.71 27 | 11.6 80 | 14.5 79 | 20.8 80 |
SILK [87] | 76.6 | 26.9 82 | 51.7 81 | 36.6 84 | 22.3 78 | 45.5 81 | 24.5 77 | 28.8 79 | 54.7 80 | 34.2 78 | 18.4 77 | 41.6 77 | 15.8 77 | 13.1 82 | 16.5 81 | 16.1 82 | 19.1 82 | 47.8 82 | 19.3 82 | 2.87 57 | 4.22 21 | 6.53 71 | 15.9 83 | 19.1 83 | 25.8 82 |
Horn & Schunck [3] | 78.2 | 19.9 77 | 61.0 84 | 23.3 80 | 19.4 76 | 44.3 80 | 19.1 74 | 29.5 80 | 58.8 84 | 34.9 80 | 21.0 80 | 49.9 82 | 21.2 79 | 12.3 79 | 16.5 81 | 10.8 76 | 17.3 79 | 50.6 84 | 18.0 80 | 7.23 78 | 11.9 76 | 2.34 50 | 13.4 81 | 22.2 85 | 14.9 73 |
Periodicity [86] | 81.4 | 30.6 85 | 48.8 79 | 16.7 76 | 24.1 79 | 49.8 83 | 26.2 79 | 39.1 88 | 54.5 79 | 39.5 84 | 13.6 75 | 47.1 80 | 12.0 73 | 37.5 90 | 48.2 90 | 33.6 89 | 38.5 89 | 66.9 90 | 36.0 89 | 2.02 50 | 10.8 71 | 8.18 76 | 20.8 86 | 35.9 89 | 30.1 84 |
TI-DOFE [24] | 82.2 | 44.7 88 | 66.3 89 | 66.5 89 | 44.2 88 | 50.5 86 | 54.8 89 | 43.5 89 | 72.0 89 | 44.7 89 | 48.6 88 | 63.3 87 | 54.0 88 | 13.6 84 | 17.7 85 | 15.1 81 | 17.2 78 | 50.3 83 | 19.0 81 | 3.07 59 | 5.50 43 | 2.93 58 | 21.5 87 | 24.7 87 | 33.9 87 |
SLK [47] | 83.2 | 28.9 84 | 63.3 87 | 36.4 83 | 42.3 87 | 54.0 89 | 52.8 88 | 36.6 86 | 67.7 88 | 42.5 88 | 51.4 89 | 54.3 85 | 60.0 90 | 14.5 86 | 16.7 83 | 20.8 86 | 21.5 83 | 53.4 88 | 24.1 84 | 3.92 64 | 6.27 51 | 5.91 69 | 21.7 88 | 23.7 86 | 31.5 85 |
Adaptive flow [45] | 84.6 | 49.6 89 | 62.1 85 | 66.8 90 | 37.4 84 | 46.5 82 | 43.1 84 | 34.9 85 | 58.6 83 | 41.7 86 | 27.3 82 | 53.5 84 | 28.7 81 | 16.1 87 | 18.2 87 | 17.6 84 | 25.3 88 | 52.9 86 | 25.1 86 | 45.4 90 | 38.1 90 | 74.4 90 | 9.25 77 | 14.4 78 | 13.9 72 |
PGAM+LK [55] | 85.0 | 35.2 86 | 65.7 88 | 44.1 86 | 31.5 83 | 51.1 87 | 36.1 83 | 30.9 81 | 60.0 86 | 36.8 82 | 33.0 84 | 72.3 89 | 32.7 83 | 13.8 85 | 14.4 76 | 22.6 87 | 24.6 86 | 53.2 87 | 24.6 85 | 27.1 89 | 32.6 89 | 26.2 88 | 17.0 84 | 20.4 84 | 28.4 83 |
FOLKI [16] | 85.2 | 27.4 83 | 59.9 83 | 40.6 85 | 37.4 84 | 51.5 88 | 46.6 85 | 32.4 82 | 61.6 87 | 34.2 78 | 26.3 81 | 50.6 83 | 30.2 82 | 18.2 88 | 19.7 88 | 26.3 88 | 24.6 86 | 56.6 89 | 28.8 88 | 10.3 84 | 13.9 79 | 26.7 89 | 27.1 89 | 26.9 88 | 45.3 89 |
Pyramid LK [2] | 87.9 | 41.0 87 | 62.5 86 | 66.4 88 | 47.2 89 | 49.9 84 | 59.7 90 | 37.5 87 | 59.5 85 | 45.5 90 | 43.8 87 | 65.1 88 | 49.5 87 | 36.5 89 | 43.8 89 | 42.6 90 | 43.3 90 | 52.8 85 | 45.9 90 | 11.8 86 | 20.2 87 | 20.7 85 | 40.0 90 | 46.5 90 | 59.5 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |