Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A95 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 5.0 | 1.09 1 | 1.35 1 | 1.13 1 | 1.11 7 | 1.60 7 | 1.06 5 | 1.19 1 | 1.49 4 | 1.04 1 | 1.80 1 | 1.83 3 | 2.22 3 | 1.73 1 | 1.70 1 | 1.94 10 | 1.70 16 | 2.17 20 | 1.74 14 | 1.08 1 | 1.48 3 | 1.20 1 | 1.19 7 | 1.69 9 | 1.07 1 |
ComplexFlow [81] | 7.8 | 1.09 1 | 1.38 2 | 1.13 1 | 1.07 1 | 1.46 2 | 1.05 1 | 1.19 1 | 1.47 2 | 1.04 1 | 1.83 15 | 1.93 36 | 2.23 6 | 1.74 2 | 1.70 1 | 1.93 2 | 1.72 34 | 2.42 37 | 1.75 25 | 1.09 4 | 1.50 6 | 1.20 1 | 1.18 1 | 1.68 5 | 1.07 1 |
IROF++ [58] | 10.1 | 1.11 12 | 1.44 10 | 1.14 8 | 1.13 12 | 1.68 11 | 1.05 1 | 1.22 6 | 1.61 11 | 1.07 13 | 1.80 1 | 1.81 1 | 2.24 13 | 1.74 2 | 1.72 5 | 1.93 2 | 1.68 5 | 2.06 7 | 1.73 9 | 1.10 13 | 1.56 22 | 1.21 28 | 1.20 13 | 1.75 21 | 1.08 17 |
NN-field [73] | 10.2 | 1.10 5 | 1.43 9 | 1.14 8 | 1.08 2 | 1.47 4 | 1.05 1 | 1.24 26 | 1.47 2 | 1.07 13 | 1.85 36 | 2.00 54 | 2.23 6 | 1.74 2 | 1.70 1 | 1.94 10 | 1.70 16 | 2.21 25 | 1.74 14 | 1.08 1 | 1.48 3 | 1.20 1 | 1.18 1 | 1.67 3 | 1.07 1 |
Layers++ [37] | 12.5 | 1.12 22 | 1.45 12 | 1.15 17 | 1.09 5 | 1.46 2 | 1.07 14 | 1.22 6 | 1.59 6 | 1.07 13 | 1.81 6 | 1.85 10 | 2.23 6 | 1.76 13 | 1.75 23 | 1.94 10 | 1.72 34 | 2.56 50 | 1.75 25 | 1.09 4 | 1.47 1 | 1.20 1 | 1.18 1 | 1.66 1 | 1.08 17 |
nLayers [57] | 12.9 | 1.11 12 | 1.40 6 | 1.15 17 | 1.11 7 | 1.60 7 | 1.07 14 | 1.20 3 | 1.44 1 | 1.06 5 | 1.81 6 | 1.83 3 | 2.23 6 | 1.77 36 | 1.76 39 | 1.95 26 | 1.72 34 | 2.42 37 | 1.76 39 | 1.09 4 | 1.47 1 | 1.20 1 | 1.18 1 | 1.67 3 | 1.07 1 |
Sparse-NonSparse [56] | 15.9 | 1.11 12 | 1.47 16 | 1.15 17 | 1.12 9 | 1.68 11 | 1.06 5 | 1.22 6 | 1.61 11 | 1.06 5 | 1.83 15 | 1.86 12 | 2.24 13 | 1.76 13 | 1.74 12 | 1.94 10 | 1.73 44 | 2.54 46 | 1.76 39 | 1.10 13 | 1.57 26 | 1.20 1 | 1.20 13 | 1.78 31 | 1.07 1 |
ADF [67] | 17.4 | 1.10 5 | 1.38 2 | 1.14 8 | 1.16 24 | 1.83 25 | 1.07 14 | 1.22 6 | 1.61 11 | 1.07 13 | 1.80 1 | 1.83 3 | 2.23 6 | 1.77 36 | 1.75 23 | 1.95 26 | 1.69 8 | 2.26 27 | 1.72 2 | 1.10 13 | 1.57 26 | 1.21 28 | 1.23 45 | 1.82 48 | 1.08 17 |
COFM [59] | 17.7 | 1.11 12 | 1.44 10 | 1.15 17 | 1.12 9 | 1.66 10 | 1.07 14 | 1.21 4 | 1.55 5 | 1.06 5 | 1.80 1 | 1.83 3 | 2.21 1 | 1.74 2 | 1.73 6 | 1.93 2 | 1.71 28 | 2.82 71 | 1.72 2 | 1.11 39 | 1.53 12 | 1.24 74 | 1.21 20 | 1.71 12 | 1.10 65 |
TV-L1-MCT [64] | 17.7 | 1.13 46 | 1.55 38 | 1.15 17 | 1.19 28 | 1.89 30 | 1.07 14 | 1.22 6 | 1.66 25 | 1.07 13 | 1.81 6 | 1.84 7 | 2.24 13 | 1.76 13 | 1.75 23 | 1.94 10 | 1.70 16 | 2.10 12 | 1.75 25 | 1.10 13 | 1.55 19 | 1.21 28 | 1.18 1 | 1.68 5 | 1.08 17 |
SCR [74] | 18.6 | 1.12 22 | 1.47 16 | 1.15 17 | 1.13 12 | 1.68 11 | 1.06 5 | 1.22 6 | 1.61 11 | 1.07 13 | 1.83 15 | 1.86 12 | 2.24 13 | 1.76 13 | 1.75 23 | 1.95 26 | 1.73 44 | 2.59 56 | 1.75 25 | 1.10 13 | 1.60 41 | 1.20 1 | 1.21 20 | 1.78 31 | 1.07 1 |
Levin3 [90] | 19.1 | 1.12 22 | 1.50 20 | 1.15 17 | 1.15 17 | 1.74 21 | 1.07 14 | 1.22 6 | 1.61 11 | 1.06 5 | 1.82 12 | 1.84 7 | 2.26 42 | 1.75 7 | 1.73 6 | 1.94 10 | 1.73 44 | 2.51 44 | 1.76 39 | 1.10 13 | 1.60 41 | 1.20 1 | 1.21 20 | 1.76 23 | 1.08 17 |
LME [72] | 19.6 | 1.09 1 | 1.38 2 | 1.13 1 | 1.15 17 | 1.70 15 | 1.12 53 | 1.23 21 | 1.76 35 | 1.07 13 | 1.81 6 | 1.87 16 | 2.24 13 | 1.78 59 | 1.78 60 | 2.00 77 | 1.70 16 | 2.26 27 | 1.74 14 | 1.08 1 | 1.48 3 | 1.20 1 | 1.19 7 | 1.71 12 | 1.07 1 |
Epistemic [84] | 19.7 | 1.10 5 | 1.46 13 | 1.14 8 | 1.12 9 | 1.65 9 | 1.05 1 | 1.22 6 | 1.64 22 | 1.07 13 | 1.81 6 | 1.85 10 | 2.22 3 | 1.77 36 | 1.75 23 | 1.95 26 | 1.70 16 | 2.21 25 | 1.75 25 | 1.11 39 | 1.69 60 | 1.21 28 | 1.22 31 | 1.80 41 | 1.08 17 |
LSM [39] | 20.3 | 1.12 22 | 1.50 20 | 1.15 17 | 1.13 12 | 1.70 15 | 1.06 5 | 1.22 6 | 1.68 31 | 1.06 5 | 1.83 15 | 1.87 16 | 2.24 13 | 1.76 13 | 1.75 23 | 1.95 26 | 1.73 44 | 2.63 59 | 1.76 39 | 1.10 13 | 1.58 37 | 1.20 1 | 1.21 20 | 1.79 35 | 1.07 1 |
Aniso. Huber-L1 [22] | 22.5 | 1.13 46 | 1.57 43 | 1.17 45 | 1.41 58 | 2.18 52 | 1.11 49 | 1.25 32 | 1.65 24 | 1.08 23 | 1.83 15 | 1.89 21 | 2.25 31 | 1.75 7 | 1.73 6 | 1.94 10 | 1.67 2 | 2.06 7 | 1.72 2 | 1.10 13 | 1.52 10 | 1.20 1 | 1.20 13 | 1.71 12 | 1.08 17 |
Ramp [62] | 22.8 | 1.12 22 | 1.52 27 | 1.15 17 | 1.13 12 | 1.71 17 | 1.07 14 | 1.22 6 | 1.62 16 | 1.06 5 | 1.81 6 | 1.84 7 | 2.24 13 | 1.76 13 | 1.75 23 | 1.95 26 | 1.76 63 | 2.87 75 | 1.77 55 | 1.10 13 | 1.56 22 | 1.20 1 | 1.22 31 | 1.81 46 | 1.08 17 |
Classic+NL [31] | 23.0 | 1.12 22 | 1.54 32 | 1.15 17 | 1.15 17 | 1.73 20 | 1.07 14 | 1.22 6 | 1.63 18 | 1.06 5 | 1.83 15 | 1.89 21 | 2.25 31 | 1.76 13 | 1.74 12 | 1.95 26 | 1.75 57 | 2.57 52 | 1.77 55 | 1.10 13 | 1.57 26 | 1.20 1 | 1.22 31 | 1.78 31 | 1.08 17 |
FC-2Layers-FF [77] | 23.6 | 1.12 22 | 1.50 20 | 1.15 17 | 1.08 2 | 1.45 1 | 1.08 25 | 1.21 4 | 1.60 8 | 1.06 5 | 1.82 12 | 1.86 12 | 2.24 13 | 1.77 36 | 1.76 39 | 1.95 26 | 1.76 63 | 2.95 78 | 1.77 55 | 1.10 13 | 1.60 41 | 1.20 1 | 1.22 31 | 1.77 25 | 1.08 17 |
MDP-Flow [26] | 24.8 | 1.10 5 | 1.47 16 | 1.14 8 | 1.13 12 | 1.69 14 | 1.08 25 | 1.22 6 | 1.60 8 | 1.08 23 | 1.88 47 | 1.99 51 | 2.25 31 | 1.76 13 | 1.73 6 | 1.96 54 | 1.76 63 | 3.26 82 | 1.76 39 | 1.10 13 | 1.54 13 | 1.21 28 | 1.20 13 | 1.76 23 | 1.07 1 |
DPOF [18] | 24.9 | 1.13 46 | 1.65 67 | 1.17 45 | 1.10 6 | 1.55 6 | 1.08 25 | 1.29 55 | 1.62 16 | 1.11 47 | 1.84 29 | 1.93 36 | 2.25 31 | 1.75 7 | 1.73 6 | 1.93 2 | 1.69 8 | 2.17 20 | 1.72 2 | 1.10 13 | 1.54 13 | 1.22 49 | 1.22 31 | 1.75 21 | 1.08 17 |
Second-order prior [8] | 25.5 | 1.12 22 | 1.53 30 | 1.15 17 | 1.34 50 | 2.16 50 | 1.09 36 | 1.32 65 | 2.09 70 | 1.12 54 | 1.84 29 | 1.90 26 | 2.23 6 | 1.76 13 | 1.74 12 | 1.94 10 | 1.68 5 | 2.11 14 | 1.74 14 | 1.10 13 | 1.54 13 | 1.20 1 | 1.21 20 | 1.77 25 | 1.08 17 |
OFLADF [82] | 26.0 | 1.10 5 | 1.39 5 | 1.14 8 | 1.08 2 | 1.51 5 | 1.06 5 | 1.22 6 | 1.59 6 | 1.04 1 | 1.80 1 | 1.81 1 | 2.21 1 | 1.77 36 | 1.76 39 | 1.96 54 | 1.75 57 | 2.93 77 | 1.76 39 | 1.12 54 | 1.86 73 | 1.21 28 | 1.24 52 | 1.83 51 | 1.08 17 |
FESL [75] | 26.2 | 1.12 22 | 1.49 19 | 1.15 17 | 1.15 17 | 1.75 22 | 1.07 14 | 1.23 21 | 1.66 25 | 1.08 23 | 1.83 15 | 1.88 19 | 2.24 13 | 1.77 36 | 1.76 39 | 1.96 54 | 1.75 57 | 2.85 73 | 1.76 39 | 1.10 13 | 1.57 26 | 1.20 1 | 1.22 31 | 1.78 31 | 1.07 1 |
EP-PM [83] | 26.6 | 1.09 1 | 1.41 8 | 1.13 1 | 1.16 24 | 1.83 25 | 1.06 5 | 1.31 59 | 2.09 70 | 1.10 33 | 1.83 15 | 1.93 36 | 2.24 13 | 1.75 7 | 1.74 12 | 1.95 26 | 1.72 34 | 2.29 33 | 1.76 39 | 1.11 39 | 1.64 54 | 1.22 49 | 1.21 20 | 1.79 35 | 1.07 1 |
Deep-Matching [85] | 26.6 | 1.12 22 | 1.51 23 | 1.17 45 | 1.29 40 | 2.02 38 | 1.15 58 | 1.24 26 | 1.85 47 | 1.08 23 | 1.87 41 | 1.91 28 | 2.26 42 | 1.76 13 | 1.74 12 | 1.96 54 | 1.71 28 | 1.87 1 | 1.78 62 | 1.09 4 | 1.51 8 | 1.20 1 | 1.18 1 | 1.68 5 | 1.08 17 |
PMF [76] | 26.7 | 1.10 5 | 1.40 6 | 1.13 1 | 1.15 17 | 1.72 19 | 1.06 5 | 1.26 36 | 1.94 57 | 1.10 33 | 1.82 12 | 1.86 12 | 2.24 13 | 1.77 36 | 1.76 39 | 1.94 10 | 1.74 51 | 2.13 17 | 1.80 74 | 1.10 13 | 1.57 26 | 1.22 49 | 1.25 56 | 1.84 53 | 1.07 1 |
Brox et al. [5] | 27.3 | 1.12 22 | 1.52 27 | 1.15 17 | 1.25 35 | 1.95 36 | 1.10 42 | 1.28 50 | 1.98 62 | 1.11 47 | 1.85 36 | 1.87 16 | 2.24 13 | 1.76 13 | 1.75 23 | 1.95 26 | 1.71 28 | 2.34 34 | 1.74 14 | 1.11 39 | 1.60 41 | 1.20 1 | 1.19 7 | 1.69 9 | 1.08 17 |
FastOF [78] | 27.3 | 1.14 56 | 1.54 32 | 1.17 45 | 1.37 54 | 2.10 44 | 1.21 65 | 1.30 57 | 2.09 70 | 1.12 54 | 1.86 38 | 1.91 28 | 2.22 3 | 1.75 7 | 1.74 12 | 1.95 26 | 1.67 2 | 1.89 3 | 1.74 14 | 1.09 4 | 1.52 10 | 1.20 1 | 1.20 13 | 1.72 16 | 1.07 1 |
IROF-TV [53] | 27.4 | 1.12 22 | 1.57 43 | 1.15 17 | 1.15 17 | 1.76 23 | 1.06 5 | 1.25 32 | 1.95 58 | 1.08 23 | 1.83 15 | 1.89 21 | 2.26 42 | 1.78 59 | 1.77 52 | 1.97 70 | 1.69 8 | 2.35 36 | 1.72 2 | 1.10 13 | 1.57 26 | 1.21 28 | 1.20 13 | 1.72 16 | 1.08 17 |
p-harmonic [29] | 27.9 | 1.11 12 | 1.51 23 | 1.15 17 | 1.38 55 | 2.19 54 | 1.10 42 | 1.26 36 | 1.99 63 | 1.10 33 | 1.88 47 | 1.98 49 | 2.26 42 | 1.76 13 | 1.75 23 | 1.95 26 | 1.69 8 | 2.19 24 | 1.74 14 | 1.10 13 | 1.57 26 | 1.20 1 | 1.20 13 | 1.73 18 | 1.08 17 |
Efficient-NL [60] | 28.7 | 1.12 22 | 1.46 13 | 1.15 17 | 1.19 28 | 1.88 28 | 1.07 14 | 1.31 59 | 1.66 25 | 1.12 54 | 1.83 15 | 1.88 19 | 2.23 6 | 1.75 7 | 1.74 12 | 1.94 10 | 1.72 34 | 2.80 67 | 1.73 9 | 1.11 39 | 1.62 50 | 1.21 28 | 1.25 56 | 1.86 60 | 1.08 17 |
TC/T-Flow [80] | 30.0 | 1.12 22 | 1.52 27 | 1.15 17 | 1.20 32 | 1.92 34 | 1.08 25 | 1.22 6 | 1.66 25 | 1.07 13 | 1.83 15 | 1.89 21 | 2.25 31 | 1.77 36 | 1.76 39 | 1.96 54 | 1.71 28 | 2.11 14 | 1.75 25 | 1.12 54 | 1.73 63 | 1.22 49 | 1.22 31 | 1.80 41 | 1.08 17 |
SuperFlow [89] | 30.5 | 1.12 22 | 1.54 32 | 1.18 55 | 1.32 46 | 2.02 38 | 1.22 66 | 1.26 36 | 1.76 35 | 1.11 47 | 1.87 41 | 1.91 28 | 2.26 42 | 1.76 13 | 1.74 12 | 1.96 54 | 1.66 1 | 1.87 1 | 1.72 2 | 1.11 39 | 1.59 39 | 1.22 49 | 1.19 7 | 1.70 11 | 1.08 17 |
SIOF [69] | 30.6 | 1.14 56 | 1.60 53 | 1.17 45 | 1.45 61 | 2.27 67 | 1.20 61 | 1.24 26 | 1.76 35 | 1.10 33 | 1.84 29 | 1.93 36 | 2.24 13 | 1.74 2 | 1.71 4 | 1.94 10 | 1.70 16 | 2.07 11 | 1.75 25 | 1.09 4 | 1.54 13 | 1.20 1 | 1.23 45 | 1.79 35 | 1.09 54 |
CLG-TV [48] | 31.8 | 1.13 46 | 1.56 41 | 1.17 45 | 1.36 53 | 2.20 55 | 1.11 49 | 1.27 48 | 1.88 53 | 1.11 47 | 1.86 38 | 1.92 33 | 2.27 53 | 1.76 13 | 1.74 12 | 1.95 26 | 1.68 5 | 1.97 5 | 1.74 14 | 1.10 13 | 1.54 13 | 1.21 28 | 1.22 31 | 1.77 25 | 1.08 17 |
Sparse Occlusion [54] | 32.1 | 1.12 22 | 1.58 48 | 1.15 17 | 1.28 38 | 2.13 48 | 1.08 25 | 1.23 21 | 1.63 18 | 1.08 23 | 1.84 29 | 1.93 36 | 2.24 13 | 1.77 36 | 1.76 39 | 1.95 26 | 1.74 51 | 2.82 71 | 1.76 39 | 1.10 13 | 1.61 47 | 1.20 1 | 1.23 45 | 1.82 48 | 1.08 17 |
ComplOF-FED-GPU [35] | 32.8 | 1.12 22 | 1.54 32 | 1.15 17 | 1.19 28 | 1.90 31 | 1.08 25 | 1.33 67 | 1.84 44 | 1.12 54 | 1.84 29 | 1.95 42 | 2.25 31 | 1.76 13 | 1.75 23 | 1.95 26 | 1.70 16 | 2.27 29 | 1.75 25 | 1.11 39 | 1.61 47 | 1.21 28 | 1.23 45 | 1.85 57 | 1.08 17 |
ALD-Flow [68] | 33.1 | 1.13 46 | 1.57 43 | 1.17 45 | 1.21 33 | 1.93 35 | 1.10 42 | 1.24 26 | 1.84 44 | 1.08 23 | 1.83 15 | 1.90 26 | 2.26 42 | 1.77 36 | 1.75 23 | 1.96 54 | 1.70 16 | 1.96 4 | 1.77 55 | 1.09 4 | 1.51 8 | 1.21 28 | 1.23 45 | 1.82 48 | 1.09 54 |
CostFilter [40] | 35.7 | 1.10 5 | 1.46 13 | 1.13 1 | 1.15 17 | 1.71 17 | 1.06 5 | 1.28 50 | 2.12 73 | 1.10 33 | 1.83 15 | 1.91 28 | 2.24 13 | 1.78 59 | 1.78 60 | 1.95 26 | 1.79 75 | 2.18 23 | 1.86 84 | 1.11 39 | 1.61 47 | 1.22 49 | 1.25 56 | 1.89 67 | 1.07 1 |
TCOF [71] | 36.0 | 1.12 22 | 1.54 32 | 1.15 17 | 1.45 61 | 2.31 71 | 1.12 53 | 1.22 6 | 1.63 18 | 1.05 4 | 1.84 29 | 1.92 33 | 2.27 53 | 1.76 13 | 1.75 23 | 1.94 10 | 1.72 34 | 2.58 55 | 1.74 14 | 1.11 39 | 1.66 56 | 1.21 28 | 1.26 64 | 1.88 64 | 1.10 65 |
TC-Flow [46] | 36.7 | 1.11 12 | 1.53 30 | 1.15 17 | 1.22 34 | 1.98 37 | 1.10 42 | 1.26 36 | 1.84 44 | 1.08 23 | 1.87 41 | 2.00 54 | 2.29 63 | 1.77 36 | 1.77 52 | 1.96 54 | 1.73 44 | 2.45 42 | 1.77 55 | 1.10 13 | 1.55 19 | 1.21 28 | 1.22 31 | 1.85 57 | 1.08 17 |
LDOF [28] | 37.2 | 1.17 65 | 1.58 48 | 1.21 67 | 1.34 50 | 1.91 33 | 1.25 70 | 1.30 57 | 2.01 65 | 1.12 54 | 1.88 47 | 2.00 54 | 2.27 53 | 1.76 13 | 1.74 12 | 1.95 26 | 1.69 8 | 2.02 6 | 1.75 25 | 1.10 13 | 1.58 37 | 1.21 28 | 1.21 20 | 1.77 25 | 1.08 17 |
OFH [38] | 39.8 | 1.12 22 | 1.57 43 | 1.15 17 | 1.29 40 | 2.02 38 | 1.09 36 | 1.28 50 | 2.06 67 | 1.10 33 | 1.84 29 | 1.97 45 | 2.24 13 | 1.77 36 | 1.76 39 | 1.94 10 | 1.72 34 | 2.54 46 | 1.76 39 | 1.12 54 | 1.84 70 | 1.22 49 | 1.24 52 | 1.94 75 | 1.08 17 |
IAOF [50] | 39.9 | 1.21 77 | 1.66 70 | 1.23 75 | 1.89 85 | 2.64 89 | 1.28 72 | 1.26 36 | 1.87 51 | 1.10 33 | 1.91 61 | 1.92 33 | 2.26 42 | 1.76 13 | 1.75 23 | 1.95 26 | 1.70 16 | 2.34 34 | 1.73 9 | 1.10 13 | 1.57 26 | 1.20 1 | 1.21 20 | 1.79 35 | 1.08 17 |
CBF [12] | 40.3 | 1.12 22 | 1.55 38 | 1.18 55 | 1.29 40 | 2.02 38 | 1.11 49 | 1.25 32 | 1.66 25 | 1.08 23 | 1.89 55 | 1.93 36 | 2.39 77 | 1.76 13 | 1.73 6 | 2.00 77 | 1.70 16 | 2.13 17 | 1.75 25 | 1.12 54 | 1.60 41 | 1.24 74 | 1.24 52 | 1.73 18 | 1.14 84 |
Fusion [6] | 41.0 | 1.12 22 | 1.66 70 | 1.15 17 | 1.19 28 | 1.82 24 | 1.08 25 | 1.24 26 | 1.66 25 | 1.10 33 | 1.89 55 | 2.04 68 | 2.25 31 | 1.77 36 | 1.80 74 | 1.93 2 | 1.72 34 | 3.03 80 | 1.72 2 | 1.13 61 | 1.74 64 | 1.22 49 | 1.28 75 | 1.89 67 | 1.08 17 |
Modified CLG [34] | 43.3 | 1.13 46 | 1.51 23 | 1.19 61 | 1.58 74 | 2.23 62 | 1.34 76 | 1.31 59 | 2.32 78 | 1.13 63 | 1.88 47 | 2.00 54 | 2.24 13 | 1.77 36 | 1.76 39 | 1.96 54 | 1.72 34 | 2.49 43 | 1.76 39 | 1.10 13 | 1.57 26 | 1.21 28 | 1.21 20 | 1.79 35 | 1.08 17 |
Occlusion-TV-L1 [63] | 44.4 | 1.12 22 | 1.56 41 | 1.17 45 | 1.40 57 | 2.33 73 | 1.10 42 | 1.26 36 | 1.96 59 | 1.11 47 | 1.91 61 | 2.10 72 | 2.29 63 | 1.76 13 | 1.74 12 | 1.95 26 | 1.74 51 | 2.57 52 | 1.79 71 | 1.12 54 | 1.57 26 | 1.22 49 | 1.22 31 | 1.81 46 | 1.08 17 |
Complementary OF [21] | 44.5 | 1.11 12 | 1.60 53 | 1.14 8 | 1.18 27 | 1.90 31 | 1.08 25 | 1.38 73 | 1.81 41 | 1.15 66 | 1.86 38 | 1.99 51 | 2.26 42 | 1.77 36 | 1.78 60 | 1.94 10 | 1.72 34 | 2.54 46 | 1.76 39 | 1.13 61 | 1.83 69 | 1.21 28 | 1.29 77 | 2.17 86 | 1.09 54 |
F-TV-L1 [15] | 44.9 | 1.18 67 | 1.64 65 | 1.21 67 | 1.43 60 | 2.23 62 | 1.13 57 | 1.28 50 | 1.97 61 | 1.12 54 | 1.88 47 | 2.00 54 | 2.29 63 | 1.76 13 | 1.77 52 | 1.93 2 | 1.70 16 | 2.10 12 | 1.76 39 | 1.11 39 | 1.63 51 | 1.22 49 | 1.21 20 | 1.71 12 | 1.10 65 |
Local-TV-L1 [65] | 45.0 | 1.19 71 | 1.61 57 | 1.23 75 | 1.49 68 | 2.21 56 | 1.23 67 | 1.23 21 | 1.69 32 | 1.07 13 | 1.92 64 | 1.96 44 | 2.39 77 | 1.77 36 | 1.75 23 | 1.96 54 | 1.82 80 | 2.12 16 | 1.89 86 | 1.10 13 | 1.56 22 | 1.21 28 | 1.19 7 | 1.68 5 | 1.10 65 |
Classic++ [32] | 45.5 | 1.13 46 | 1.59 51 | 1.17 45 | 1.29 40 | 2.10 44 | 1.09 36 | 1.26 36 | 1.86 50 | 1.10 33 | 1.89 55 | 2.01 61 | 2.27 53 | 1.77 36 | 1.76 39 | 1.95 26 | 1.77 68 | 2.55 49 | 1.81 76 | 1.11 39 | 1.60 41 | 1.21 28 | 1.23 45 | 1.80 41 | 1.09 54 |
SimpleFlow [49] | 46.9 | 1.12 22 | 1.55 38 | 1.15 17 | 1.27 36 | 2.02 38 | 1.08 25 | 1.37 72 | 1.85 47 | 1.12 54 | 1.83 15 | 1.89 21 | 2.26 42 | 1.77 36 | 1.76 39 | 1.95 26 | 1.77 68 | 3.34 83 | 1.76 39 | 1.17 82 | 2.76 88 | 1.24 74 | 1.26 64 | 2.07 83 | 1.08 17 |
Adaptive [20] | 49.5 | 1.14 56 | 1.63 62 | 1.18 55 | 1.46 63 | 2.36 76 | 1.11 49 | 1.26 36 | 1.88 53 | 1.10 33 | 1.87 41 | 1.97 45 | 2.27 53 | 1.78 59 | 1.77 52 | 1.95 26 | 1.74 51 | 2.52 45 | 1.78 62 | 1.11 39 | 1.66 56 | 1.20 1 | 1.24 52 | 1.85 57 | 1.10 65 |
Black & Anandan [4] | 49.5 | 1.19 71 | 1.64 65 | 1.22 72 | 1.64 75 | 2.37 77 | 1.24 69 | 1.41 76 | 2.17 75 | 1.17 73 | 1.92 64 | 2.01 61 | 2.25 31 | 1.78 59 | 1.78 60 | 1.96 54 | 1.69 8 | 2.17 20 | 1.74 14 | 1.11 39 | 1.63 51 | 1.20 1 | 1.22 31 | 1.77 25 | 1.08 17 |
CRTflow [88] | 50.0 | 1.15 60 | 1.62 59 | 1.18 55 | 1.34 50 | 2.21 56 | 1.10 42 | 1.32 65 | 2.08 68 | 1.19 74 | 1.87 41 | 1.95 42 | 2.32 74 | 1.78 59 | 1.77 52 | 1.96 54 | 1.71 28 | 2.06 7 | 1.76 39 | 1.11 39 | 1.63 51 | 1.22 49 | 1.22 31 | 1.80 41 | 1.10 65 |
GraphCuts [14] | 50.1 | 1.20 75 | 1.76 80 | 1.20 62 | 1.28 38 | 1.88 28 | 1.23 67 | 1.55 83 | 1.64 22 | 1.19 74 | 1.93 67 | 2.03 67 | 2.29 63 | 1.76 13 | 1.75 23 | 1.93 2 | 1.67 2 | 2.42 37 | 1.70 1 | 1.14 68 | 1.78 68 | 1.23 69 | 1.26 64 | 1.88 64 | 1.10 65 |
2D-CLG [1] | 51.7 | 1.18 67 | 1.58 48 | 1.22 72 | 1.67 76 | 2.26 66 | 1.41 83 | 1.38 73 | 2.08 68 | 1.19 74 | 1.94 69 | 2.02 63 | 2.25 31 | 1.77 36 | 1.75 23 | 1.95 26 | 1.71 28 | 2.63 59 | 1.75 25 | 1.13 61 | 1.84 70 | 1.22 49 | 1.22 31 | 1.77 25 | 1.08 17 |
Nguyen [33] | 52.2 | 1.25 79 | 1.63 62 | 1.30 81 | 1.77 83 | 2.38 78 | 1.36 77 | 1.31 59 | 2.42 79 | 1.14 65 | 1.96 71 | 2.06 71 | 2.26 42 | 1.77 36 | 1.76 39 | 1.94 10 | 1.69 8 | 2.43 41 | 1.73 9 | 1.14 68 | 1.92 75 | 1.22 49 | 1.21 20 | 1.79 35 | 1.08 17 |
Correlation Flow [79] | 52.6 | 1.11 12 | 1.51 23 | 1.13 1 | 1.33 49 | 2.23 62 | 1.08 25 | 1.24 26 | 1.63 18 | 1.08 23 | 1.87 41 | 1.91 28 | 2.30 68 | 1.81 77 | 1.78 60 | 2.06 87 | 1.82 80 | 3.47 85 | 1.79 71 | 1.15 74 | 1.97 76 | 1.25 78 | 1.26 64 | 1.91 70 | 1.10 65 |
TriangleFlow [30] | 53.2 | 1.15 60 | 1.66 70 | 1.17 45 | 1.32 46 | 2.11 46 | 1.09 36 | 1.29 55 | 1.81 41 | 1.13 63 | 1.89 55 | 2.02 63 | 2.30 68 | 1.76 13 | 1.76 39 | 1.93 2 | 1.74 51 | 2.67 61 | 1.75 25 | 1.14 68 | 2.02 77 | 1.24 74 | 1.31 80 | 2.13 85 | 1.09 54 |
Shiralkar [42] | 54.2 | 1.13 46 | 1.63 62 | 1.15 17 | 1.41 58 | 2.21 56 | 1.09 36 | 1.36 69 | 2.54 81 | 1.15 66 | 1.98 78 | 2.23 81 | 2.24 13 | 1.77 36 | 1.78 60 | 1.92 1 | 1.76 63 | 2.85 73 | 1.78 62 | 1.15 74 | 2.13 82 | 1.22 49 | 1.25 56 | 2.02 81 | 1.07 1 |
IAOF2 [51] | 54.2 | 1.19 71 | 1.69 75 | 1.20 62 | 1.50 71 | 2.41 80 | 1.20 61 | 1.25 32 | 1.83 43 | 1.11 47 | 1.91 61 | 2.02 63 | 2.28 61 | 1.81 77 | 1.85 81 | 1.96 54 | 1.74 51 | 2.88 76 | 1.75 25 | 1.10 13 | 1.57 26 | 1.20 1 | 1.26 64 | 1.84 53 | 1.09 54 |
HBpMotionGpu [43] | 54.4 | 1.24 78 | 1.80 82 | 1.28 79 | 1.68 78 | 2.42 82 | 1.38 78 | 1.23 21 | 1.69 32 | 1.10 33 | 1.95 70 | 2.15 79 | 2.30 68 | 1.77 36 | 1.77 52 | 1.96 54 | 1.75 57 | 2.57 52 | 1.78 62 | 1.09 4 | 1.50 6 | 1.20 1 | 1.26 64 | 1.86 60 | 1.12 78 |
BlockOverlap [61] | 55.4 | 1.20 75 | 1.60 53 | 1.25 77 | 1.49 68 | 2.18 52 | 1.32 75 | 1.26 36 | 1.60 8 | 1.12 54 | 1.96 71 | 1.97 45 | 2.48 84 | 1.80 71 | 1.77 52 | 2.04 86 | 1.80 76 | 2.27 29 | 1.86 84 | 1.12 54 | 1.54 13 | 1.26 81 | 1.19 7 | 1.66 1 | 1.12 78 |
Direct ZNCC [66] | 55.6 | 1.11 12 | 1.57 43 | 1.14 8 | 1.32 46 | 2.21 56 | 1.08 25 | 1.26 36 | 1.79 38 | 1.10 33 | 1.89 55 | 2.04 68 | 2.30 68 | 1.80 71 | 1.79 71 | 2.03 84 | 1.81 78 | 3.49 86 | 1.79 71 | 1.15 74 | 2.03 78 | 1.23 69 | 1.27 72 | 1.94 75 | 1.08 17 |
ACK-Prior [27] | 56.7 | 1.11 12 | 1.54 32 | 1.14 8 | 1.17 26 | 1.87 27 | 1.07 14 | 1.38 73 | 1.74 34 | 1.15 66 | 1.88 47 | 1.98 49 | 2.27 53 | 1.81 77 | 1.80 74 | 2.02 83 | 1.81 78 | 2.70 63 | 1.82 80 | 1.17 82 | 1.69 60 | 1.27 84 | 1.33 84 | 1.93 73 | 1.13 82 |
Ad-TV-NDC [36] | 57.0 | 1.34 82 | 1.70 76 | 1.38 82 | 1.68 78 | 2.33 73 | 1.38 78 | 1.26 36 | 1.87 51 | 1.10 33 | 1.97 76 | 1.99 51 | 2.34 75 | 1.80 71 | 1.79 71 | 1.97 70 | 1.75 57 | 2.06 7 | 1.82 80 | 1.11 39 | 1.59 39 | 1.21 28 | 1.22 31 | 1.73 18 | 1.10 65 |
TV-L1-improved [17] | 57.3 | 1.13 46 | 1.62 59 | 1.18 55 | 1.46 63 | 2.35 75 | 1.12 53 | 1.35 68 | 1.80 39 | 1.15 66 | 1.88 47 | 2.00 54 | 2.27 53 | 1.78 59 | 1.78 60 | 1.95 26 | 1.75 57 | 2.70 63 | 1.77 55 | 1.14 68 | 2.09 80 | 1.22 49 | 1.25 56 | 1.86 60 | 1.10 65 |
LocallyOriented [52] | 57.4 | 1.15 60 | 1.62 59 | 1.20 62 | 1.48 66 | 2.30 69 | 1.15 58 | 1.31 59 | 1.96 59 | 1.11 47 | 1.92 64 | 2.10 72 | 2.29 63 | 1.77 36 | 1.77 52 | 1.95 26 | 1.82 80 | 2.56 50 | 1.85 82 | 1.12 54 | 1.68 58 | 1.21 28 | 1.25 56 | 1.87 63 | 1.09 54 |
Filter Flow [19] | 61.2 | 1.18 67 | 1.61 57 | 1.21 67 | 1.57 73 | 2.27 67 | 1.38 78 | 1.27 48 | 1.85 47 | 1.12 54 | 1.96 71 | 1.97 45 | 2.35 76 | 1.79 69 | 1.78 60 | 2.00 77 | 1.73 44 | 2.28 31 | 1.78 62 | 1.13 61 | 1.68 58 | 1.22 49 | 1.27 72 | 1.84 53 | 1.13 82 |
Rannacher [23] | 62.0 | 1.14 56 | 1.65 67 | 1.18 55 | 1.47 65 | 2.39 79 | 1.12 53 | 1.36 69 | 2.00 64 | 1.16 72 | 1.88 47 | 2.04 68 | 2.28 61 | 1.79 69 | 1.78 60 | 1.95 26 | 1.76 63 | 2.74 66 | 1.78 62 | 1.14 68 | 2.05 79 | 1.22 49 | 1.25 56 | 1.91 70 | 1.10 65 |
TI-DOFE [24] | 62.9 | 1.37 84 | 1.74 78 | 1.41 85 | 1.91 86 | 2.51 87 | 1.51 86 | 1.41 76 | 2.56 82 | 1.20 79 | 2.06 82 | 2.13 75 | 2.30 68 | 1.78 59 | 1.79 71 | 1.95 26 | 1.69 8 | 2.16 19 | 1.73 9 | 1.13 61 | 1.71 62 | 1.22 49 | 1.27 72 | 1.83 51 | 1.09 54 |
Horn & Schunck [3] | 63.1 | 1.19 71 | 1.65 67 | 1.22 72 | 1.68 78 | 2.41 80 | 1.28 72 | 1.47 80 | 2.45 80 | 1.22 81 | 2.02 80 | 2.14 77 | 2.27 53 | 1.80 71 | 1.80 74 | 1.97 70 | 1.70 16 | 2.28 31 | 1.74 14 | 1.14 68 | 1.77 67 | 1.22 49 | 1.25 56 | 1.84 53 | 1.09 54 |
StereoFlow [44] | 63.4 | 1.47 87 | 2.09 89 | 1.38 82 | 1.76 82 | 2.42 82 | 1.38 78 | 1.26 36 | 2.03 66 | 1.10 33 | 1.89 55 | 2.00 54 | 2.26 42 | 2.00 88 | 2.23 88 | 1.98 76 | 1.84 86 | 3.59 87 | 1.76 39 | 1.09 4 | 1.55 19 | 1.21 28 | 1.33 84 | 2.05 82 | 1.09 54 |
SegOF [10] | 63.4 | 1.15 60 | 1.60 53 | 1.20 62 | 1.38 55 | 2.07 43 | 1.20 61 | 1.48 81 | 2.29 76 | 1.21 80 | 1.93 67 | 2.30 84 | 2.25 31 | 1.78 59 | 1.78 60 | 1.96 54 | 1.77 68 | 3.01 79 | 1.78 62 | 1.18 85 | 2.46 87 | 1.25 78 | 1.23 45 | 1.94 75 | 1.08 17 |
NL-TV-NCC [25] | 64.7 | 1.13 46 | 1.59 51 | 1.15 17 | 1.27 36 | 2.15 49 | 1.09 36 | 1.31 59 | 1.91 56 | 1.15 66 | 1.96 71 | 2.13 75 | 2.39 77 | 1.85 84 | 1.80 74 | 2.13 88 | 1.77 68 | 2.81 69 | 1.78 62 | 1.16 81 | 1.76 65 | 1.28 86 | 1.31 80 | 1.90 69 | 1.15 87 |
Bartels [41] | 66.3 | 1.16 64 | 1.68 73 | 1.21 67 | 1.30 44 | 2.11 46 | 1.20 61 | 1.28 50 | 1.80 39 | 1.15 66 | 2.00 79 | 2.14 77 | 2.51 86 | 1.84 80 | 1.78 60 | 2.14 90 | 2.07 89 | 2.72 65 | 2.13 90 | 1.13 61 | 1.56 22 | 1.30 88 | 1.26 64 | 1.80 41 | 1.17 89 |
Dynamic MRF [7] | 66.4 | 1.12 22 | 1.68 73 | 1.15 17 | 1.30 44 | 2.21 56 | 1.10 42 | 1.41 76 | 2.71 83 | 1.19 74 | 2.10 85 | 2.38 85 | 2.42 82 | 1.78 59 | 1.80 74 | 1.95 26 | 1.82 80 | 3.60 88 | 1.80 74 | 1.17 82 | 2.24 84 | 1.23 69 | 1.28 75 | 1.95 78 | 1.10 65 |
SPSA-learn [13] | 67.0 | 1.18 67 | 1.70 76 | 1.21 67 | 1.50 71 | 2.22 61 | 1.25 70 | 1.44 79 | 2.14 74 | 1.19 74 | 1.96 71 | 2.02 63 | 2.25 31 | 1.80 71 | 1.82 79 | 1.96 54 | 1.73 44 | 2.80 67 | 1.75 25 | 1.27 90 | 3.84 90 | 1.32 90 | 1.44 88 | 2.80 89 | 1.08 17 |
GroupFlow [9] | 74.2 | 1.28 81 | 2.00 87 | 1.26 78 | 1.49 68 | 2.16 50 | 1.28 72 | 1.62 86 | 2.95 88 | 1.31 85 | 1.97 76 | 2.26 83 | 2.30 68 | 1.87 87 | 1.94 87 | 1.97 70 | 1.83 84 | 3.65 89 | 1.78 62 | 1.15 74 | 2.15 83 | 1.22 49 | 1.34 86 | 2.29 87 | 1.07 1 |
SILK [87] | 75.5 | 1.26 80 | 1.80 82 | 1.29 80 | 1.78 84 | 2.43 84 | 1.38 78 | 1.59 85 | 2.72 84 | 1.26 84 | 2.08 83 | 2.21 80 | 2.41 81 | 1.80 71 | 1.82 79 | 1.97 70 | 1.85 87 | 2.59 56 | 1.92 88 | 1.13 61 | 1.76 65 | 1.23 69 | 1.26 64 | 1.88 64 | 1.09 54 |
Learning Flow [11] | 75.6 | 1.17 65 | 1.75 79 | 1.20 62 | 1.48 66 | 2.32 72 | 1.15 58 | 1.51 82 | 2.81 86 | 1.22 81 | 2.05 81 | 2.24 82 | 2.40 80 | 1.85 84 | 1.88 83 | 2.03 84 | 1.78 73 | 2.67 61 | 1.81 76 | 1.15 74 | 1.87 74 | 1.23 69 | 1.34 86 | 1.97 79 | 1.12 78 |
SLK [47] | 77.0 | 1.34 82 | 1.79 81 | 1.39 84 | 1.72 81 | 2.23 62 | 1.45 84 | 1.65 88 | 2.79 85 | 1.31 85 | 2.30 86 | 2.55 88 | 2.45 83 | 1.84 80 | 1.91 86 | 1.94 10 | 1.77 68 | 2.81 69 | 1.77 55 | 1.20 87 | 2.38 85 | 1.26 81 | 1.30 78 | 2.12 84 | 1.11 77 |
Adaptive flow [45] | 79.0 | 1.46 85 | 1.85 84 | 1.50 86 | 1.91 86 | 2.49 85 | 1.66 88 | 1.36 69 | 1.90 55 | 1.22 81 | 2.08 83 | 2.10 72 | 2.49 85 | 1.85 84 | 1.88 83 | 2.00 77 | 1.83 84 | 3.46 84 | 1.81 76 | 1.15 74 | 1.65 55 | 1.28 86 | 1.30 78 | 1.93 73 | 1.14 84 |
FOLKI [16] | 82.0 | 1.59 88 | 1.94 86 | 1.70 88 | 1.92 88 | 2.49 85 | 1.58 87 | 1.56 84 | 3.12 89 | 1.34 88 | 2.42 88 | 2.47 86 | 2.74 89 | 1.84 80 | 1.89 85 | 2.00 77 | 1.80 76 | 2.42 37 | 1.85 82 | 1.18 85 | 2.09 80 | 1.26 81 | 1.32 82 | 1.92 72 | 1.14 84 |
PGAM+LK [55] | 82.2 | 1.46 85 | 2.04 88 | 1.50 86 | 1.67 76 | 2.30 69 | 1.47 85 | 1.62 86 | 2.93 87 | 1.33 87 | 2.38 87 | 2.52 87 | 2.71 87 | 1.84 80 | 1.86 82 | 2.00 77 | 1.88 88 | 3.05 81 | 1.89 86 | 1.15 74 | 1.84 70 | 1.25 78 | 1.32 82 | 1.97 79 | 1.15 87 |
Pyramid LK [2] | 84.2 | 1.63 89 | 1.88 85 | 1.73 90 | 2.11 89 | 2.56 88 | 1.80 89 | 2.58 89 | 2.31 77 | 1.71 89 | 3.26 90 | 5.81 89 | 3.03 90 | 2.01 89 | 2.30 89 | 1.97 70 | 1.78 73 | 2.59 56 | 1.81 76 | 1.21 88 | 2.42 86 | 1.27 84 | 1.63 89 | 3.08 90 | 1.12 78 |
Periodicity [86] | 89.4 | 1.64 90 | 2.35 90 | 1.70 88 | 2.45 90 | 2.65 90 | 2.00 90 | 2.96 90 | 4.90 90 | 2.28 90 | 2.73 89 | 5.99 90 | 2.71 87 | 2.16 90 | 2.49 90 | 2.13 88 | 2.13 90 | 3.66 90 | 2.11 89 | 1.24 89 | 2.90 89 | 1.30 88 | 1.66 90 | 2.56 88 | 1.28 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |