Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
Average normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
NN-field [73] | 15.4 | 0.59 2 | 0.77 11 | 0.64 3 | 0.59 1 | 0.77 3 | 0.58 1 | 1.09 29 | 1.77 40 | 1.16 37 | 1.00 38 | 1.18 60 | 1.26 44 | 0.98 1 | 0.95 1 | 1.14 1 | 1.08 17 | 1.46 20 | 1.05 11 | 0.68 8 | 1.26 11 | 0.70 18 | 0.78 4 | 1.12 5 | 0.63 4 |
MDP-Flow2 [70] | 15.6 | 0.59 2 | 0.72 2 | 0.63 1 | 0.62 7 | 0.85 8 | 0.58 1 | 1.24 47 | 2.52 67 | 1.61 48 | 0.94 4 | 1.05 18 | 1.24 27 | 0.98 1 | 0.96 4 | 1.16 23 | 1.09 21 | 1.49 24 | 1.05 11 | 0.70 15 | 1.32 19 | 0.68 11 | 0.78 4 | 1.12 5 | 0.63 4 |
SuperFlow [89] | 19.9 | 0.62 30 | 0.84 43 | 0.66 45 | 0.76 38 | 1.04 38 | 0.69 55 | 0.90 6 | 1.17 2 | 0.74 5 | 1.05 57 | 1.04 14 | 1.25 33 | 0.99 5 | 0.96 4 | 1.16 23 | 1.05 7 | 1.36 9 | 1.03 1 | 0.69 12 | 1.26 11 | 0.70 18 | 0.82 10 | 1.18 10 | 0.62 1 |
ALD-Flow [68] | 20.0 | 0.62 30 | 0.81 29 | 0.66 45 | 0.70 28 | 0.99 29 | 0.62 25 | 0.87 2 | 1.28 6 | 0.65 2 | 0.94 4 | 1.01 5 | 1.21 7 | 1.09 37 | 1.12 37 | 1.54 57 | 1.03 4 | 1.24 3 | 1.07 24 | 0.64 2 | 1.12 2 | 0.65 2 | 0.97 49 | 1.44 48 | 0.63 4 |
ComplexFlow [81] | 20.9 | 0.58 1 | 0.71 1 | 0.63 1 | 0.59 1 | 0.76 1 | 0.58 1 | 1.21 43 | 2.31 62 | 1.51 47 | 0.98 28 | 1.13 47 | 1.25 33 | 0.98 1 | 0.95 1 | 1.14 1 | 1.13 34 | 1.61 38 | 1.07 24 | 0.75 28 | 1.45 32 | 0.88 67 | 0.77 3 | 1.10 3 | 0.63 4 |
Deep-Matching [85] | 22.6 | 0.63 45 | 0.85 47 | 0.65 25 | 0.75 37 | 1.04 38 | 0.67 48 | 0.88 4 | 1.38 13 | 0.70 3 | 1.00 38 | 1.04 14 | 1.24 27 | 1.05 22 | 1.06 18 | 1.16 23 | 1.02 2 | 1.22 2 | 1.06 20 | 0.67 7 | 1.22 7 | 0.65 2 | 0.97 49 | 1.44 48 | 0.63 4 |
LME [72] | 22.9 | 0.59 2 | 0.72 2 | 0.64 3 | 0.66 16 | 0.90 16 | 0.62 25 | 0.99 19 | 1.78 41 | 0.92 22 | 0.96 15 | 1.09 29 | 1.24 27 | 1.20 72 | 1.30 72 | 1.70 84 | 1.12 28 | 1.57 32 | 1.05 11 | 0.64 2 | 1.12 2 | 0.68 11 | 0.79 7 | 1.14 8 | 0.63 4 |
ADF [67] | 23.9 | 0.59 2 | 0.73 4 | 0.64 3 | 0.68 25 | 0.97 25 | 0.62 25 | 0.89 5 | 1.29 7 | 0.79 11 | 0.93 2 | 0.99 2 | 1.20 2 | 1.19 69 | 1.29 69 | 1.69 73 | 1.04 5 | 1.33 6 | 1.04 3 | 0.84 44 | 1.71 46 | 0.76 41 | 0.88 24 | 1.28 24 | 0.65 57 |
CLG-TV [48] | 24.4 | 0.63 45 | 0.86 49 | 0.66 45 | 0.81 51 | 1.12 51 | 0.66 43 | 0.96 16 | 1.43 15 | 0.96 24 | 0.97 20 | 1.03 10 | 1.25 33 | 1.06 27 | 1.08 29 | 1.15 6 | 1.02 2 | 1.25 4 | 1.04 3 | 0.63 1 | 1.09 1 | 0.66 5 | 0.97 49 | 1.45 52 | 0.63 4 |
IROF++ [58] | 24.8 | 0.59 2 | 0.74 5 | 0.64 3 | 0.65 14 | 0.89 12 | 0.59 4 | 1.15 36 | 1.71 34 | 1.17 38 | 0.92 1 | 0.96 1 | 1.21 7 | 1.17 58 | 1.26 58 | 1.69 73 | 1.11 24 | 1.54 25 | 1.04 3 | 0.68 8 | 1.23 8 | 0.70 18 | 1.07 79 | 1.62 81 | 0.63 4 |
Aniso. Huber-L1 [22] | 25.8 | 0.62 30 | 0.80 24 | 0.66 45 | 0.84 58 | 1.13 53 | 0.66 43 | 1.03 23 | 1.44 16 | 0.93 23 | 0.97 20 | 1.03 10 | 1.26 44 | 1.06 27 | 1.09 30 | 1.15 6 | 1.08 17 | 1.46 20 | 1.03 1 | 0.64 2 | 1.12 2 | 0.66 5 | 0.99 56 | 1.48 59 | 0.63 4 |
SIOF [69] | 26.5 | 0.63 45 | 0.81 29 | 0.66 45 | 0.84 58 | 1.16 65 | 0.70 58 | 1.14 33 | 2.04 56 | 1.00 27 | 0.99 36 | 1.11 35 | 1.25 33 | 0.98 1 | 0.95 1 | 1.15 6 | 1.07 13 | 1.40 14 | 1.04 3 | 0.68 8 | 1.24 10 | 0.72 29 | 0.83 13 | 1.20 15 | 0.63 4 |
Second-order prior [8] | 27.0 | 0.61 16 | 0.78 17 | 0.66 45 | 0.80 50 | 1.11 48 | 0.64 38 | 1.05 25 | 1.85 46 | 0.99 26 | 0.96 15 | 1.04 14 | 1.21 7 | 1.05 22 | 1.07 25 | 1.15 6 | 1.05 7 | 1.38 10 | 1.05 11 | 0.69 12 | 1.28 14 | 0.65 2 | 1.00 61 | 1.50 63 | 0.66 68 |
IROF-TV [53] | 27.8 | 0.62 30 | 0.84 43 | 0.65 25 | 0.67 21 | 0.92 21 | 0.60 12 | 0.92 11 | 1.49 21 | 0.79 11 | 0.94 4 | 1.02 8 | 1.22 19 | 1.18 61 | 1.28 63 | 1.70 84 | 1.12 28 | 1.58 33 | 1.05 11 | 0.79 36 | 1.57 38 | 0.70 18 | 0.85 16 | 1.24 17 | 0.64 35 |
p-harmonic [29] | 27.8 | 0.61 16 | 0.83 38 | 0.64 3 | 0.82 55 | 1.14 56 | 0.68 51 | 0.91 9 | 1.49 21 | 0.77 8 | 1.04 55 | 1.11 35 | 1.28 53 | 1.05 22 | 1.07 25 | 1.15 6 | 1.06 11 | 1.39 11 | 1.07 24 | 0.70 15 | 1.31 16 | 0.76 41 | 0.96 44 | 1.44 48 | 0.63 4 |
TV-L1-MCT [64] | 28.5 | 0.62 30 | 0.81 29 | 0.65 25 | 0.71 33 | 1.00 32 | 0.63 33 | 1.21 43 | 2.34 63 | 1.25 41 | 0.95 10 | 1.04 14 | 1.22 19 | 1.19 69 | 1.29 69 | 1.61 63 | 1.07 13 | 1.39 11 | 1.05 11 | 0.71 18 | 1.32 19 | 0.69 14 | 0.82 10 | 1.18 10 | 0.63 4 |
TC/T-Flow [80] | 28.6 | 0.62 30 | 0.80 24 | 0.65 25 | 0.70 28 | 1.00 32 | 0.62 25 | 0.90 6 | 1.41 14 | 0.84 14 | 0.95 10 | 1.01 5 | 1.21 7 | 1.18 61 | 1.27 60 | 1.69 73 | 1.07 13 | 1.42 16 | 1.04 3 | 0.86 48 | 1.68 45 | 0.88 67 | 0.95 40 | 1.41 40 | 0.62 1 |
ComplOF-FED-GPU [35] | 28.9 | 0.62 30 | 0.86 49 | 0.65 25 | 0.69 26 | 0.98 26 | 0.61 19 | 1.63 64 | 1.15 1 | 2.12 64 | 0.94 4 | 1.03 10 | 1.21 7 | 1.14 50 | 1.21 50 | 1.52 56 | 1.07 13 | 1.41 15 | 1.06 20 | 0.74 25 | 1.36 22 | 0.71 24 | 0.96 44 | 1.43 45 | 0.63 4 |
CBF [12] | 29.0 | 0.61 16 | 0.79 21 | 0.66 45 | 0.77 42 | 1.07 43 | 0.66 43 | 1.00 20 | 1.50 24 | 0.90 18 | 0.98 28 | 1.02 8 | 1.31 66 | 0.99 5 | 0.96 4 | 1.18 33 | 1.05 7 | 1.33 6 | 1.06 20 | 0.80 39 | 1.59 40 | 0.74 35 | 0.89 26 | 1.29 25 | 0.67 81 |
TC-Flow [46] | 31.0 | 0.60 10 | 0.77 11 | 0.65 25 | 0.70 28 | 1.01 35 | 0.62 25 | 0.82 1 | 1.21 4 | 0.62 1 | 0.98 28 | 1.11 35 | 1.25 33 | 1.17 58 | 1.26 58 | 1.65 66 | 1.12 28 | 1.56 30 | 1.10 44 | 0.70 15 | 1.29 15 | 0.69 14 | 1.00 61 | 1.50 63 | 0.65 57 |
nLayers [57] | 31.1 | 0.60 10 | 0.76 9 | 0.65 25 | 0.62 7 | 0.84 7 | 0.60 12 | 2.15 75 | 4.10 86 | 2.76 77 | 0.97 20 | 1.11 35 | 1.21 7 | 1.18 61 | 1.28 63 | 1.61 63 | 1.14 36 | 1.64 45 | 1.10 44 | 0.68 8 | 1.23 8 | 0.67 9 | 0.76 2 | 1.07 2 | 0.64 35 |
OFLADF [82] | 31.5 | 0.59 2 | 0.75 7 | 0.64 3 | 0.60 4 | 0.79 5 | 0.59 4 | 0.92 11 | 1.34 9 | 0.77 8 | 0.93 2 | 0.99 2 | 1.20 2 | 1.21 78 | 1.32 77 | 1.69 73 | 1.18 51 | 1.75 58 | 1.13 62 | 1.00 70 | 2.14 71 | 0.81 59 | 0.91 31 | 1.33 31 | 0.64 35 |
PMF [76] | 31.8 | 0.59 2 | 0.75 7 | 0.64 3 | 0.64 10 | 0.89 12 | 0.59 4 | 1.85 67 | 3.91 84 | 2.44 72 | 0.98 28 | 1.12 43 | 1.25 33 | 1.03 12 | 1.03 13 | 1.15 6 | 1.09 21 | 1.44 17 | 1.08 30 | 0.95 64 | 2.02 66 | 0.79 51 | 0.88 24 | 1.30 27 | 0.66 68 |
FastOF [78] | 32.2 | 0.64 52 | 0.83 38 | 0.66 45 | 0.81 51 | 1.09 44 | 0.71 62 | 0.93 14 | 1.50 24 | 0.75 6 | 1.00 38 | 1.09 29 | 1.21 7 | 1.16 52 | 1.24 52 | 1.69 73 | 1.01 1 | 1.21 1 | 1.04 3 | 0.74 25 | 1.40 26 | 0.68 11 | 0.95 40 | 1.42 43 | 0.64 35 |
COFM [59] | 32.6 | 0.61 16 | 0.77 11 | 0.65 25 | 0.64 10 | 0.88 10 | 0.60 12 | 1.32 49 | 2.95 73 | 1.79 56 | 0.97 20 | 1.12 43 | 1.19 1 | 1.01 9 | 1.00 10 | 1.16 23 | 1.18 51 | 1.76 59 | 1.09 36 | 0.89 52 | 1.85 54 | 1.03 80 | 0.79 7 | 1.14 8 | 0.66 68 |
Levin3 [90] | 33.2 | 0.62 30 | 0.81 29 | 0.64 3 | 0.67 21 | 0.92 21 | 0.62 25 | 1.19 42 | 2.02 53 | 1.12 35 | 0.96 15 | 1.07 22 | 1.25 33 | 1.07 29 | 1.11 34 | 1.17 31 | 1.15 44 | 1.65 48 | 1.09 36 | 0.89 52 | 1.83 53 | 0.75 40 | 0.97 49 | 1.44 48 | 0.63 4 |
MDP-Flow [26] | 33.5 | 0.59 2 | 0.74 5 | 0.64 3 | 0.64 10 | 0.90 16 | 0.60 12 | 1.16 38 | 1.18 3 | 1.43 45 | 1.03 50 | 1.17 57 | 1.27 46 | 1.18 61 | 1.28 63 | 1.69 73 | 1.26 75 | 1.97 78 | 1.18 78 | 0.73 22 | 1.39 25 | 0.71 24 | 0.79 7 | 1.13 7 | 0.63 4 |
TCOF [71] | 34.9 | 0.61 16 | 0.78 17 | 0.64 3 | 0.88 68 | 1.22 77 | 0.72 66 | 1.08 28 | 1.90 49 | 1.09 32 | 0.98 28 | 1.11 35 | 1.24 27 | 1.07 29 | 1.10 32 | 1.15 6 | 1.12 28 | 1.58 33 | 1.07 24 | 0.95 64 | 2.02 66 | 0.73 32 | 0.87 20 | 1.27 22 | 0.64 35 |
Layers++ [37] | 35.6 | 0.60 10 | 0.76 9 | 0.65 25 | 0.59 1 | 0.76 1 | 0.59 4 | 1.43 55 | 3.28 79 | 1.95 58 | 0.97 20 | 1.13 47 | 1.23 25 | 1.31 86 | 1.48 86 | 1.79 89 | 1.26 75 | 1.97 78 | 1.11 51 | 0.72 21 | 1.35 21 | 0.64 1 | 0.78 4 | 1.11 4 | 0.63 4 |
CostFilter [40] | 36.2 | 0.60 10 | 0.79 21 | 0.64 3 | 0.63 9 | 0.87 9 | 0.59 4 | 1.89 69 | 3.95 85 | 2.39 70 | 0.96 15 | 1.07 22 | 1.20 2 | 1.07 29 | 1.09 30 | 1.32 48 | 1.14 36 | 1.55 28 | 1.10 44 | 1.02 73 | 2.20 73 | 0.85 65 | 0.93 33 | 1.38 33 | 0.65 57 |
Epistemic [84] | 36.3 | 0.60 10 | 0.80 24 | 0.64 3 | 0.64 10 | 0.88 10 | 0.59 4 | 1.41 54 | 2.74 69 | 1.63 50 | 0.95 10 | 1.08 25 | 1.20 2 | 1.13 48 | 1.19 47 | 1.35 50 | 1.11 24 | 1.55 28 | 1.08 30 | 1.23 86 | 2.74 86 | 1.51 86 | 0.95 40 | 1.41 40 | 0.64 35 |
EP-PM [83] | 36.3 | 0.60 10 | 0.80 24 | 0.64 3 | 0.67 21 | 0.95 24 | 0.59 4 | 2.36 78 | 3.43 82 | 2.13 65 | 1.01 45 | 1.22 64 | 1.23 25 | 1.00 7 | 0.99 8 | 1.15 6 | 1.14 36 | 1.61 38 | 1.09 36 | 1.18 83 | 2.63 83 | 1.25 84 | 0.87 20 | 1.27 22 | 0.63 4 |
Brox et al. [5] | 36.6 | 0.67 69 | 1.04 79 | 0.65 25 | 0.72 35 | 1.02 37 | 0.63 33 | 0.96 16 | 1.34 9 | 0.83 13 | 0.98 28 | 0.99 2 | 1.24 27 | 1.02 10 | 1.02 12 | 1.15 6 | 1.20 60 | 1.78 63 | 1.11 51 | 1.67 88 | 3.86 88 | 2.48 89 | 0.86 19 | 1.26 19 | 0.62 1 |
LSM [39] | 36.7 | 0.61 16 | 0.78 17 | 0.64 3 | 0.66 16 | 0.89 12 | 0.61 19 | 1.16 38 | 2.21 58 | 1.17 38 | 0.94 4 | 1.01 5 | 1.21 7 | 1.20 72 | 1.30 72 | 1.65 66 | 1.18 51 | 1.73 55 | 1.08 30 | 0.92 58 | 1.94 60 | 0.80 56 | 1.00 61 | 1.50 63 | 0.63 4 |
Sparse-NonSparse [56] | 36.8 | 0.61 16 | 0.79 21 | 0.64 3 | 0.65 14 | 0.89 12 | 0.61 19 | 1.23 45 | 2.49 65 | 1.38 44 | 0.94 4 | 1.03 10 | 1.20 2 | 1.18 61 | 1.28 63 | 1.58 60 | 1.18 51 | 1.73 55 | 1.09 36 | 0.95 64 | 2.00 65 | 0.79 51 | 0.99 56 | 1.49 62 | 0.63 4 |
Modified CLG [34] | 37.6 | 0.61 16 | 0.77 11 | 0.66 45 | 0.90 74 | 1.16 65 | 0.80 76 | 1.26 48 | 1.67 33 | 1.61 48 | 1.01 45 | 1.10 32 | 1.27 46 | 1.03 12 | 1.03 13 | 1.15 6 | 1.14 36 | 1.61 38 | 1.09 36 | 0.65 5 | 1.13 5 | 0.67 9 | 1.09 84 | 1.64 84 | 0.64 35 |
LDOF [28] | 37.6 | 0.66 62 | 0.94 62 | 0.67 60 | 0.79 47 | 0.99 29 | 0.82 81 | 1.15 36 | 1.37 12 | 1.14 36 | 0.98 28 | 1.08 25 | 1.24 27 | 1.00 7 | 0.98 7 | 1.15 6 | 1.06 11 | 1.39 11 | 1.04 3 | 1.14 80 | 2.51 81 | 1.27 85 | 0.83 13 | 1.19 13 | 0.67 81 |
OFH [38] | 37.6 | 0.62 30 | 0.83 38 | 0.65 25 | 0.76 38 | 1.05 40 | 0.63 33 | 1.14 33 | 1.95 50 | 0.89 17 | 0.95 10 | 1.06 20 | 1.21 7 | 1.15 51 | 1.24 52 | 1.54 57 | 1.12 28 | 1.56 30 | 1.10 44 | 1.00 70 | 1.97 64 | 1.11 82 | 0.95 40 | 1.41 40 | 0.63 4 |
DPOF [18] | 38.2 | 0.66 62 | 1.05 83 | 0.68 67 | 0.61 6 | 0.80 6 | 0.59 4 | 1.60 63 | 1.55 27 | 2.16 66 | 1.05 57 | 1.33 77 | 1.28 53 | 1.05 22 | 1.07 25 | 1.14 1 | 1.08 17 | 1.47 22 | 1.04 3 | 0.77 33 | 1.49 33 | 0.69 14 | 1.04 70 | 1.56 70 | 0.64 35 |
F-TV-L1 [15] | 38.8 | 0.67 69 | 0.99 72 | 0.68 67 | 0.85 60 | 1.15 58 | 0.70 58 | 0.97 18 | 1.51 26 | 0.86 15 | 1.01 45 | 1.08 25 | 1.28 53 | 1.03 12 | 1.04 16 | 1.14 1 | 1.04 5 | 1.31 5 | 1.06 20 | 0.85 45 | 1.73 47 | 0.79 51 | 1.07 79 | 1.61 79 | 0.63 4 |
Ad-TV-NDC [36] | 39.2 | 0.75 82 | 1.01 74 | 0.76 84 | 0.95 80 | 1.19 72 | 0.82 81 | 0.90 6 | 1.44 16 | 0.78 10 | 1.09 66 | 1.13 47 | 1.32 69 | 1.03 12 | 1.03 13 | 1.16 23 | 1.10 23 | 1.45 19 | 1.10 44 | 0.65 5 | 1.15 6 | 0.66 5 | 0.94 35 | 1.38 33 | 0.64 35 |
Classic++ [32] | 39.5 | 0.62 30 | 0.80 24 | 0.66 45 | 0.78 45 | 1.10 45 | 0.66 43 | 0.93 14 | 1.36 11 | 0.75 6 | 1.04 55 | 1.12 43 | 1.28 53 | 1.08 35 | 1.11 34 | 1.18 33 | 1.18 51 | 1.69 51 | 1.10 44 | 0.89 52 | 1.86 56 | 0.72 29 | 0.99 56 | 1.47 57 | 0.64 35 |
Sparse Occlusion [54] | 40.2 | 0.63 45 | 0.87 52 | 0.65 25 | 0.77 42 | 1.11 48 | 0.63 33 | 0.91 9 | 1.45 19 | 0.86 15 | 0.96 15 | 1.08 25 | 1.21 7 | 1.21 78 | 1.32 77 | 1.69 73 | 1.14 36 | 1.63 44 | 1.12 55 | 0.86 48 | 1.77 51 | 0.71 24 | 1.04 70 | 1.56 70 | 0.63 4 |
Ramp [62] | 40.6 | 0.62 30 | 0.82 35 | 0.65 25 | 0.66 16 | 0.90 16 | 0.61 19 | 1.59 62 | 3.35 80 | 2.06 62 | 0.95 10 | 1.05 18 | 1.21 7 | 1.16 52 | 1.25 55 | 1.58 60 | 1.22 68 | 1.85 70 | 1.12 55 | 0.85 45 | 1.73 47 | 0.70 18 | 0.96 44 | 1.43 45 | 0.64 35 |
Local-TV-L1 [65] | 41.1 | 0.65 57 | 0.83 38 | 0.69 74 | 0.88 68 | 1.15 58 | 0.76 70 | 0.87 2 | 1.27 5 | 0.71 4 | 1.01 45 | 1.06 20 | 1.31 66 | 1.13 48 | 1.19 47 | 1.35 50 | 1.14 36 | 1.48 23 | 1.13 62 | 0.81 40 | 1.63 42 | 0.73 32 | 0.85 16 | 1.23 16 | 0.66 68 |
CRTflow [88] | 41.2 | 0.64 52 | 0.89 56 | 0.67 60 | 0.83 56 | 1.16 65 | 0.69 55 | 1.12 32 | 1.66 32 | 1.02 28 | 1.00 38 | 1.10 32 | 1.28 53 | 1.18 61 | 1.27 60 | 1.69 73 | 1.05 7 | 1.33 6 | 1.05 11 | 0.93 60 | 1.95 61 | 0.69 14 | 0.94 35 | 1.40 38 | 0.63 4 |
SCR [74] | 42.5 | 0.61 16 | 0.78 17 | 0.64 3 | 0.66 16 | 0.90 16 | 0.61 19 | 1.63 64 | 3.39 81 | 2.09 63 | 0.97 20 | 1.09 29 | 1.22 19 | 1.20 72 | 1.31 76 | 1.68 70 | 1.14 36 | 1.61 38 | 1.08 30 | 0.93 60 | 1.96 62 | 0.80 56 | 1.06 76 | 1.60 77 | 0.63 4 |
Fusion [6] | 42.8 | 0.64 52 | 0.94 62 | 0.65 25 | 0.70 28 | 0.98 26 | 0.61 19 | 1.35 53 | 1.48 20 | 1.70 53 | 1.06 61 | 1.26 69 | 1.22 19 | 1.12 47 | 1.20 49 | 1.22 40 | 1.29 78 | 2.07 81 | 1.19 79 | 0.78 35 | 1.54 35 | 0.72 29 | 0.85 16 | 1.24 17 | 0.64 35 |
Classic+NL [31] | 43.4 | 0.62 30 | 0.82 35 | 0.65 25 | 0.67 21 | 0.92 21 | 0.62 25 | 1.56 60 | 3.23 77 | 1.95 58 | 0.97 20 | 1.11 35 | 1.25 33 | 1.17 58 | 1.27 60 | 1.54 57 | 1.17 49 | 1.71 53 | 1.09 36 | 0.92 58 | 1.92 59 | 0.77 44 | 1.00 61 | 1.50 63 | 0.63 4 |
ACK-Prior [27] | 44.1 | 0.61 16 | 0.83 38 | 0.64 3 | 0.69 26 | 0.98 26 | 0.60 12 | 2.41 79 | 1.84 44 | 3.18 80 | 1.02 49 | 1.12 43 | 1.27 46 | 1.22 82 | 1.32 77 | 1.72 86 | 1.17 49 | 1.64 45 | 1.12 55 | 0.79 36 | 1.54 35 | 0.78 48 | 0.83 13 | 1.19 13 | 0.65 57 |
FESL [75] | 44.7 | 0.61 16 | 0.77 11 | 0.64 3 | 0.66 16 | 0.91 20 | 0.60 12 | 1.18 41 | 2.09 57 | 1.11 34 | 0.99 36 | 1.10 32 | 1.27 46 | 1.21 78 | 1.32 77 | 1.69 73 | 1.20 60 | 1.81 69 | 1.12 55 | 0.90 57 | 1.87 57 | 0.74 35 | 1.06 76 | 1.60 77 | 0.64 35 |
Black & Anandan [4] | 44.8 | 0.68 73 | 0.96 69 | 0.69 74 | 0.94 78 | 1.21 75 | 0.76 70 | 2.33 77 | 1.75 37 | 2.52 73 | 1.08 63 | 1.15 52 | 1.25 33 | 1.04 17 | 1.05 17 | 1.16 23 | 1.11 24 | 1.54 25 | 1.07 24 | 0.73 22 | 1.37 23 | 0.70 18 | 0.87 20 | 1.26 19 | 0.66 68 |
Adaptive [20] | 45.8 | 0.64 52 | 0.91 58 | 0.66 45 | 0.88 68 | 1.22 77 | 0.71 62 | 1.06 27 | 1.76 39 | 1.05 30 | 1.03 50 | 1.17 57 | 1.33 73 | 1.09 37 | 1.12 37 | 1.15 6 | 1.20 60 | 1.78 63 | 1.14 66 | 0.86 48 | 1.76 50 | 0.71 24 | 0.93 33 | 1.38 33 | 0.63 4 |
NL-TV-NCC [25] | 45.8 | 0.63 45 | 0.84 43 | 0.65 25 | 0.77 42 | 1.10 45 | 0.64 38 | 1.02 21 | 1.71 34 | 0.90 18 | 1.07 62 | 1.30 75 | 1.32 69 | 1.07 29 | 1.06 18 | 1.38 53 | 1.25 74 | 1.91 75 | 1.14 66 | 0.75 28 | 1.40 26 | 0.74 35 | 0.99 56 | 1.46 54 | 0.66 68 |
Occlusion-TV-L1 [63] | 46.2 | 0.62 30 | 0.86 49 | 0.66 45 | 0.85 60 | 1.20 73 | 0.68 51 | 0.92 11 | 1.58 30 | 0.90 18 | 1.13 72 | 1.43 79 | 1.30 63 | 1.04 17 | 1.06 18 | 1.15 6 | 1.20 60 | 1.78 63 | 1.15 71 | 0.89 52 | 1.54 35 | 0.83 63 | 1.04 70 | 1.56 70 | 0.63 4 |
Efficient-NL [60] | 46.4 | 0.61 16 | 0.77 11 | 0.64 3 | 0.71 33 | 0.99 29 | 0.62 25 | 2.03 73 | 1.80 43 | 2.75 76 | 0.97 20 | 1.11 35 | 1.22 19 | 1.18 61 | 1.28 63 | 1.64 65 | 1.19 58 | 1.77 60 | 1.09 36 | 0.96 67 | 2.04 68 | 0.78 48 | 1.10 85 | 1.65 85 | 0.64 35 |
Nguyen [33] | 47.0 | 0.71 77 | 1.01 74 | 0.71 77 | 0.96 82 | 1.20 73 | 0.79 75 | 1.05 25 | 1.75 37 | 0.91 21 | 1.09 66 | 1.16 55 | 1.31 66 | 1.04 17 | 1.06 18 | 1.15 6 | 1.15 44 | 1.67 50 | 1.08 30 | 0.93 60 | 1.96 62 | 0.80 56 | 0.89 26 | 1.30 27 | 0.63 4 |
Bartels [41] | 47.8 | 0.66 62 | 0.94 62 | 0.68 67 | 0.76 38 | 1.10 45 | 0.70 58 | 1.03 23 | 1.58 30 | 1.03 29 | 1.09 66 | 1.24 67 | 1.39 78 | 1.03 12 | 0.99 8 | 1.25 42 | 1.33 82 | 1.87 73 | 1.25 83 | 0.71 18 | 1.31 16 | 0.78 48 | 0.90 29 | 1.32 29 | 0.67 81 |
Complementary OF [21] | 47.9 | 0.66 62 | 1.03 77 | 0.64 3 | 0.70 28 | 1.01 35 | 0.63 33 | 3.10 83 | 2.52 67 | 3.34 83 | 0.98 28 | 1.13 47 | 1.22 19 | 1.16 52 | 1.25 55 | 1.59 62 | 1.13 34 | 1.59 35 | 1.10 44 | 0.93 60 | 1.87 57 | 0.97 77 | 0.94 35 | 1.40 38 | 0.64 35 |
Filter Flow [19] | 48.0 | 0.67 69 | 0.97 71 | 0.68 67 | 0.89 72 | 1.17 68 | 0.76 70 | 1.14 33 | 2.02 53 | 1.24 40 | 1.10 69 | 1.16 55 | 1.34 76 | 1.02 10 | 1.01 11 | 1.17 31 | 1.14 36 | 1.59 35 | 1.09 36 | 0.77 33 | 1.51 34 | 0.77 44 | 0.94 35 | 1.39 36 | 0.66 68 |
Horn & Schunck [3] | 48.6 | 0.66 62 | 0.93 60 | 0.67 60 | 0.96 82 | 1.22 77 | 0.82 81 | 1.91 70 | 1.72 36 | 2.27 67 | 1.14 74 | 1.24 67 | 1.30 63 | 1.04 17 | 1.06 18 | 1.16 23 | 1.08 17 | 1.44 17 | 1.05 11 | 0.75 28 | 1.43 30 | 0.74 35 | 1.03 69 | 1.53 68 | 0.64 35 |
FC-2Layers-FF [77] | 48.8 | 0.62 30 | 0.81 29 | 0.65 25 | 0.60 4 | 0.77 3 | 0.60 12 | 1.51 57 | 3.18 75 | 2.01 61 | 1.00 38 | 1.20 61 | 1.21 7 | 1.21 78 | 1.32 77 | 1.68 70 | 1.22 68 | 1.85 70 | 1.12 55 | 1.00 70 | 2.14 71 | 0.81 59 | 0.99 56 | 1.48 59 | 0.64 35 |
BlockOverlap [61] | 49.9 | 0.66 62 | 0.87 52 | 0.70 76 | 0.86 64 | 1.13 53 | 0.77 74 | 1.34 51 | 1.49 21 | 1.70 53 | 1.13 72 | 1.15 52 | 1.57 84 | 1.07 29 | 1.07 25 | 1.20 38 | 1.20 60 | 1.72 54 | 1.16 74 | 0.76 32 | 1.40 26 | 0.83 63 | 0.75 1 | 1.05 1 | 0.67 81 |
TI-DOFE [24] | 50.0 | 0.74 81 | 0.99 72 | 0.76 84 | 1.03 86 | 1.27 86 | 0.86 85 | 1.02 21 | 1.57 29 | 0.96 24 | 1.20 79 | 1.29 74 | 1.32 69 | 1.04 17 | 1.06 18 | 1.15 6 | 1.15 44 | 1.64 45 | 1.08 30 | 0.71 18 | 1.31 16 | 0.74 35 | 1.01 66 | 1.47 57 | 0.65 57 |
TriangleFlow [30] | 51.0 | 0.64 52 | 0.87 52 | 0.66 45 | 0.79 47 | 1.11 48 | 0.64 38 | 1.23 45 | 2.03 55 | 1.36 42 | 1.03 50 | 1.22 64 | 1.29 60 | 1.07 29 | 1.10 32 | 1.14 1 | 1.19 58 | 1.77 60 | 1.11 51 | 1.12 79 | 2.47 79 | 0.93 72 | 1.01 66 | 1.50 63 | 0.64 35 |
2D-CLG [1] | 53.0 | 0.65 57 | 0.87 52 | 0.68 67 | 0.91 75 | 1.15 58 | 0.80 76 | 1.53 59 | 1.32 8 | 1.83 57 | 1.08 63 | 1.11 35 | 1.32 69 | 1.24 83 | 1.37 83 | 1.72 86 | 1.11 24 | 1.54 25 | 1.12 55 | 0.86 48 | 1.77 51 | 0.73 32 | 0.98 53 | 1.45 52 | 0.63 4 |
IAOF [50] | 54.5 | 0.72 79 | 1.03 77 | 0.71 77 | 1.06 88 | 1.33 89 | 0.80 76 | 1.94 71 | 3.23 77 | 2.43 71 | 1.12 70 | 1.14 51 | 1.36 77 | 1.05 22 | 1.06 18 | 1.15 6 | 1.15 44 | 1.66 49 | 1.07 24 | 0.85 45 | 1.74 49 | 0.71 24 | 0.96 44 | 1.43 45 | 0.64 35 |
Shiralkar [42] | 54.7 | 0.65 57 | 0.94 62 | 0.65 25 | 0.85 60 | 1.14 56 | 0.67 48 | 1.52 58 | 1.84 44 | 1.71 55 | 1.23 82 | 1.54 84 | 1.29 60 | 1.09 37 | 1.14 40 | 1.21 39 | 1.20 60 | 1.77 60 | 1.11 51 | 0.97 68 | 2.04 68 | 0.77 44 | 1.05 75 | 1.58 75 | 0.63 4 |
Correlation Flow [79] | 55.8 | 0.61 16 | 0.82 35 | 0.64 3 | 0.81 51 | 1.15 58 | 0.65 42 | 1.17 40 | 2.22 59 | 1.37 43 | 1.00 38 | 1.17 57 | 1.25 33 | 1.11 44 | 1.14 40 | 1.30 46 | 1.46 88 | 2.44 88 | 1.37 87 | 1.06 76 | 2.29 76 | 0.93 72 | 1.07 79 | 1.61 79 | 0.68 89 |
GraphCuts [14] | 56.0 | 0.70 76 | 1.04 79 | 0.67 60 | 0.74 36 | 1.00 32 | 0.70 58 | 2.29 76 | 1.44 16 | 2.80 79 | 1.08 63 | 1.21 63 | 1.30 63 | 1.16 52 | 1.24 52 | 1.46 54 | 1.12 28 | 1.59 35 | 1.05 11 | 0.97 68 | 2.07 70 | 0.97 77 | 1.07 79 | 1.62 81 | 0.64 35 |
LocallyOriented [52] | 56.4 | 0.65 57 | 0.89 56 | 0.67 60 | 0.86 64 | 1.17 68 | 0.69 55 | 1.85 67 | 2.79 70 | 2.37 69 | 1.19 77 | 1.50 81 | 1.25 33 | 1.08 35 | 1.12 37 | 1.19 35 | 1.16 48 | 1.62 42 | 1.12 55 | 0.82 41 | 1.61 41 | 0.79 51 | 1.12 87 | 1.70 89 | 0.64 35 |
IAOF2 [51] | 56.7 | 0.68 73 | 0.96 69 | 0.68 67 | 0.87 66 | 1.21 75 | 0.71 62 | 1.09 29 | 1.95 50 | 1.10 33 | 1.03 50 | 1.15 52 | 1.27 46 | 1.18 61 | 1.28 63 | 1.49 55 | 1.22 68 | 1.86 72 | 1.13 62 | 0.79 36 | 1.57 38 | 0.76 41 | 1.02 68 | 1.53 68 | 0.65 57 |
TV-L1-improved [17] | 57.1 | 0.63 45 | 0.85 47 | 0.66 45 | 0.88 68 | 1.22 77 | 0.72 66 | 1.98 72 | 1.55 27 | 2.68 74 | 1.00 38 | 1.07 22 | 1.27 46 | 1.11 44 | 1.16 45 | 1.15 6 | 1.23 72 | 1.87 73 | 1.14 66 | 1.05 75 | 2.28 75 | 0.87 66 | 1.04 70 | 1.56 70 | 0.67 81 |
Direct ZNCC [66] | 59.1 | 0.61 16 | 0.81 29 | 0.64 3 | 0.81 51 | 1.15 58 | 0.66 43 | 1.57 61 | 3.10 74 | 1.97 60 | 1.20 79 | 1.60 85 | 1.47 80 | 1.10 42 | 1.14 40 | 1.27 44 | 1.49 89 | 2.51 89 | 1.40 88 | 1.09 77 | 2.37 77 | 0.98 79 | 0.96 44 | 1.42 43 | 0.66 68 |
SimpleFlow [49] | 59.8 | 0.62 30 | 0.84 43 | 0.65 25 | 0.76 38 | 1.06 41 | 0.64 38 | 3.87 87 | 4.61 88 | 4.32 87 | 1.03 50 | 1.20 61 | 1.29 60 | 1.20 72 | 1.30 72 | 1.65 66 | 1.34 83 | 2.18 83 | 1.16 74 | 1.45 87 | 3.30 87 | 1.60 87 | 0.94 35 | 1.39 36 | 0.63 4 |
HBpMotionGpu [43] | 61.5 | 0.71 77 | 1.04 79 | 0.71 77 | 0.94 78 | 1.25 84 | 0.80 76 | 1.33 50 | 2.51 66 | 1.48 46 | 1.12 70 | 1.39 78 | 1.28 53 | 1.34 87 | 1.52 87 | 2.35 90 | 1.29 78 | 2.02 80 | 1.20 81 | 0.69 12 | 1.27 13 | 0.66 5 | 0.89 26 | 1.29 25 | 0.65 57 |
Rannacher [23] | 62.2 | 0.65 57 | 0.95 67 | 0.66 45 | 0.89 72 | 1.24 81 | 0.71 62 | 2.10 74 | 1.78 41 | 2.78 78 | 1.05 57 | 1.27 71 | 1.28 53 | 1.09 37 | 1.14 40 | 1.16 23 | 1.26 75 | 1.95 77 | 1.15 71 | 1.03 74 | 2.22 74 | 0.88 67 | 1.04 70 | 1.56 70 | 0.65 57 |
Learning Flow [11] | 64.1 | 0.66 62 | 0.94 62 | 0.67 60 | 0.85 60 | 1.18 71 | 0.68 51 | 4.24 90 | 5.56 89 | 4.33 88 | 1.14 74 | 1.26 69 | 1.33 73 | 1.16 52 | 1.22 51 | 1.32 48 | 1.18 51 | 1.70 52 | 1.13 62 | 0.82 41 | 1.63 42 | 0.81 59 | 1.08 83 | 1.62 81 | 0.66 68 |
SegOF [10] | 64.5 | 0.67 69 | 1.01 74 | 0.67 60 | 0.78 45 | 1.06 41 | 0.68 51 | 3.01 82 | 2.80 71 | 3.24 81 | 1.63 87 | 2.62 88 | 1.57 84 | 1.20 72 | 1.30 72 | 1.69 73 | 1.18 51 | 1.74 57 | 1.14 66 | 1.21 84 | 2.70 84 | 1.11 82 | 0.87 20 | 1.26 19 | 0.64 35 |
PGAM+LK [55] | 64.6 | 0.78 85 | 1.09 85 | 0.80 86 | 0.91 75 | 1.17 68 | 0.82 81 | 3.39 85 | 6.37 90 | 4.52 89 | 1.44 85 | 1.47 80 | 1.75 86 | 1.09 37 | 1.11 34 | 1.19 35 | 1.23 72 | 1.78 63 | 1.16 74 | 0.73 22 | 1.37 23 | 0.79 51 | 0.92 32 | 1.35 32 | 0.67 81 |
Adaptive flow [45] | 65.5 | 0.80 86 | 1.06 84 | 0.81 87 | 1.02 85 | 1.27 86 | 0.91 88 | 1.34 51 | 2.01 52 | 1.68 52 | 1.21 81 | 1.30 75 | 1.52 81 | 1.25 84 | 1.37 83 | 1.35 50 | 1.37 85 | 2.22 85 | 1.25 83 | 0.75 28 | 1.43 30 | 0.81 59 | 0.82 10 | 1.18 10 | 0.65 57 |
StereoFlow [44] | 65.8 | 0.85 88 | 1.29 89 | 0.75 82 | 0.95 80 | 1.24 81 | 0.76 70 | 1.10 31 | 1.85 46 | 1.06 31 | 1.05 57 | 1.23 66 | 1.27 46 | 1.44 88 | 1.67 88 | 1.65 66 | 1.43 87 | 2.40 87 | 1.25 83 | 0.89 52 | 1.85 54 | 0.77 44 | 0.98 53 | 1.46 54 | 0.65 57 |
Dynamic MRF [7] | 66.3 | 0.63 45 | 0.92 59 | 0.65 25 | 0.79 47 | 1.15 58 | 0.67 48 | 1.49 56 | 1.88 48 | 1.67 51 | 1.26 83 | 1.53 83 | 1.56 83 | 1.20 72 | 1.32 77 | 1.69 73 | 1.31 81 | 2.08 82 | 1.23 82 | 1.09 77 | 2.38 78 | 0.94 75 | 1.06 76 | 1.58 75 | 0.65 57 |
SLK [47] | 68.8 | 0.72 79 | 0.95 67 | 0.75 82 | 0.93 77 | 1.13 53 | 0.81 80 | 2.97 81 | 2.41 64 | 3.25 82 | 1.38 84 | 1.61 86 | 1.53 82 | 1.19 69 | 1.29 69 | 1.26 43 | 1.21 67 | 1.78 63 | 1.14 66 | 1.14 80 | 2.51 81 | 0.91 71 | 0.90 29 | 1.32 29 | 0.66 68 |
SILK [87] | 69.5 | 0.69 75 | 0.93 60 | 0.71 77 | 1.01 84 | 1.24 81 | 0.89 86 | 3.96 88 | 3.80 83 | 3.85 86 | 1.16 76 | 1.27 71 | 1.40 79 | 1.11 44 | 1.16 45 | 1.19 35 | 1.29 78 | 1.93 76 | 1.19 79 | 0.74 25 | 1.41 29 | 0.89 70 | 1.12 87 | 1.68 87 | 0.66 68 |
FOLKI [16] | 71.5 | 0.82 87 | 1.04 79 | 0.88 88 | 1.03 86 | 1.26 85 | 0.90 87 | 1.74 66 | 2.22 59 | 2.29 68 | 1.48 86 | 1.50 81 | 1.85 87 | 1.10 42 | 1.15 44 | 1.22 40 | 1.41 86 | 2.30 86 | 1.55 89 | 0.83 43 | 1.64 44 | 1.07 81 | 1.00 61 | 1.48 59 | 0.67 81 |
SPSA-learn [13] | 73.4 | 0.75 82 | 1.24 88 | 0.68 67 | 0.87 66 | 1.15 58 | 0.74 69 | 3.22 84 | 3.18 75 | 3.46 84 | 1.19 77 | 1.28 73 | 1.33 73 | 1.16 52 | 1.25 55 | 1.28 45 | 1.20 60 | 1.79 68 | 1.17 77 | 2.04 90 | 4.77 90 | 2.66 90 | 1.10 85 | 1.66 86 | 0.66 68 |
GroupFlow [9] | 76.7 | 0.76 84 | 1.20 87 | 0.71 77 | 0.83 56 | 1.12 51 | 0.73 68 | 2.67 80 | 2.82 72 | 2.74 75 | 1.77 88 | 2.21 87 | 2.39 88 | 1.29 85 | 1.43 85 | 1.72 86 | 1.36 84 | 2.21 84 | 1.25 83 | 1.14 80 | 2.49 80 | 0.93 72 | 0.98 53 | 1.46 54 | 0.67 81 |
Pyramid LK [2] | 80.4 | 0.86 89 | 1.11 86 | 0.90 89 | 1.15 89 | 1.29 88 | 0.99 89 | 3.86 86 | 2.26 61 | 3.64 85 | 2.42 90 | 3.60 89 | 2.78 90 | 1.45 89 | 1.68 89 | 1.30 46 | 1.22 68 | 1.62 42 | 1.15 71 | 1.22 85 | 2.72 85 | 0.95 76 | 1.16 89 | 1.76 90 | 0.66 68 |
Periodicity [86] | 88.6 | 1.11 90 | 2.00 90 | 0.94 90 | 1.39 90 | 1.34 90 | 1.12 90 | 4.06 89 | 4.26 87 | 4.55 90 | 2.25 89 | 3.71 90 | 2.59 89 | 1.53 90 | 1.77 90 | 1.68 70 | 1.69 90 | 2.82 90 | 1.60 90 | 1.93 89 | 4.41 89 | 2.10 88 | 1.17 90 | 1.68 87 | 0.87 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |