Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A99 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 7.5 | 1.63 1 | 2.49 1 | 1.59 1 | 2.18 7 | 3.35 8 | 1.59 6 | 2.48 2 | 3.83 4 | 1.63 1 | 2.80 3 | 3.11 3 | 3.21 18 | 2.49 1 | 2.55 3 | 2.63 4 | 2.72 19 | 6.03 32 | 2.38 18 | 1.70 3 | 3.01 4 | 1.70 5 | 2.35 10 | 3.57 11 | 1.45 15 |
ComplexFlow [81] | 11.0 | 1.63 1 | 2.52 2 | 1.59 1 | 2.02 1 | 2.94 1 | 1.58 2 | 2.46 1 | 3.62 1 | 1.63 1 | 2.90 28 | 3.45 37 | 3.20 12 | 2.49 1 | 2.54 2 | 2.62 2 | 2.96 40 | 6.49 42 | 2.43 36 | 1.71 5 | 3.24 14 | 1.72 20 | 2.32 4 | 3.56 9 | 1.43 2 |
NN-field [73] | 12.8 | 1.66 4 | 2.68 10 | 1.60 6 | 2.05 3 | 3.00 4 | 1.56 1 | 2.74 29 | 3.66 2 | 1.66 4 | 2.96 39 | 3.72 58 | 3.24 33 | 2.49 1 | 2.53 1 | 2.61 1 | 2.77 28 | 5.87 26 | 2.39 23 | 1.69 1 | 3.08 8 | 1.71 9 | 2.31 3 | 3.56 9 | 1.44 3 |
nLayers [57] | 16.6 | 1.71 13 | 2.70 12 | 1.63 18 | 2.19 8 | 3.30 7 | 1.61 9 | 2.53 3 | 3.90 5 | 1.66 4 | 2.83 7 | 3.27 13 | 3.18 8 | 2.64 33 | 2.84 37 | 2.72 38 | 2.93 38 | 6.57 46 | 2.48 51 | 1.71 5 | 2.99 3 | 1.72 20 | 2.32 4 | 3.59 14 | 1.44 3 |
IROF++ [58] | 16.8 | 1.70 12 | 2.63 7 | 1.61 12 | 2.33 14 | 3.53 12 | 1.60 7 | 2.73 27 | 4.75 24 | 1.73 20 | 2.79 2 | 3.07 1 | 3.21 18 | 2.55 8 | 2.70 12 | 2.69 31 | 2.60 8 | 5.43 17 | 2.34 7 | 1.76 23 | 3.48 29 | 1.72 20 | 2.47 24 | 3.95 40 | 1.46 28 |
Layers++ [37] | 20.2 | 1.72 14 | 2.64 8 | 1.65 30 | 2.04 2 | 2.95 2 | 1.61 9 | 2.60 7 | 5.19 34 | 1.68 8 | 2.85 11 | 3.29 19 | 3.24 33 | 2.64 33 | 2.86 49 | 2.71 35 | 3.16 58 | 7.50 69 | 2.41 26 | 1.69 1 | 2.86 1 | 1.68 1 | 2.32 4 | 3.60 16 | 1.45 15 |
COFM [59] | 21.9 | 1.72 14 | 2.68 10 | 1.65 30 | 2.31 13 | 3.53 12 | 1.62 17 | 2.58 5 | 4.59 21 | 1.68 8 | 2.81 4 | 3.24 9 | 3.14 1 | 2.54 5 | 2.66 9 | 2.63 4 | 3.29 65 | 7.42 65 | 2.46 45 | 1.74 14 | 3.43 26 | 1.75 53 | 2.37 14 | 3.70 20 | 1.49 61 |
ADF [67] | 23.4 | 1.66 4 | 2.62 5 | 1.61 12 | 2.50 26 | 3.95 29 | 1.66 27 | 2.60 7 | 4.29 9 | 1.71 19 | 2.81 4 | 3.14 4 | 3.21 18 | 2.64 33 | 2.84 37 | 2.75 58 | 2.74 23 | 5.25 11 | 2.33 4 | 1.77 32 | 3.72 37 | 1.73 44 | 2.59 46 | 4.08 58 | 1.45 15 |
LME [72] | 23.4 | 1.67 8 | 2.55 3 | 1.60 6 | 2.34 16 | 3.54 15 | 1.80 46 | 2.68 16 | 5.37 43 | 1.68 8 | 2.85 11 | 3.35 29 | 3.23 28 | 2.69 68 | 2.92 68 | 2.88 86 | 2.72 19 | 5.65 24 | 2.38 18 | 1.70 3 | 2.93 2 | 1.70 5 | 2.39 18 | 3.67 19 | 1.44 3 |
TV-L1-MCT [64] | 24.2 | 1.77 34 | 2.83 27 | 1.65 30 | 2.60 32 | 4.03 34 | 1.63 20 | 2.71 22 | 5.86 61 | 1.70 17 | 2.83 7 | 3.22 8 | 3.20 12 | 2.66 46 | 2.90 61 | 2.71 35 | 2.65 13 | 5.24 10 | 2.38 18 | 1.74 14 | 3.22 13 | 1.72 20 | 2.34 8 | 3.57 11 | 1.46 28 |
ALD-Flow [68] | 24.4 | 1.82 51 | 2.93 39 | 1.70 47 | 2.56 30 | 3.95 29 | 1.71 34 | 2.69 21 | 4.46 14 | 1.73 20 | 2.85 11 | 3.24 9 | 3.22 22 | 2.58 13 | 2.70 12 | 2.74 52 | 2.55 5 | 4.16 2 | 2.42 31 | 1.72 8 | 3.02 5 | 1.71 9 | 2.57 42 | 4.04 51 | 1.46 28 |
DPOF [18] | 24.5 | 1.80 42 | 3.31 77 | 1.68 40 | 2.11 6 | 3.15 6 | 1.61 9 | 3.18 61 | 4.34 12 | 1.92 58 | 2.91 32 | 3.63 52 | 3.20 12 | 2.55 8 | 2.66 9 | 2.65 6 | 2.66 14 | 5.32 14 | 2.33 4 | 1.74 14 | 3.17 9 | 1.72 20 | 2.47 24 | 3.83 30 | 1.46 28 |
Aniso. Huber-L1 [22] | 24.6 | 1.81 48 | 2.96 44 | 1.70 47 | 3.33 58 | 4.67 56 | 1.84 49 | 2.83 36 | 4.22 7 | 1.79 34 | 2.89 26 | 3.27 13 | 3.23 28 | 2.58 13 | 2.73 15 | 2.67 17 | 2.58 6 | 4.86 7 | 2.32 2 | 1.73 10 | 3.06 6 | 1.71 9 | 2.36 13 | 3.51 4 | 1.47 42 |
Deep-Matching [85] | 24.6 | 1.79 40 | 2.95 41 | 1.68 40 | 2.87 39 | 4.29 39 | 2.00 60 | 2.72 24 | 4.88 26 | 1.74 28 | 2.99 43 | 3.31 21 | 3.23 28 | 2.61 22 | 2.75 20 | 2.69 31 | 2.50 3 | 4.09 1 | 2.39 23 | 1.71 5 | 3.17 9 | 1.69 3 | 2.35 10 | 3.54 7 | 1.46 28 |
Sparse-NonSparse [56] | 25.2 | 1.72 14 | 2.75 16 | 1.63 18 | 2.33 14 | 3.56 17 | 1.61 9 | 2.68 16 | 5.43 44 | 1.68 8 | 2.85 11 | 3.27 13 | 3.16 4 | 2.64 33 | 2.84 37 | 2.72 38 | 3.06 48 | 6.56 45 | 2.45 38 | 1.78 35 | 4.33 54 | 1.71 9 | 2.55 38 | 3.99 42 | 1.44 3 |
PMF [76] | 25.2 | 1.65 3 | 2.62 5 | 1.59 1 | 2.30 12 | 3.47 10 | 1.58 2 | 2.86 42 | 6.90 72 | 1.78 31 | 2.85 11 | 3.27 13 | 3.22 22 | 2.61 22 | 2.77 26 | 2.65 6 | 2.74 23 | 5.28 13 | 2.52 55 | 1.76 23 | 3.87 42 | 1.73 44 | 2.63 55 | 4.29 70 | 1.44 3 |
Epistemic [84] | 25.3 | 1.68 9 | 2.73 13 | 1.60 6 | 2.24 9 | 3.48 11 | 1.58 2 | 2.67 14 | 4.50 18 | 1.73 20 | 2.83 7 | 3.28 17 | 3.16 4 | 2.64 33 | 2.81 32 | 2.67 17 | 2.74 23 | 6.02 30 | 2.38 18 | 1.84 56 | 4.82 68 | 1.74 51 | 2.65 57 | 4.51 77 | 1.45 15 |
Levin3 [90] | 25.9 | 1.76 27 | 2.82 25 | 1.64 27 | 2.43 22 | 3.69 22 | 1.63 20 | 2.68 16 | 5.14 31 | 1.68 8 | 2.85 11 | 3.24 9 | 3.24 33 | 2.57 12 | 2.73 15 | 2.65 6 | 3.03 45 | 6.52 43 | 2.45 38 | 1.80 43 | 4.68 63 | 1.72 20 | 2.51 28 | 3.83 30 | 1.46 28 |
SuperFlow [89] | 26.9 | 1.78 38 | 2.87 31 | 1.72 50 | 2.90 40 | 4.24 38 | 2.09 64 | 2.80 34 | 4.33 11 | 1.80 41 | 3.01 48 | 3.40 32 | 3.25 38 | 2.54 5 | 2.62 6 | 2.72 38 | 2.43 1 | 4.36 4 | 2.30 1 | 1.76 23 | 3.46 27 | 1.73 44 | 2.30 2 | 3.44 1 | 1.46 28 |
Brox et al. [5] | 28.9 | 1.77 34 | 3.05 57 | 1.63 18 | 2.69 35 | 4.02 33 | 1.73 40 | 2.86 42 | 5.19 34 | 1.81 43 | 2.92 34 | 3.19 6 | 3.24 33 | 2.58 13 | 2.68 11 | 2.68 24 | 2.96 40 | 6.85 56 | 2.41 26 | 1.78 35 | 3.73 38 | 1.72 20 | 2.32 4 | 3.48 3 | 1.45 15 |
TC/T-Flow [80] | 29.3 | 1.80 42 | 2.89 32 | 1.64 27 | 2.58 31 | 4.01 32 | 1.65 26 | 2.60 7 | 4.17 6 | 1.70 17 | 2.86 18 | 3.21 7 | 3.20 12 | 2.65 40 | 2.84 37 | 2.79 73 | 2.61 10 | 4.93 8 | 2.37 13 | 1.97 69 | 6.08 75 | 1.75 53 | 2.52 29 | 3.86 36 | 1.44 3 |
EP-PM [83] | 29.5 | 1.66 4 | 2.77 18 | 1.59 1 | 2.42 21 | 3.79 24 | 1.61 9 | 3.37 66 | 10.6 87 | 1.89 50 | 2.90 28 | 3.57 47 | 3.22 22 | 2.55 8 | 2.65 8 | 2.65 6 | 2.77 28 | 5.61 20 | 2.41 26 | 1.80 43 | 4.56 60 | 1.75 53 | 2.54 35 | 3.99 42 | 1.44 3 |
IROF-TV [53] | 29.6 | 1.79 40 | 2.91 35 | 1.68 40 | 2.44 24 | 3.69 22 | 1.63 20 | 2.81 35 | 5.61 49 | 1.76 29 | 2.85 11 | 3.30 20 | 3.21 18 | 2.65 40 | 2.85 46 | 2.80 78 | 2.80 30 | 6.02 30 | 2.35 9 | 1.76 23 | 3.34 20 | 1.72 20 | 2.38 15 | 3.59 14 | 1.47 42 |
CLG-TV [48] | 30.1 | 1.80 42 | 2.95 41 | 1.71 49 | 3.19 53 | 4.55 50 | 1.83 48 | 2.89 45 | 5.00 29 | 1.91 56 | 2.96 39 | 3.35 29 | 3.28 49 | 2.60 17 | 2.75 20 | 2.67 17 | 2.54 4 | 4.63 5 | 2.36 12 | 1.73 10 | 3.17 9 | 1.72 20 | 2.43 20 | 3.61 17 | 1.47 42 |
Ramp [62] | 30.4 | 1.76 27 | 2.82 25 | 1.66 37 | 2.38 20 | 3.66 20 | 1.63 20 | 2.66 13 | 5.19 34 | 1.67 7 | 2.81 4 | 3.15 5 | 3.15 2 | 2.63 29 | 2.84 37 | 2.73 44 | 3.38 70 | 7.56 72 | 2.53 59 | 1.78 35 | 4.02 45 | 1.70 5 | 2.61 51 | 4.05 53 | 1.45 15 |
LSM [39] | 30.9 | 1.74 24 | 2.81 24 | 1.63 18 | 2.35 17 | 3.55 16 | 1.61 9 | 2.72 24 | 5.64 52 | 1.68 8 | 2.86 18 | 3.26 12 | 3.18 8 | 2.66 46 | 2.88 55 | 2.74 52 | 3.15 57 | 6.90 57 | 2.45 38 | 1.79 39 | 4.52 59 | 1.71 9 | 2.59 46 | 4.04 51 | 1.44 3 |
Classic+NL [31] | 31.0 | 1.80 42 | 2.85 30 | 1.68 40 | 2.43 22 | 3.68 21 | 1.63 20 | 2.64 12 | 5.45 46 | 1.68 8 | 2.86 18 | 3.33 25 | 3.22 22 | 2.64 33 | 2.84 37 | 2.72 38 | 3.05 46 | 6.39 39 | 2.46 45 | 1.78 35 | 4.29 50 | 1.71 9 | 2.57 42 | 4.03 48 | 1.45 15 |
SIOF [69] | 31.0 | 1.88 60 | 2.97 46 | 1.72 50 | 3.34 59 | 4.70 60 | 2.11 65 | 2.73 27 | 5.27 38 | 1.79 34 | 2.92 34 | 3.54 44 | 3.22 22 | 2.52 4 | 2.58 4 | 2.66 14 | 2.59 7 | 4.84 6 | 2.37 13 | 1.73 10 | 3.28 16 | 1.72 20 | 2.52 29 | 3.79 25 | 1.48 56 |
SCR [74] | 31.0 | 1.74 24 | 2.74 14 | 1.63 18 | 2.35 17 | 3.64 18 | 1.61 9 | 2.68 16 | 5.67 53 | 1.68 8 | 2.87 21 | 3.32 23 | 3.25 38 | 2.66 46 | 2.89 60 | 2.75 58 | 3.06 48 | 6.42 40 | 2.42 31 | 1.80 43 | 4.73 65 | 1.72 20 | 2.54 35 | 3.93 38 | 1.41 1 |
FastOF [78] | 31.1 | 1.86 57 | 2.95 41 | 1.72 50 | 3.13 50 | 4.45 44 | 2.16 67 | 2.91 46 | 5.71 56 | 1.84 44 | 2.97 41 | 3.42 34 | 3.15 2 | 2.60 17 | 2.77 26 | 2.76 65 | 2.46 2 | 4.17 3 | 2.34 7 | 1.73 10 | 3.31 17 | 1.72 20 | 2.38 15 | 3.63 18 | 1.45 15 |
OFLADF [82] | 31.5 | 1.66 4 | 2.60 4 | 1.60 6 | 2.09 5 | 3.08 5 | 1.58 2 | 2.58 5 | 4.23 8 | 1.63 1 | 2.78 1 | 3.09 2 | 3.16 4 | 2.66 46 | 2.88 55 | 2.74 52 | 3.41 74 | 7.61 73 | 2.54 60 | 2.02 73 | 6.45 77 | 1.75 53 | 2.67 64 | 4.21 68 | 1.45 15 |
MDP-Flow [26] | 32.0 | 1.68 9 | 2.77 18 | 1.60 6 | 2.27 10 | 3.53 12 | 1.62 17 | 2.54 4 | 3.70 3 | 1.73 20 | 3.04 51 | 3.73 60 | 3.28 49 | 2.61 22 | 2.78 29 | 2.78 68 | 3.80 82 | 8.39 82 | 2.63 80 | 1.74 14 | 3.25 15 | 1.73 44 | 2.46 23 | 3.84 34 | 1.45 15 |
CBF [12] | 32.2 | 1.76 27 | 2.79 21 | 1.68 40 | 2.92 41 | 4.29 39 | 1.84 49 | 2.83 36 | 4.32 10 | 1.79 34 | 2.98 42 | 3.28 17 | 3.42 77 | 2.54 5 | 2.60 5 | 2.74 52 | 2.66 14 | 5.39 16 | 2.40 25 | 1.79 39 | 3.33 18 | 1.78 64 | 2.38 15 | 3.53 6 | 1.56 81 |
Second-order prior [8] | 32.4 | 1.81 48 | 2.92 37 | 1.72 50 | 3.18 51 | 4.60 54 | 1.75 42 | 3.27 64 | 6.35 67 | 1.94 61 | 2.92 34 | 3.43 35 | 3.20 12 | 2.60 17 | 2.77 26 | 2.66 14 | 2.63 11 | 5.64 23 | 2.38 18 | 1.74 14 | 3.17 9 | 1.71 9 | 2.49 26 | 3.80 27 | 1.46 28 |
CostFilter [40] | 32.9 | 1.68 9 | 2.78 20 | 1.59 1 | 2.27 10 | 3.38 9 | 1.60 7 | 3.01 55 | 9.85 84 | 1.79 34 | 2.87 21 | 3.33 25 | 3.17 7 | 2.65 40 | 2.83 35 | 2.70 34 | 2.80 30 | 5.62 22 | 2.59 73 | 1.79 39 | 4.12 46 | 1.73 44 | 2.71 67 | 4.46 74 | 1.44 3 |
p-harmonic [29] | 33.9 | 1.73 19 | 2.84 29 | 1.63 18 | 3.30 57 | 4.71 61 | 1.85 52 | 2.84 41 | 5.62 50 | 1.89 50 | 3.09 60 | 3.60 50 | 3.25 38 | 2.62 27 | 2.78 29 | 2.67 17 | 2.73 22 | 5.57 19 | 2.42 31 | 1.76 23 | 3.48 29 | 1.72 20 | 2.43 20 | 3.73 23 | 1.46 28 |
FC-2Layers-FF [77] | 34.0 | 1.73 19 | 2.80 23 | 1.63 18 | 2.05 3 | 2.95 2 | 1.62 17 | 2.60 7 | 5.12 30 | 1.68 8 | 2.83 7 | 3.32 23 | 3.20 12 | 2.67 57 | 2.90 61 | 2.75 58 | 3.51 78 | 7.68 78 | 2.56 67 | 1.81 49 | 4.87 70 | 1.72 20 | 2.53 34 | 4.00 46 | 1.46 28 |
LDOF [28] | 34.8 | 1.93 65 | 3.01 51 | 1.83 71 | 2.79 37 | 3.86 25 | 2.27 70 | 3.01 55 | 5.20 37 | 1.92 58 | 2.99 43 | 3.56 45 | 3.28 49 | 2.55 8 | 2.64 7 | 2.68 24 | 2.60 8 | 5.11 9 | 2.35 9 | 1.76 23 | 3.55 32 | 1.72 20 | 2.44 22 | 3.74 24 | 1.47 42 |
FESL [75] | 35.4 | 1.76 27 | 2.76 17 | 1.64 27 | 2.37 19 | 3.64 18 | 1.61 9 | 2.75 30 | 6.26 64 | 1.76 29 | 2.90 28 | 3.31 21 | 3.23 28 | 2.66 46 | 2.87 53 | 2.75 58 | 3.38 70 | 7.61 73 | 2.55 64 | 1.76 23 | 4.31 53 | 1.69 3 | 2.56 40 | 4.00 46 | 1.44 3 |
ComplOF-FED-GPU [35] | 35.9 | 1.76 27 | 3.10 62 | 1.65 30 | 2.51 27 | 3.88 26 | 1.68 30 | 3.41 67 | 4.48 17 | 2.00 64 | 2.88 24 | 3.34 28 | 3.22 22 | 2.63 29 | 2.81 32 | 2.73 44 | 2.75 26 | 5.56 18 | 2.41 26 | 1.81 49 | 3.69 35 | 1.72 20 | 2.65 57 | 4.09 59 | 1.47 42 |
TCOF [71] | 36.0 | 1.76 27 | 2.74 14 | 1.63 18 | 3.50 70 | 5.03 79 | 1.89 53 | 2.60 7 | 4.72 23 | 1.66 4 | 2.89 26 | 3.33 25 | 3.26 45 | 2.60 17 | 2.76 23 | 2.65 6 | 3.06 48 | 6.77 55 | 2.42 31 | 1.82 51 | 4.62 62 | 1.71 9 | 2.64 56 | 4.06 55 | 1.49 61 |
Efficient-NL [60] | 38.2 | 1.72 14 | 2.65 9 | 1.62 17 | 2.64 34 | 4.05 35 | 1.63 20 | 3.58 69 | 5.43 44 | 2.12 67 | 2.87 21 | 3.40 32 | 3.18 8 | 2.61 22 | 2.80 31 | 2.73 44 | 3.33 67 | 7.51 70 | 2.45 38 | 1.82 51 | 4.50 58 | 1.72 20 | 2.72 69 | 4.13 62 | 1.45 15 |
Local-TV-L1 [65] | 40.8 | 2.00 73 | 2.99 49 | 1.89 76 | 3.48 65 | 4.69 59 | 2.35 73 | 2.72 24 | 4.41 13 | 1.73 20 | 3.04 51 | 3.43 35 | 3.45 78 | 2.60 17 | 2.76 23 | 2.73 44 | 2.86 34 | 5.94 29 | 2.61 78 | 1.75 20 | 3.40 22 | 1.72 20 | 2.34 8 | 3.54 7 | 1.49 61 |
TC-Flow [46] | 41.3 | 1.73 19 | 2.83 27 | 1.65 30 | 2.62 33 | 4.09 37 | 1.71 34 | 2.83 36 | 4.57 20 | 1.73 20 | 3.06 55 | 3.79 62 | 3.34 70 | 2.68 60 | 2.92 68 | 2.79 73 | 2.94 39 | 6.05 33 | 2.52 55 | 1.75 20 | 3.33 18 | 1.72 20 | 2.66 62 | 4.42 73 | 1.46 28 |
Sparse Occlusion [54] | 42.6 | 1.77 34 | 2.92 37 | 1.67 39 | 2.94 43 | 4.54 49 | 1.68 30 | 2.68 16 | 4.50 18 | 1.79 34 | 2.90 28 | 3.45 37 | 3.25 38 | 2.68 60 | 2.90 61 | 2.75 58 | 3.43 76 | 7.64 75 | 2.52 55 | 1.80 43 | 4.18 47 | 1.68 1 | 2.59 46 | 4.06 55 | 1.47 42 |
Modified CLG [34] | 43.0 | 1.76 27 | 2.79 21 | 1.72 50 | 3.57 74 | 4.75 64 | 2.43 77 | 3.15 59 | 7.06 73 | 1.95 63 | 3.02 50 | 3.67 57 | 3.25 38 | 2.61 22 | 2.75 20 | 2.68 24 | 3.05 46 | 6.71 52 | 2.48 51 | 1.76 23 | 3.42 25 | 1.72 20 | 2.52 29 | 3.79 25 | 1.47 42 |
Classic++ [32] | 44.0 | 1.82 51 | 2.90 34 | 1.72 50 | 2.98 46 | 4.50 47 | 1.74 41 | 2.92 48 | 4.95 28 | 1.79 34 | 3.07 56 | 3.64 53 | 3.27 47 | 2.66 46 | 2.85 46 | 2.68 24 | 3.07 51 | 6.57 46 | 2.56 67 | 1.79 39 | 4.26 48 | 1.72 20 | 2.56 40 | 3.93 38 | 1.48 56 |
F-TV-L1 [15] | 44.8 | 1.95 69 | 3.21 71 | 1.85 74 | 3.34 59 | 4.63 55 | 1.97 58 | 3.02 58 | 5.30 40 | 2.03 66 | 3.01 48 | 3.56 45 | 3.29 55 | 2.64 33 | 2.84 37 | 2.66 14 | 2.68 17 | 5.36 15 | 2.42 31 | 1.82 51 | 4.37 55 | 1.75 53 | 2.35 10 | 3.51 4 | 1.48 56 |
OFH [38] | 47.5 | 1.81 48 | 2.98 47 | 1.68 40 | 2.92 41 | 4.30 41 | 1.72 38 | 2.96 53 | 5.62 50 | 1.78 31 | 2.88 24 | 3.36 31 | 3.18 8 | 2.66 46 | 2.88 55 | 2.73 44 | 3.01 43 | 6.44 41 | 2.52 55 | 2.05 75 | 5.99 74 | 1.76 59 | 2.85 78 | 4.49 75 | 1.47 42 |
IAOF [50] | 48.6 | 2.05 77 | 3.24 74 | 1.83 71 | 4.43 88 | 5.50 90 | 2.51 81 | 3.29 65 | 6.36 68 | 1.85 46 | 3.24 68 | 3.48 40 | 3.35 72 | 2.63 29 | 2.82 34 | 2.65 6 | 2.85 33 | 6.36 37 | 2.37 13 | 1.75 20 | 3.74 39 | 1.71 9 | 2.52 29 | 3.85 35 | 1.47 42 |
BlockOverlap [61] | 48.6 | 1.98 71 | 3.04 56 | 1.91 79 | 3.37 61 | 4.71 61 | 2.37 74 | 2.79 33 | 4.47 15 | 1.90 53 | 3.17 64 | 3.51 42 | 3.73 84 | 2.63 29 | 2.74 19 | 2.77 66 | 2.88 35 | 6.59 48 | 2.57 70 | 1.77 32 | 3.46 27 | 1.79 67 | 2.29 1 | 3.45 2 | 1.53 78 |
Black & Anandan [4] | 49.9 | 2.01 76 | 3.03 55 | 1.86 75 | 3.86 81 | 5.04 82 | 2.25 69 | 4.13 76 | 6.30 65 | 2.49 74 | 3.26 71 | 3.86 64 | 3.24 33 | 2.66 46 | 2.84 37 | 2.72 38 | 2.72 19 | 6.16 35 | 2.35 9 | 1.82 51 | 3.56 33 | 1.72 20 | 2.49 26 | 3.71 21 | 1.47 42 |
Fusion [6] | 49.9 | 1.78 38 | 3.23 73 | 1.63 18 | 2.54 28 | 3.93 28 | 1.68 30 | 2.75 30 | 4.79 25 | 1.79 34 | 3.15 63 | 4.03 69 | 3.23 28 | 2.67 57 | 2.93 72 | 2.69 31 | 3.57 80 | 7.84 81 | 2.55 64 | 1.87 59 | 4.30 52 | 1.73 44 | 2.71 67 | 4.32 71 | 1.48 56 |
ACK-Prior [27] | 50.5 | 1.73 19 | 2.93 39 | 1.61 12 | 2.46 25 | 3.89 27 | 1.66 27 | 4.37 78 | 4.91 27 | 2.75 78 | 3.05 53 | 3.64 53 | 3.34 70 | 2.68 60 | 2.86 49 | 2.79 73 | 3.21 62 | 6.38 38 | 2.57 70 | 1.87 59 | 3.71 36 | 1.81 69 | 2.66 62 | 4.03 48 | 1.54 79 |
Ad-TV-NDC [36] | 50.8 | 2.31 84 | 3.15 67 | 2.22 85 | 3.85 80 | 4.86 72 | 2.52 82 | 2.87 44 | 5.55 47 | 1.85 46 | 3.25 69 | 3.57 47 | 3.41 75 | 2.68 60 | 2.86 49 | 2.74 52 | 2.70 18 | 5.61 20 | 2.47 48 | 1.77 32 | 3.34 20 | 1.72 20 | 2.39 18 | 3.58 13 | 1.50 70 |
Occlusion-TV-L1 [63] | 51.0 | 1.80 42 | 2.91 35 | 1.73 58 | 3.41 62 | 5.03 79 | 1.82 47 | 2.83 36 | 5.78 57 | 1.85 46 | 3.23 65 | 4.57 79 | 3.32 65 | 2.59 16 | 2.73 15 | 2.67 17 | 3.14 55 | 7.74 79 | 2.56 67 | 1.91 63 | 3.41 24 | 1.84 71 | 2.59 46 | 4.07 57 | 1.47 42 |
CRTflow [88] | 51.0 | 1.89 62 | 3.09 61 | 1.76 60 | 3.26 56 | 4.84 71 | 1.84 49 | 3.01 55 | 5.81 59 | 2.00 64 | 2.99 43 | 3.45 37 | 3.31 60 | 2.68 60 | 2.91 67 | 2.79 73 | 2.63 11 | 5.25 11 | 2.41 26 | 1.80 43 | 4.29 50 | 1.74 51 | 2.57 42 | 4.05 53 | 1.49 61 |
Adaptive [20] | 51.5 | 1.87 58 | 3.11 63 | 1.76 60 | 3.51 71 | 5.03 79 | 1.90 55 | 2.94 50 | 5.14 31 | 1.88 49 | 3.00 46 | 3.65 56 | 3.31 60 | 2.67 57 | 2.88 55 | 2.67 17 | 3.07 51 | 7.11 60 | 2.47 48 | 1.83 55 | 4.28 49 | 1.71 9 | 2.62 53 | 3.99 42 | 1.49 61 |
Filter Flow [19] | 52.3 | 1.93 65 | 3.01 51 | 1.81 70 | 3.49 68 | 4.76 66 | 2.37 74 | 2.93 49 | 5.33 42 | 1.90 53 | 3.25 69 | 3.62 51 | 3.41 75 | 2.62 27 | 2.73 15 | 2.78 68 | 2.83 32 | 6.08 34 | 2.43 36 | 1.84 56 | 3.90 43 | 1.76 59 | 2.57 42 | 3.83 30 | 1.56 81 |
GraphCuts [14] | 54.0 | 2.05 77 | 3.55 83 | 1.76 60 | 2.71 36 | 3.98 31 | 2.05 63 | 5.94 84 | 4.70 22 | 2.75 78 | 3.23 65 | 3.92 66 | 3.33 67 | 2.66 46 | 2.85 46 | 2.62 2 | 2.89 36 | 6.59 48 | 2.33 4 | 1.91 63 | 4.44 57 | 1.81 69 | 2.65 57 | 4.10 60 | 1.51 75 |
Correlation Flow [79] | 54.5 | 1.73 19 | 2.89 32 | 1.60 6 | 3.23 55 | 4.83 70 | 1.70 33 | 2.67 14 | 4.47 15 | 1.73 20 | 2.95 37 | 3.50 41 | 3.29 55 | 2.73 77 | 2.92 68 | 2.83 80 | 4.11 86 | 9.07 86 | 2.60 76 | 2.06 76 | 6.41 76 | 1.87 78 | 2.79 74 | 4.33 72 | 1.49 61 |
IAOF2 [51] | 54.7 | 2.00 73 | 3.27 75 | 1.78 66 | 3.48 65 | 5.01 77 | 2.11 65 | 2.75 30 | 5.81 59 | 1.78 31 | 3.10 61 | 3.74 61 | 3.30 58 | 2.88 83 | 3.33 85 | 2.72 38 | 3.39 72 | 7.64 75 | 2.45 38 | 1.76 23 | 3.52 31 | 1.70 5 | 2.61 51 | 4.03 48 | 1.47 42 |
Complementary OF [21] | 55.2 | 1.75 26 | 3.20 70 | 1.61 12 | 2.55 29 | 4.05 35 | 1.66 27 | 5.55 82 | 7.07 74 | 3.02 81 | 2.95 37 | 3.64 53 | 3.25 38 | 2.69 68 | 2.94 73 | 2.75 58 | 3.01 43 | 6.76 54 | 2.48 51 | 2.04 74 | 5.69 72 | 1.75 53 | 3.37 85 | 5.64 87 | 1.47 42 |
2D-CLG [1] | 55.6 | 1.88 60 | 3.00 50 | 1.79 68 | 3.62 77 | 4.68 57 | 2.49 80 | 3.79 72 | 5.67 53 | 2.33 72 | 3.28 73 | 3.72 58 | 3.28 49 | 2.65 40 | 2.83 35 | 2.71 35 | 3.17 59 | 6.91 58 | 2.54 60 | 1.95 67 | 4.57 61 | 1.76 59 | 2.54 35 | 3.81 29 | 1.46 28 |
HBpMotionGpu [43] | 55.9 | 2.13 79 | 3.48 82 | 1.96 80 | 3.80 79 | 5.07 85 | 2.47 78 | 2.71 22 | 5.28 39 | 1.73 20 | 3.26 71 | 4.60 81 | 3.31 60 | 2.65 40 | 2.86 49 | 2.77 66 | 3.14 55 | 7.55 71 | 2.51 54 | 1.72 8 | 3.06 6 | 1.71 9 | 2.69 66 | 4.18 65 | 1.52 77 |
Nguyen [33] | 56.3 | 2.00 73 | 3.12 64 | 1.89 76 | 3.97 83 | 4.92 74 | 2.47 78 | 3.21 63 | 7.73 77 | 1.94 61 | 3.34 75 | 3.89 65 | 3.32 65 | 2.65 40 | 2.84 37 | 2.67 17 | 2.90 37 | 6.33 36 | 2.37 13 | 1.99 71 | 5.32 71 | 1.80 68 | 2.55 38 | 3.96 41 | 1.46 28 |
TriangleFlow [30] | 57.2 | 1.89 62 | 3.12 64 | 1.72 50 | 3.06 49 | 4.50 47 | 1.75 42 | 2.95 52 | 5.78 57 | 1.90 53 | 3.07 56 | 4.02 68 | 3.33 67 | 2.66 46 | 2.88 55 | 2.65 6 | 3.17 59 | 6.69 50 | 2.45 38 | 2.08 77 | 6.91 82 | 1.89 80 | 3.37 85 | 5.58 85 | 1.47 42 |
Bartels [41] | 58.0 | 1.94 68 | 3.18 69 | 1.84 73 | 2.83 38 | 4.45 44 | 2.00 60 | 2.83 36 | 5.31 41 | 1.91 56 | 3.28 73 | 4.09 72 | 3.69 83 | 2.68 60 | 2.72 14 | 2.95 89 | 3.56 79 | 7.19 61 | 3.04 89 | 1.80 43 | 3.40 22 | 1.89 80 | 2.52 29 | 3.80 27 | 1.60 86 |
Horn & Schunck [3] | 58.3 | 1.95 69 | 3.08 59 | 1.78 66 | 3.94 82 | 4.99 75 | 2.37 74 | 4.00 74 | 6.86 71 | 2.68 76 | 3.53 77 | 4.32 74 | 3.28 49 | 2.71 75 | 2.90 61 | 2.73 44 | 2.75 26 | 5.82 25 | 2.37 13 | 1.93 65 | 3.96 44 | 1.77 63 | 2.59 46 | 3.83 30 | 1.49 61 |
NL-TV-NCC [25] | 58.7 | 1.84 54 | 3.01 51 | 1.65 30 | 2.94 43 | 4.56 52 | 1.72 38 | 2.94 50 | 5.90 62 | 1.93 60 | 3.13 62 | 4.05 70 | 3.37 73 | 2.70 72 | 2.76 23 | 2.93 88 | 3.31 66 | 7.44 67 | 2.54 60 | 1.97 69 | 4.81 67 | 1.86 76 | 2.65 57 | 3.92 37 | 1.56 81 |
TV-L1-improved [17] | 59.4 | 1.83 53 | 3.02 54 | 1.72 50 | 3.53 73 | 4.99 75 | 1.96 57 | 3.70 70 | 5.14 31 | 2.20 69 | 3.00 46 | 3.58 49 | 3.27 47 | 2.69 68 | 2.92 68 | 2.68 24 | 3.23 63 | 7.48 68 | 2.45 38 | 2.13 79 | 6.96 83 | 1.85 73 | 2.65 57 | 4.10 60 | 1.50 70 |
TI-DOFE [24] | 59.5 | 2.24 83 | 3.17 68 | 2.11 84 | 4.18 87 | 5.05 83 | 2.74 86 | 3.54 68 | 6.74 70 | 2.24 70 | 3.73 83 | 4.23 73 | 3.39 74 | 2.66 46 | 2.87 53 | 2.73 44 | 2.67 16 | 5.90 28 | 2.32 2 | 1.87 59 | 3.85 41 | 1.78 64 | 2.62 53 | 3.72 22 | 1.50 70 |
LocallyOriented [52] | 59.5 | 1.89 62 | 3.06 58 | 1.77 65 | 3.48 65 | 4.81 69 | 2.00 60 | 3.15 59 | 5.90 62 | 1.84 44 | 3.23 65 | 4.57 79 | 3.31 60 | 2.68 60 | 2.90 61 | 2.68 24 | 3.11 53 | 6.53 44 | 2.63 80 | 1.89 62 | 4.77 66 | 1.73 44 | 2.67 64 | 4.13 62 | 1.49 61 |
SimpleFlow [49] | 60.8 | 1.77 34 | 2.96 44 | 1.66 37 | 2.95 45 | 4.32 42 | 1.71 34 | 5.71 83 | 9.23 81 | 2.71 77 | 2.91 32 | 3.51 42 | 3.28 49 | 2.68 60 | 2.90 61 | 2.74 52 | 3.87 83 | 8.55 83 | 2.58 72 | 2.57 88 | 11.2 89 | 2.13 88 | 3.16 84 | 5.29 84 | 1.45 15 |
Direct ZNCC [66] | 62.8 | 1.72 14 | 2.98 47 | 1.61 12 | 3.18 51 | 4.76 66 | 1.71 34 | 2.91 46 | 5.55 47 | 1.89 50 | 3.07 56 | 4.50 77 | 3.33 67 | 2.72 76 | 2.96 75 | 2.80 78 | 4.11 86 | 9.37 88 | 2.65 82 | 2.14 80 | 7.42 86 | 1.86 76 | 2.84 77 | 4.63 80 | 1.48 56 |
Shiralkar [42] | 63.3 | 1.87 58 | 3.21 71 | 1.68 40 | 3.43 64 | 4.75 64 | 1.77 45 | 3.72 71 | 7.09 75 | 2.13 68 | 3.76 84 | 5.83 84 | 3.29 55 | 2.69 68 | 2.97 76 | 2.65 6 | 3.39 72 | 7.20 62 | 2.55 64 | 2.23 81 | 6.65 79 | 1.78 64 | 3.03 82 | 4.95 83 | 1.44 3 |
StereoFlow [44] | 66.0 | 2.57 87 | 4.24 88 | 2.04 82 | 3.60 76 | 4.80 68 | 2.29 72 | 2.96 53 | 6.64 69 | 1.80 41 | 3.07 56 | 3.85 63 | 3.26 45 | 3.86 88 | 4.99 88 | 2.79 73 | 4.10 85 | 9.86 89 | 2.59 73 | 1.74 14 | 3.61 34 | 1.72 20 | 2.90 79 | 4.55 79 | 1.49 61 |
Rannacher [23] | 66.1 | 1.85 56 | 3.08 59 | 1.76 60 | 3.59 75 | 5.09 87 | 1.89 53 | 3.88 73 | 5.70 55 | 2.51 75 | 3.05 53 | 3.95 67 | 3.31 60 | 2.70 72 | 2.94 73 | 2.68 24 | 3.28 64 | 7.66 77 | 2.47 48 | 2.10 78 | 6.54 78 | 1.85 73 | 2.79 74 | 4.52 78 | 1.51 75 |
SegOF [10] | 68.5 | 1.84 54 | 3.34 79 | 1.73 58 | 3.03 47 | 4.32 42 | 1.98 59 | 5.51 81 | 8.76 80 | 2.92 80 | 3.48 76 | 9.65 88 | 3.25 38 | 2.70 72 | 2.97 76 | 2.75 58 | 3.50 77 | 7.00 59 | 2.67 85 | 2.38 87 | 8.43 87 | 2.03 85 | 2.94 80 | 4.85 81 | 1.45 15 |
Learning Flow [11] | 72.3 | 1.93 65 | 3.13 66 | 1.76 60 | 3.41 62 | 4.86 72 | 1.94 56 | 6.37 88 | 12.1 89 | 3.16 82 | 3.54 78 | 4.38 76 | 3.49 80 | 2.90 84 | 3.21 83 | 2.90 87 | 3.20 61 | 6.69 50 | 2.54 60 | 2.01 72 | 4.70 64 | 1.85 73 | 2.81 76 | 4.19 66 | 1.57 85 |
Dynamic MRF [7] | 72.6 | 1.80 42 | 3.33 78 | 1.65 30 | 3.04 48 | 4.68 57 | 1.75 42 | 4.08 75 | 7.74 78 | 2.45 73 | 4.01 85 | 6.17 87 | 3.86 85 | 2.80 78 | 3.18 81 | 2.78 68 | 4.14 88 | 8.87 84 | 2.74 87 | 2.29 84 | 7.41 85 | 1.90 83 | 2.94 80 | 4.49 75 | 1.50 70 |
SPSA-learn [13] | 72.9 | 1.98 71 | 3.46 81 | 1.80 69 | 3.51 71 | 4.74 63 | 2.28 71 | 5.42 80 | 10.3 85 | 3.29 84 | 3.58 80 | 4.53 78 | 3.30 58 | 2.82 80 | 3.18 81 | 2.73 44 | 3.33 67 | 7.42 65 | 2.46 45 | 3.48 90 | 13.3 90 | 3.86 90 | 4.29 89 | 6.74 89 | 1.46 28 |
Adaptive flow [45] | 75.2 | 2.51 85 | 3.57 84 | 2.34 86 | 4.10 85 | 5.07 85 | 2.88 87 | 3.20 62 | 6.30 65 | 2.25 71 | 3.54 78 | 4.08 71 | 3.63 82 | 2.85 82 | 3.16 80 | 2.78 68 | 4.05 84 | 8.92 85 | 2.60 76 | 1.84 56 | 3.82 40 | 1.84 71 | 2.75 72 | 4.23 69 | 1.55 80 |
GroupFlow [9] | 76.8 | 2.23 82 | 4.26 89 | 1.89 76 | 3.20 54 | 4.49 46 | 2.21 68 | 6.25 87 | 10.6 87 | 4.16 88 | 3.63 82 | 5.92 85 | 3.56 81 | 3.12 87 | 3.87 87 | 2.86 82 | 4.20 89 | 9.27 87 | 2.66 83 | 2.28 83 | 7.36 84 | 1.76 59 | 3.43 87 | 5.62 86 | 1.44 3 |
SILK [87] | 76.9 | 2.14 80 | 3.28 76 | 2.00 81 | 4.08 84 | 5.01 77 | 2.63 85 | 6.23 86 | 9.75 83 | 3.32 85 | 3.62 81 | 4.37 75 | 3.48 79 | 2.81 79 | 3.14 79 | 2.78 68 | 3.33 67 | 7.78 80 | 2.85 88 | 1.93 65 | 4.86 69 | 1.87 78 | 2.72 69 | 4.13 62 | 1.50 70 |
FOLKI [16] | 77.5 | 2.67 88 | 3.60 85 | 2.67 89 | 4.14 86 | 5.06 84 | 2.92 88 | 4.29 77 | 9.31 82 | 3.16 82 | 4.76 88 | 5.27 82 | 4.33 88 | 2.91 85 | 3.25 84 | 2.87 84 | 2.97 42 | 5.89 27 | 2.61 78 | 2.23 81 | 5.69 72 | 2.06 87 | 2.74 71 | 3.99 42 | 1.61 88 |
PGAM+LK [55] | 78.2 | 2.54 86 | 3.85 87 | 2.37 87 | 3.49 68 | 4.59 53 | 2.58 83 | 5.38 79 | 10.4 86 | 3.34 86 | 4.52 86 | 5.29 83 | 4.11 87 | 2.84 81 | 3.09 78 | 2.87 84 | 3.66 81 | 7.21 63 | 2.73 86 | 1.96 68 | 4.38 56 | 1.89 80 | 2.78 73 | 4.19 66 | 1.63 89 |
SLK [47] | 80.6 | 2.17 81 | 3.38 80 | 2.06 83 | 3.74 78 | 4.55 50 | 2.59 84 | 6.05 85 | 8.14 79 | 3.70 87 | 4.66 87 | 6.07 86 | 3.86 85 | 3.09 86 | 3.67 86 | 2.83 80 | 3.42 75 | 7.28 64 | 2.66 83 | 2.35 85 | 6.75 80 | 2.03 85 | 3.15 83 | 4.91 82 | 1.56 81 |
Pyramid LK [2] | 83.8 | 2.69 89 | 3.63 86 | 2.65 88 | 4.52 89 | 5.19 88 | 3.28 89 | 9.47 89 | 7.52 76 | 6.37 89 | 10.2 90 | 17.4 89 | 10.8 90 | 4.45 90 | 6.09 90 | 2.86 82 | 3.13 54 | 6.71 52 | 2.59 73 | 2.36 86 | 6.88 81 | 2.02 84 | 4.64 90 | 7.19 90 | 1.60 86 |
Periodicity [86] | 89.5 | 3.05 90 | 6.22 90 | 2.83 90 | 5.00 90 | 5.35 89 | 3.62 90 | 11.4 90 | 14.2 90 | 10.8 90 | 9.29 89 | 17.8 90 | 6.38 89 | 4.38 89 | 5.73 89 | 3.29 90 | 4.39 90 | 10.6 90 | 3.11 90 | 2.85 89 | 11.0 88 | 2.34 89 | 4.04 88 | 6.02 88 | 2.26 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |