Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R2.0 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 6.9 | 0.45 2 | 1.84 1 | 0.30 4 | 1.24 8 | 3.23 8 | 0.38 1 | 1.57 2 | 3.09 4 | 0.48 2 | 3.54 2 | 3.96 4 | 7.46 7 | 2.68 1 | 2.62 3 | 4.24 14 | 2.61 20 | 5.64 20 | 2.47 22 | 0.59 2 | 2.33 5 | 0.49 9 | 1.40 8 | 3.51 10 | 0.19 6 |
ComplexFlow [81] | 10.5 | 0.44 1 | 1.93 2 | 0.28 1 | 1.02 1 | 2.54 2 | 0.40 3 | 1.56 1 | 2.97 2 | 0.47 1 | 3.79 26 | 4.58 41 | 7.48 8 | 2.69 3 | 2.61 2 | 4.16 6 | 2.81 33 | 6.47 37 | 2.56 35 | 0.61 5 | 2.42 7 | 0.52 27 | 1.36 2 | 3.42 4 | 0.17 1 |
NN-field [73] | 11.5 | 0.49 4 | 2.19 8 | 0.31 5 | 1.06 2 | 2.64 4 | 0.38 1 | 1.84 31 | 3.00 3 | 0.53 6 | 3.92 37 | 5.00 56 | 7.52 13 | 2.68 1 | 2.60 1 | 4.18 7 | 2.64 25 | 5.76 24 | 2.46 18 | 0.59 2 | 2.30 4 | 0.51 18 | 1.36 2 | 3.41 2 | 0.17 1 |
Layers++ [37] | 13.7 | 0.58 15 | 2.27 12 | 0.40 31 | 1.06 2 | 2.51 1 | 0.42 7 | 1.68 6 | 3.47 7 | 0.61 18 | 3.59 7 | 4.04 10 | 7.44 6 | 2.94 21 | 3.06 26 | 4.28 17 | 2.87 37 | 6.80 46 | 2.51 28 | 0.58 1 | 2.21 1 | 0.44 1 | 1.37 4 | 3.41 2 | 0.21 23 |
IROF++ [58] | 14.6 | 0.53 12 | 2.21 9 | 0.33 11 | 1.42 15 | 3.64 14 | 0.44 11 | 1.81 24 | 3.57 11 | 0.67 28 | 3.56 3 | 3.85 2 | 7.56 17 | 2.77 5 | 2.85 6 | 4.11 4 | 2.47 5 | 5.30 10 | 2.36 9 | 0.69 24 | 2.86 26 | 0.51 18 | 1.52 22 | 3.81 22 | 0.24 42 |
nLayers [57] | 16.2 | 0.55 13 | 2.17 7 | 0.37 18 | 1.23 7 | 3.14 7 | 0.41 5 | 1.62 3 | 2.92 1 | 0.51 5 | 3.60 8 | 4.00 7 | 7.49 10 | 2.99 34 | 3.10 32 | 4.42 44 | 2.85 35 | 6.56 39 | 2.66 45 | 0.62 7 | 2.28 2 | 0.55 46 | 1.37 4 | 3.43 5 | 0.19 6 |
COFM [59] | 17.2 | 0.59 17 | 2.35 16 | 0.41 34 | 1.38 12 | 3.49 9 | 0.45 13 | 1.66 4 | 3.36 6 | 0.61 18 | 3.57 5 | 3.96 4 | 7.39 3 | 2.78 6 | 2.85 6 | 4.06 2 | 2.90 40 | 7.73 73 | 2.39 11 | 0.65 12 | 2.60 12 | 0.58 52 | 1.44 13 | 3.61 14 | 0.22 30 |
TV-L1-MCT [64] | 19.5 | 0.65 32 | 2.58 24 | 0.38 21 | 1.74 30 | 4.52 30 | 0.53 24 | 1.77 17 | 3.83 31 | 0.62 21 | 3.63 10 | 4.04 10 | 7.48 8 | 2.96 29 | 3.12 36 | 4.20 10 | 2.55 12 | 5.40 12 | 2.47 22 | 0.65 12 | 2.68 15 | 0.51 18 | 1.39 7 | 3.48 7 | 0.22 30 |
LME [72] | 22.1 | 0.48 3 | 1.98 3 | 0.32 6 | 1.46 17 | 3.68 16 | 0.70 45 | 1.77 17 | 4.14 37 | 0.57 9 | 3.64 12 | 4.24 18 | 7.62 26 | 3.14 66 | 3.32 64 | 4.87 78 | 2.66 27 | 6.03 27 | 2.46 18 | 0.59 2 | 2.28 2 | 0.48 4 | 1.44 13 | 3.62 16 | 0.18 4 |
Sparse-NonSparse [56] | 22.7 | 0.58 15 | 2.36 17 | 0.37 18 | 1.41 14 | 3.60 11 | 0.46 14 | 1.75 15 | 3.62 18 | 0.58 12 | 3.72 16 | 4.16 14 | 7.61 23 | 2.91 16 | 2.99 16 | 4.29 18 | 2.96 47 | 6.88 48 | 2.65 41 | 0.74 41 | 3.05 41 | 0.50 14 | 1.62 35 | 4.02 34 | 0.19 6 |
ADF [67] | 22.7 | 0.49 4 | 2.02 4 | 0.34 14 | 1.62 26 | 4.34 26 | 0.57 30 | 1.69 8 | 3.57 11 | 0.60 14 | 3.56 3 | 3.89 3 | 7.51 11 | 2.98 32 | 3.11 35 | 4.42 44 | 2.60 17 | 6.06 28 | 2.31 5 | 0.72 35 | 2.95 36 | 0.57 49 | 1.66 45 | 4.17 51 | 0.20 14 |
Epistemic [84] | 23.6 | 0.52 10 | 2.30 13 | 0.33 11 | 1.31 9 | 3.50 10 | 0.42 7 | 1.77 17 | 3.60 14 | 0.63 23 | 3.58 6 | 4.06 12 | 7.39 3 | 2.99 34 | 3.06 26 | 4.31 21 | 2.63 22 | 5.74 23 | 2.50 27 | 0.81 58 | 3.51 60 | 0.60 53 | 1.66 45 | 4.15 48 | 0.20 14 |
Levin3 [90] | 25.0 | 0.65 32 | 2.55 23 | 0.38 21 | 1.55 22 | 3.87 22 | 0.52 22 | 1.74 13 | 3.63 19 | 0.58 12 | 3.70 14 | 3.97 6 | 7.82 48 | 2.85 8 | 2.90 10 | 4.23 12 | 2.96 47 | 6.89 49 | 2.65 41 | 0.76 45 | 3.16 46 | 0.53 32 | 1.56 26 | 3.88 25 | 0.19 6 |
DPOF [18] | 25.6 | 0.71 45 | 3.29 70 | 0.45 39 | 1.14 6 | 2.90 6 | 0.41 5 | 2.18 60 | 3.65 22 | 0.92 58 | 3.83 33 | 4.56 40 | 7.74 43 | 2.79 7 | 2.85 6 | 4.19 8 | 2.60 17 | 5.78 25 | 2.31 5 | 0.66 15 | 2.56 11 | 0.52 27 | 1.52 22 | 3.81 22 | 0.21 23 |
Aniso. Huber-L1 [22] | 26.5 | 0.73 49 | 2.79 38 | 0.53 52 | 2.74 57 | 5.84 52 | 0.78 49 | 1.92 36 | 3.61 15 | 0.73 36 | 3.80 28 | 4.31 23 | 7.66 32 | 2.87 10 | 2.93 12 | 4.31 21 | 2.40 3 | 5.24 7 | 2.28 3 | 0.64 10 | 2.52 10 | 0.49 9 | 1.45 16 | 3.61 14 | 0.26 55 |
SCR [74] | 27.1 | 0.62 26 | 2.32 14 | 0.38 21 | 1.45 16 | 3.68 16 | 0.48 17 | 1.75 15 | 3.64 20 | 0.60 14 | 3.73 17 | 4.11 13 | 7.64 27 | 2.99 34 | 3.12 36 | 4.37 33 | 2.92 43 | 7.00 54 | 2.54 32 | 0.77 48 | 3.22 51 | 0.54 44 | 1.59 28 | 3.98 31 | 0.17 1 |
MDP-Flow [26] | 27.5 | 0.52 10 | 2.40 19 | 0.32 6 | 1.34 10 | 3.60 11 | 0.46 14 | 1.68 6 | 3.30 5 | 0.61 18 | 4.10 47 | 4.91 51 | 7.80 47 | 2.88 11 | 2.93 12 | 4.46 53 | 3.32 72 | 8.61 81 | 2.83 63 | 0.66 15 | 2.68 15 | 0.56 47 | 1.51 21 | 3.80 21 | 0.19 6 |
PMF [76] | 27.9 | 0.49 4 | 2.14 6 | 0.32 6 | 1.39 13 | 3.66 15 | 0.42 7 | 1.94 37 | 4.81 57 | 0.71 32 | 3.69 13 | 4.21 17 | 7.64 27 | 3.01 43 | 3.12 36 | 4.27 16 | 2.93 46 | 5.59 18 | 3.04 74 | 0.68 21 | 2.81 23 | 0.53 32 | 1.68 51 | 4.22 52 | 0.21 23 |
LSM [39] | 27.9 | 0.61 23 | 2.46 20 | 0.38 21 | 1.46 17 | 3.69 18 | 0.48 17 | 1.79 21 | 3.86 33 | 0.60 14 | 3.75 19 | 4.19 15 | 7.64 27 | 2.96 29 | 3.08 30 | 4.34 28 | 2.97 50 | 7.04 56 | 2.62 39 | 0.75 42 | 3.08 43 | 0.51 18 | 1.63 41 | 4.07 43 | 0.19 6 |
Ramp [62] | 27.9 | 0.64 29 | 2.59 25 | 0.41 34 | 1.48 19 | 3.80 19 | 0.53 24 | 1.72 12 | 3.61 15 | 0.54 7 | 3.62 9 | 4.02 8 | 7.52 13 | 2.93 19 | 3.02 22 | 4.36 30 | 3.18 63 | 7.72 72 | 2.79 60 | 0.73 37 | 2.96 37 | 0.48 4 | 1.67 50 | 4.15 48 | 0.20 14 |
FC-2Layers-FF [77] | 28.8 | 0.60 20 | 2.53 21 | 0.37 18 | 1.07 4 | 2.58 3 | 0.46 14 | 1.67 5 | 3.59 13 | 0.56 8 | 3.63 10 | 4.03 9 | 7.58 18 | 3.00 38 | 3.15 44 | 4.44 48 | 3.19 65 | 7.90 75 | 2.78 59 | 0.79 53 | 3.22 51 | 0.52 27 | 1.60 29 | 3.94 30 | 0.22 30 |
Deep-Matching [85] | 29.3 | 0.70 42 | 2.68 34 | 0.47 43 | 2.15 38 | 5.10 41 | 1.00 60 | 1.83 28 | 4.50 48 | 0.66 27 | 4.04 44 | 4.41 29 | 7.73 40 | 2.95 25 | 2.99 16 | 4.56 66 | 2.52 8 | 4.36 1 | 2.76 54 | 0.62 7 | 2.48 9 | 0.48 4 | 1.40 8 | 3.49 8 | 0.21 23 |
SuperFlow [89] | 29.6 | 0.68 37 | 2.69 35 | 0.55 54 | 2.21 45 | 5.06 38 | 1.12 64 | 1.95 39 | 4.06 34 | 0.75 39 | 4.01 41 | 4.39 27 | 7.85 51 | 2.89 12 | 2.90 10 | 4.51 61 | 2.22 1 | 4.39 2 | 2.27 2 | 0.69 24 | 2.88 29 | 0.53 32 | 1.37 4 | 3.44 6 | 0.21 23 |
OFLADF [82] | 29.8 | 0.49 4 | 2.06 5 | 0.32 6 | 1.11 5 | 2.84 5 | 0.40 3 | 1.69 8 | 3.49 8 | 0.48 2 | 3.50 1 | 3.84 1 | 7.28 2 | 3.00 38 | 3.12 36 | 4.49 57 | 3.14 62 | 8.10 78 | 2.67 48 | 1.02 73 | 4.49 74 | 0.64 62 | 1.71 52 | 4.23 54 | 0.22 30 |
Classic+NL [31] | 29.9 | 0.70 42 | 2.67 32 | 0.48 46 | 1.54 21 | 3.84 20 | 0.52 22 | 1.71 11 | 3.71 26 | 0.57 9 | 3.74 18 | 4.29 21 | 7.72 38 | 2.94 21 | 3.03 24 | 4.38 36 | 3.03 55 | 7.04 56 | 2.71 50 | 0.73 37 | 2.99 39 | 0.50 14 | 1.62 35 | 4.04 38 | 0.19 6 |
FastOF [78] | 30.1 | 0.79 57 | 2.75 37 | 0.52 50 | 2.52 53 | 5.44 44 | 1.24 67 | 2.06 51 | 5.33 72 | 0.81 45 | 3.93 38 | 4.41 29 | 7.22 1 | 2.89 12 | 2.99 16 | 4.41 43 | 2.30 2 | 4.48 3 | 2.41 12 | 0.65 12 | 2.61 13 | 0.51 18 | 1.43 12 | 3.57 12 | 0.21 23 |
ALD-Flow [68] | 30.1 | 0.71 45 | 2.79 38 | 0.48 46 | 1.77 31 | 4.67 35 | 0.62 34 | 1.83 28 | 4.35 44 | 0.60 14 | 3.76 22 | 4.38 26 | 7.90 54 | 2.95 25 | 3.02 22 | 4.55 65 | 2.55 12 | 4.75 4 | 2.68 49 | 0.62 7 | 2.42 7 | 0.49 9 | 1.66 45 | 4.14 47 | 0.20 14 |
Brox et al. [5] | 30.7 | 0.69 39 | 2.80 41 | 0.40 31 | 1.91 35 | 4.80 36 | 0.65 38 | 2.01 46 | 4.92 62 | 0.76 40 | 3.86 36 | 4.19 15 | 7.60 22 | 2.94 21 | 2.99 16 | 4.44 48 | 2.72 31 | 6.17 32 | 2.48 24 | 0.72 35 | 3.02 40 | 0.51 18 | 1.40 8 | 3.49 8 | 0.20 14 |
EP-PM [83] | 31.1 | 0.50 8 | 2.26 11 | 0.29 2 | 1.55 22 | 4.22 24 | 0.44 11 | 2.24 64 | 5.31 70 | 0.90 54 | 3.77 24 | 4.54 39 | 7.51 11 | 2.85 8 | 2.89 9 | 4.32 26 | 2.79 32 | 6.25 34 | 2.57 36 | 0.77 48 | 3.34 57 | 0.63 59 | 1.61 32 | 4.03 36 | 0.22 30 |
Second-order prior [8] | 31.6 | 0.73 49 | 2.73 36 | 0.55 54 | 2.51 52 | 5.74 50 | 0.66 41 | 2.31 66 | 5.29 68 | 0.94 61 | 3.80 28 | 4.39 27 | 7.41 5 | 2.90 15 | 3.00 20 | 4.31 21 | 2.49 7 | 5.42 13 | 2.45 16 | 0.66 15 | 2.68 15 | 0.48 4 | 1.57 27 | 3.90 27 | 0.24 42 |
FESL [75] | 32.3 | 0.64 29 | 2.38 18 | 0.39 25 | 1.48 19 | 3.86 21 | 0.48 17 | 1.81 24 | 3.73 27 | 0.72 33 | 3.76 22 | 4.25 19 | 7.61 23 | 3.03 50 | 3.15 44 | 4.46 53 | 3.10 58 | 7.65 70 | 2.72 51 | 0.71 32 | 2.96 37 | 0.47 3 | 1.62 35 | 4.03 36 | 0.22 30 |
Efficient-NL [60] | 32.5 | 0.57 14 | 2.25 10 | 0.35 16 | 1.78 33 | 4.51 29 | 0.53 24 | 2.29 65 | 3.78 29 | 1.08 67 | 3.75 19 | 4.25 19 | 7.53 15 | 2.89 12 | 2.98 15 | 4.30 19 | 2.92 43 | 7.43 63 | 2.46 18 | 0.77 48 | 3.18 47 | 0.53 32 | 1.81 67 | 4.38 63 | 0.20 14 |
SIOF [69] | 32.8 | 0.82 61 | 2.94 52 | 0.57 58 | 2.85 62 | 6.23 67 | 1.15 66 | 1.83 28 | 4.11 36 | 0.72 33 | 3.84 34 | 4.51 35 | 7.59 19 | 2.74 4 | 2.74 4 | 4.22 11 | 2.52 8 | 5.33 11 | 2.49 26 | 0.66 15 | 2.68 15 | 0.53 32 | 1.62 35 | 4.02 34 | 0.24 42 |
IROF-TV [53] | 33.5 | 0.69 39 | 2.91 49 | 0.46 42 | 1.58 24 | 3.95 23 | 0.49 20 | 1.90 33 | 4.86 59 | 0.69 29 | 3.71 15 | 4.34 24 | 7.82 48 | 3.07 55 | 3.19 51 | 4.66 74 | 2.63 22 | 6.35 36 | 2.31 5 | 0.68 21 | 2.81 23 | 0.52 27 | 1.46 17 | 3.64 18 | 0.25 51 |
CLG-TV [48] | 33.6 | 0.70 42 | 2.82 43 | 0.52 50 | 2.57 55 | 5.88 54 | 0.76 48 | 2.02 48 | 4.55 51 | 0.92 58 | 3.94 39 | 4.49 32 | 7.82 48 | 2.94 21 | 3.01 21 | 4.35 29 | 2.43 4 | 4.87 5 | 2.46 18 | 0.64 10 | 2.62 14 | 0.50 14 | 1.55 24 | 3.84 24 | 0.26 55 |
TC/T-Flow [80] | 34.6 | 0.71 45 | 2.62 28 | 0.40 31 | 1.77 31 | 4.61 34 | 0.54 27 | 1.74 13 | 3.65 22 | 0.57 9 | 3.78 25 | 4.37 25 | 7.73 40 | 3.04 53 | 3.18 49 | 4.54 64 | 2.61 20 | 5.54 16 | 2.51 28 | 0.97 70 | 3.95 67 | 0.63 59 | 1.61 32 | 4.04 38 | 0.18 4 |
p-harmonic [29] | 36.2 | 0.60 20 | 2.63 29 | 0.39 25 | 2.63 56 | 5.89 55 | 0.82 51 | 1.98 43 | 4.94 63 | 0.89 50 | 4.13 52 | 4.86 49 | 7.68 36 | 2.95 25 | 3.06 26 | 4.38 36 | 2.58 15 | 5.68 22 | 2.52 30 | 0.70 28 | 2.92 33 | 0.54 44 | 1.49 20 | 3.74 20 | 0.24 42 |
CBF [12] | 36.5 | 0.60 20 | 2.64 31 | 0.45 39 | 2.17 41 | 5.10 41 | 0.75 47 | 1.91 35 | 3.73 27 | 0.72 33 | 4.20 58 | 4.50 34 | 9.33 77 | 2.92 17 | 2.84 5 | 5.05 80 | 2.57 14 | 5.58 17 | 2.53 31 | 0.71 32 | 2.87 27 | 0.60 53 | 1.48 19 | 3.66 19 | 0.32 80 |
CostFilter [40] | 38.1 | 0.51 9 | 2.34 15 | 0.29 2 | 1.37 11 | 3.61 13 | 0.43 10 | 2.06 51 | 5.38 73 | 0.74 38 | 3.79 26 | 4.49 32 | 7.55 16 | 3.12 62 | 3.29 62 | 4.43 47 | 3.28 70 | 5.79 26 | 3.61 85 | 0.73 37 | 3.10 44 | 0.53 32 | 1.78 63 | 4.48 68 | 0.21 23 |
TCOF [71] | 38.2 | 0.64 29 | 2.61 27 | 0.39 25 | 2.92 63 | 6.38 69 | 0.86 53 | 1.69 8 | 3.65 22 | 0.50 4 | 3.82 32 | 4.51 35 | 7.88 53 | 2.97 31 | 3.09 31 | 4.26 15 | 2.91 41 | 7.16 59 | 2.48 24 | 0.79 53 | 3.39 59 | 0.49 9 | 1.76 60 | 4.40 64 | 0.25 51 |
ComplOF-FED-GPU [35] | 39.0 | 0.65 32 | 2.82 43 | 0.39 25 | 1.69 28 | 4.52 30 | 0.57 30 | 2.33 67 | 4.35 44 | 0.98 64 | 3.80 28 | 4.69 43 | 7.75 45 | 2.95 25 | 3.07 29 | 4.37 33 | 2.70 30 | 6.17 32 | 2.54 32 | 0.76 45 | 3.06 42 | 0.53 32 | 1.74 57 | 4.31 59 | 0.24 42 |
LDOF [28] | 39.5 | 0.90 67 | 2.91 49 | 0.69 71 | 2.17 41 | 4.58 33 | 1.40 71 | 2.14 57 | 5.04 65 | 0.91 56 | 4.10 47 | 5.00 56 | 7.97 56 | 2.92 17 | 2.95 14 | 4.44 48 | 2.48 6 | 5.10 6 | 2.42 13 | 0.70 28 | 2.93 35 | 0.53 32 | 1.55 24 | 3.88 25 | 0.22 30 |
Sparse Occlusion [54] | 40.4 | 0.66 35 | 2.83 47 | 0.45 39 | 2.18 43 | 5.57 48 | 0.59 32 | 1.78 20 | 3.53 10 | 0.73 36 | 3.84 34 | 4.52 37 | 7.65 31 | 3.04 53 | 3.18 49 | 4.42 44 | 3.06 56 | 7.39 62 | 2.73 52 | 0.76 45 | 3.21 50 | 0.45 2 | 1.66 45 | 4.15 48 | 0.25 51 |
TC-Flow [46] | 40.7 | 0.59 17 | 2.60 26 | 0.39 25 | 1.83 34 | 4.90 37 | 0.61 33 | 1.95 39 | 4.37 46 | 0.62 21 | 4.11 49 | 5.04 59 | 8.05 61 | 3.07 55 | 3.22 54 | 4.50 60 | 2.96 47 | 6.72 43 | 2.82 62 | 0.67 19 | 2.70 19 | 0.51 18 | 1.71 52 | 4.30 58 | 0.24 42 |
Fusion [6] | 46.0 | 0.68 37 | 3.27 68 | 0.39 25 | 1.67 27 | 4.22 24 | 0.54 27 | 1.82 26 | 3.68 25 | 0.78 41 | 4.24 60 | 5.23 68 | 7.66 32 | 3.07 55 | 3.44 76 | 4.14 5 | 2.99 52 | 8.18 79 | 2.44 15 | 0.84 60 | 3.75 63 | 0.56 47 | 1.78 63 | 4.46 67 | 0.27 61 |
IAOF [50] | 47.0 | 1.07 77 | 3.34 74 | 0.69 71 | 4.58 87 | 7.97 89 | 1.63 76 | 2.16 59 | 4.59 54 | 0.87 48 | 4.35 61 | 4.52 37 | 7.69 37 | 2.98 32 | 3.12 36 | 4.38 36 | 2.68 28 | 6.31 35 | 2.43 14 | 0.69 24 | 2.92 33 | 0.51 18 | 1.60 29 | 3.99 32 | 0.24 42 |
Modified CLG [34] | 47.3 | 0.63 27 | 2.53 21 | 0.49 48 | 3.29 74 | 6.18 65 | 1.69 77 | 2.21 61 | 6.06 77 | 0.96 63 | 4.13 52 | 5.03 58 | 7.73 40 | 3.02 47 | 3.13 42 | 4.44 48 | 2.86 36 | 6.65 41 | 2.66 45 | 0.69 24 | 2.88 29 | 0.53 32 | 1.61 32 | 3.99 32 | 0.28 65 |
Local-TV-L1 [65] | 47.7 | 0.98 73 | 3.10 61 | 0.80 78 | 3.02 70 | 5.97 60 | 1.46 72 | 1.82 26 | 3.79 30 | 0.63 23 | 4.45 65 | 4.74 45 | 9.64 81 | 3.00 38 | 3.10 32 | 4.60 70 | 3.42 78 | 5.46 15 | 3.82 86 | 0.67 19 | 2.78 22 | 0.51 18 | 1.41 11 | 3.51 10 | 0.27 61 |
F-TV-L1 [15] | 48.4 | 0.94 70 | 3.18 64 | 0.74 74 | 2.81 61 | 6.05 63 | 0.96 58 | 2.11 56 | 4.90 61 | 1.02 66 | 4.12 51 | 4.96 54 | 8.14 64 | 3.01 43 | 3.26 58 | 4.09 3 | 2.63 22 | 5.42 13 | 2.65 41 | 0.79 53 | 3.30 54 | 0.61 55 | 1.44 13 | 3.59 13 | 0.25 51 |
OFH [38] | 48.9 | 0.72 48 | 2.82 43 | 0.47 43 | 2.15 38 | 5.09 40 | 0.65 38 | 2.09 54 | 5.22 67 | 0.70 30 | 3.81 31 | 4.73 44 | 7.66 32 | 3.02 47 | 3.19 51 | 4.31 21 | 2.92 43 | 6.97 53 | 2.74 53 | 1.05 75 | 4.43 73 | 0.64 62 | 1.88 74 | 4.71 75 | 0.23 38 |
Occlusion-TV-L1 [63] | 49.1 | 0.69 39 | 2.82 43 | 0.57 58 | 2.80 60 | 6.49 71 | 0.82 51 | 1.94 37 | 4.87 60 | 0.85 46 | 4.36 62 | 5.61 72 | 8.07 63 | 2.93 19 | 3.03 24 | 4.36 30 | 3.02 54 | 6.74 44 | 2.91 68 | 0.90 64 | 2.91 31 | 0.79 78 | 1.66 45 | 4.12 46 | 0.20 14 |
Classic++ [32] | 49.5 | 0.73 49 | 2.95 53 | 0.54 53 | 2.23 46 | 5.44 44 | 0.69 42 | 2.00 45 | 4.52 50 | 0.78 41 | 4.21 59 | 5.06 61 | 7.97 56 | 3.02 47 | 3.14 43 | 4.39 40 | 3.20 66 | 6.95 52 | 3.15 79 | 0.75 42 | 3.14 45 | 0.53 32 | 1.65 43 | 4.09 44 | 0.26 55 |
Complementary OF [21] | 50.4 | 0.63 27 | 3.05 57 | 0.33 11 | 1.69 28 | 4.57 32 | 0.55 29 | 2.83 78 | 4.32 43 | 1.35 74 | 3.96 40 | 4.94 53 | 7.85 51 | 3.09 59 | 3.32 64 | 4.31 21 | 2.88 38 | 6.87 47 | 2.66 45 | 1.04 74 | 4.35 71 | 0.61 55 | 2.26 85 | 5.68 86 | 0.24 42 |
CRTflow [88] | 50.6 | 0.85 63 | 3.17 63 | 0.63 66 | 2.56 54 | 5.92 56 | 0.80 50 | 2.15 58 | 5.29 68 | 1.01 65 | 4.07 45 | 4.64 42 | 8.61 74 | 3.09 59 | 3.24 55 | 4.53 62 | 2.60 17 | 5.29 8 | 2.65 41 | 0.75 42 | 3.20 49 | 0.57 49 | 1.62 35 | 4.04 38 | 0.26 55 |
GraphCuts [14] | 52.3 | 1.07 77 | 3.93 82 | 0.60 62 | 1.97 36 | 4.46 28 | 1.07 63 | 3.51 84 | 3.64 20 | 1.45 79 | 4.47 66 | 5.20 67 | 8.18 65 | 2.99 34 | 3.12 36 | 4.19 8 | 2.59 16 | 6.58 40 | 2.16 1 | 0.89 63 | 3.92 66 | 0.70 70 | 1.77 62 | 4.41 65 | 0.28 65 |
BlockOverlap [61] | 52.4 | 0.96 71 | 3.02 55 | 0.85 79 | 2.94 65 | 5.79 51 | 1.60 75 | 1.90 33 | 3.50 9 | 0.90 54 | 4.65 71 | 4.80 47 | 10.2 83 | 3.22 70 | 3.16 47 | 5.42 85 | 3.34 73 | 6.09 30 | 3.55 84 | 0.70 28 | 2.73 21 | 0.63 59 | 1.34 1 | 3.33 1 | 0.28 65 |
Adaptive [20] | 53.3 | 0.80 58 | 3.21 67 | 0.60 62 | 2.98 67 | 6.54 76 | 0.92 55 | 2.03 49 | 4.56 52 | 0.89 50 | 4.03 43 | 4.79 46 | 7.91 55 | 3.09 59 | 3.26 58 | 4.37 33 | 2.99 52 | 6.78 45 | 2.80 61 | 0.79 53 | 3.38 58 | 0.49 9 | 1.72 54 | 4.27 56 | 0.27 61 |
SimpleFlow [49] | 53.5 | 0.67 36 | 2.79 38 | 0.42 36 | 2.16 40 | 5.07 39 | 0.63 35 | 2.79 75 | 4.51 49 | 1.32 73 | 3.75 19 | 4.29 21 | 7.74 43 | 3.01 43 | 3.15 44 | 4.39 40 | 3.36 77 | 8.79 83 | 2.77 57 | 1.46 88 | 7.29 88 | 1.11 88 | 2.11 83 | 5.29 83 | 0.19 6 |
2D-CLG [1] | 54.3 | 0.81 59 | 2.89 48 | 0.59 60 | 3.59 76 | 6.36 68 | 1.88 82 | 2.65 72 | 5.32 71 | 1.30 70 | 4.54 69 | 5.09 63 | 7.59 19 | 3.00 38 | 3.10 32 | 4.44 48 | 2.84 34 | 6.94 50 | 2.64 40 | 0.94 67 | 4.26 70 | 0.62 58 | 1.65 43 | 3.93 29 | 0.23 38 |
Black & Anandan [4] | 54.5 | 1.02 76 | 3.18 64 | 0.73 73 | 3.65 78 | 6.67 78 | 1.36 69 | 2.81 76 | 5.56 75 | 1.38 78 | 4.43 64 | 5.07 62 | 7.61 23 | 3.13 63 | 3.30 63 | 4.57 67 | 2.54 11 | 5.63 19 | 2.38 10 | 0.78 51 | 3.24 53 | 0.53 32 | 1.60 29 | 3.92 28 | 0.28 65 |
Correlation Flow [79] | 54.6 | 0.61 23 | 2.63 29 | 0.34 14 | 2.48 51 | 6.02 62 | 0.64 36 | 1.79 21 | 3.61 15 | 0.64 26 | 4.01 41 | 4.43 31 | 8.36 70 | 3.33 76 | 3.34 67 | 5.77 87 | 3.76 82 | 9.14 84 | 2.99 72 | 1.07 76 | 4.88 76 | 0.77 74 | 1.87 72 | 4.62 71 | 0.26 55 |
IAOF2 [51] | 55.0 | 0.99 74 | 3.48 76 | 0.65 69 | 3.05 72 | 6.85 79 | 1.13 65 | 1.88 32 | 4.31 42 | 0.70 30 | 4.39 63 | 5.13 65 | 8.06 62 | 3.44 79 | 3.87 81 | 4.49 57 | 3.10 58 | 7.70 71 | 2.57 36 | 0.70 28 | 2.87 27 | 0.50 14 | 1.72 54 | 4.27 56 | 0.22 30 |
Nguyen [33] | 55.3 | 1.00 75 | 3.06 59 | 0.79 76 | 4.07 83 | 6.92 81 | 1.78 80 | 2.22 62 | 6.36 79 | 0.95 62 | 4.71 73 | 5.33 71 | 7.72 38 | 3.01 43 | 3.19 51 | 4.30 19 | 2.68 28 | 6.52 38 | 2.35 8 | 0.99 71 | 4.61 75 | 0.68 68 | 1.62 35 | 4.04 38 | 0.20 14 |
HBpMotionGpu [43] | 55.3 | 1.20 79 | 3.99 83 | 0.94 80 | 3.63 77 | 7.12 83 | 1.71 79 | 1.79 21 | 3.83 31 | 0.63 23 | 4.63 70 | 5.92 78 | 8.41 72 | 3.03 50 | 3.24 55 | 4.46 53 | 3.10 58 | 7.03 55 | 2.87 66 | 0.61 5 | 2.39 6 | 0.48 4 | 1.79 65 | 4.37 61 | 0.29 73 |
ACK-Prior [27] | 55.6 | 0.59 17 | 2.67 32 | 0.32 6 | 1.61 25 | 4.38 27 | 0.50 21 | 2.71 74 | 4.06 34 | 1.37 75 | 4.11 49 | 4.89 50 | 8.03 60 | 3.30 75 | 3.36 73 | 5.18 83 | 3.48 79 | 7.75 74 | 3.17 81 | 0.82 59 | 3.30 54 | 0.67 67 | 1.86 71 | 4.62 71 | 0.30 77 |
Ad-TV-NDC [36] | 56.2 | 1.54 84 | 3.33 73 | 1.43 85 | 3.73 79 | 6.52 73 | 1.78 80 | 1.96 42 | 4.57 53 | 0.85 46 | 4.78 76 | 4.93 52 | 8.94 75 | 3.25 72 | 3.34 67 | 4.64 72 | 2.91 41 | 5.29 8 | 3.06 75 | 0.71 32 | 2.91 31 | 0.52 27 | 1.46 17 | 3.62 16 | 0.29 73 |
TriangleFlow [30] | 56.5 | 0.84 62 | 3.27 68 | 0.56 57 | 2.34 48 | 5.47 46 | 0.69 42 | 2.05 50 | 4.27 41 | 0.88 49 | 4.19 57 | 5.13 65 | 8.28 69 | 3.00 38 | 3.17 48 | 4.23 12 | 3.06 56 | 7.45 64 | 2.61 38 | 1.09 77 | 5.06 77 | 0.84 82 | 2.27 86 | 5.56 85 | 0.23 38 |
Filter Flow [19] | 59.7 | 0.88 65 | 2.99 54 | 0.67 70 | 3.21 73 | 6.22 66 | 1.70 78 | 2.06 51 | 4.41 47 | 0.89 50 | 4.69 72 | 4.81 48 | 8.97 76 | 3.15 67 | 3.24 55 | 4.94 79 | 2.88 38 | 6.13 31 | 2.77 57 | 0.79 53 | 3.33 56 | 0.61 55 | 1.72 54 | 4.23 54 | 0.35 83 |
TV-L1-improved [17] | 61.0 | 0.74 53 | 3.05 57 | 0.55 54 | 2.97 66 | 6.52 73 | 0.95 57 | 2.45 69 | 4.22 39 | 1.18 69 | 4.09 46 | 4.99 55 | 8.00 59 | 3.16 68 | 3.34 67 | 4.38 36 | 3.12 61 | 7.30 61 | 2.76 54 | 1.12 79 | 5.32 81 | 0.78 77 | 1.74 57 | 4.32 60 | 0.28 65 |
Shiralkar [42] | 61.1 | 0.81 59 | 3.32 72 | 0.47 43 | 2.78 58 | 5.92 56 | 0.74 46 | 2.56 70 | 6.86 81 | 1.11 68 | 4.89 78 | 6.32 81 | 7.64 27 | 3.03 50 | 3.34 67 | 4.00 1 | 3.22 67 | 7.57 68 | 2.91 68 | 1.21 81 | 5.44 82 | 0.70 70 | 2.03 79 | 5.06 81 | 0.20 14 |
LocallyOriented [52] | 61.3 | 0.85 63 | 3.04 56 | 0.64 67 | 3.00 68 | 6.41 70 | 1.01 61 | 2.23 63 | 4.84 58 | 0.80 44 | 4.47 66 | 5.61 72 | 8.25 67 | 3.07 55 | 3.26 58 | 4.32 26 | 3.55 80 | 7.16 59 | 3.51 83 | 0.88 62 | 3.63 62 | 0.57 49 | 1.76 60 | 4.37 61 | 0.27 61 |
Direct ZNCC [66] | 61.4 | 0.61 23 | 2.81 42 | 0.35 16 | 2.46 50 | 5.95 59 | 0.65 38 | 1.98 43 | 4.16 38 | 0.89 50 | 4.18 56 | 5.24 69 | 8.42 73 | 3.25 72 | 3.35 72 | 5.42 85 | 3.67 81 | 9.18 85 | 2.99 72 | 1.15 80 | 5.13 78 | 0.77 74 | 1.91 76 | 4.75 76 | 0.28 65 |
Bartels [41] | 63.0 | 0.90 67 | 3.30 71 | 0.74 74 | 2.13 37 | 5.53 47 | 1.01 61 | 1.95 39 | 4.26 40 | 0.91 56 | 4.98 79 | 5.87 76 | 10.9 86 | 3.59 81 | 3.28 61 | 6.74 90 | 5.60 89 | 7.64 69 | 6.55 90 | 0.73 37 | 2.71 20 | 0.79 78 | 1.64 42 | 4.04 38 | 0.39 85 |
NL-TV-NCC [25] | 64.0 | 0.77 55 | 2.93 51 | 0.43 38 | 2.18 43 | 5.65 49 | 0.64 36 | 2.09 54 | 4.68 56 | 0.93 60 | 4.72 74 | 5.82 75 | 9.36 78 | 3.56 80 | 3.34 67 | 6.58 89 | 3.26 68 | 8.02 77 | 2.83 63 | 0.96 68 | 3.86 64 | 0.72 72 | 1.83 68 | 4.53 69 | 0.33 82 |
Horn & Schunck [3] | 64.1 | 0.92 69 | 3.16 62 | 0.61 64 | 3.79 80 | 6.91 80 | 1.51 73 | 2.98 79 | 6.57 80 | 1.59 81 | 5.15 80 | 5.92 78 | 7.97 56 | 3.25 72 | 3.50 77 | 4.58 69 | 2.64 25 | 6.07 29 | 2.45 16 | 0.91 65 | 3.87 65 | 0.64 62 | 1.75 59 | 4.22 52 | 0.28 65 |
TI-DOFE [24] | 64.9 | 1.46 83 | 3.65 79 | 1.28 84 | 4.57 85 | 7.55 86 | 2.30 86 | 2.65 72 | 6.94 82 | 1.30 70 | 5.46 82 | 5.88 77 | 8.37 71 | 3.13 63 | 3.42 75 | 4.47 56 | 2.52 8 | 5.64 20 | 2.30 4 | 0.84 60 | 3.58 61 | 0.66 65 | 1.79 65 | 4.10 45 | 0.31 79 |
SegOF [10] | 66.4 | 0.76 54 | 3.08 60 | 0.51 49 | 2.42 49 | 5.35 43 | 0.97 59 | 3.17 81 | 5.83 76 | 1.57 80 | 4.52 68 | 6.66 84 | 7.66 32 | 3.13 63 | 3.33 66 | 4.57 67 | 3.31 71 | 8.43 80 | 2.87 66 | 1.38 85 | 6.82 87 | 1.03 84 | 1.90 75 | 4.75 76 | 0.23 38 |
StereoFlow [44] | 66.6 | 2.07 86 | 5.46 89 | 1.08 82 | 3.85 82 | 7.22 84 | 1.51 73 | 2.01 46 | 5.12 66 | 0.79 43 | 4.13 52 | 5.04 59 | 7.77 46 | 4.97 88 | 6.41 88 | 4.80 76 | 3.89 87 | 11.3 90 | 2.76 54 | 0.68 21 | 2.85 25 | 0.53 32 | 2.09 82 | 5.25 82 | 0.28 65 |
Rannacher [23] | 67.0 | 0.78 56 | 3.18 64 | 0.59 60 | 3.00 68 | 6.62 77 | 0.90 54 | 2.56 70 | 4.96 64 | 1.37 75 | 4.13 52 | 5.27 70 | 8.18 65 | 3.18 69 | 3.37 74 | 4.49 57 | 3.18 63 | 7.49 65 | 2.83 63 | 1.10 78 | 5.20 79 | 0.77 74 | 1.84 69 | 4.59 70 | 0.29 73 |
SPSA-learn [13] | 69.5 | 0.97 72 | 3.54 77 | 0.64 67 | 3.02 70 | 6.01 61 | 1.36 69 | 3.01 80 | 5.38 73 | 1.62 82 | 4.74 75 | 5.09 63 | 7.59 19 | 3.34 77 | 3.71 80 | 4.53 62 | 2.98 51 | 7.52 66 | 2.55 34 | 2.11 90 | 11.0 90 | 1.87 90 | 3.18 88 | 7.90 89 | 0.24 42 |
Dynamic MRF [7] | 71.1 | 0.73 49 | 3.46 75 | 0.42 36 | 2.27 47 | 5.93 58 | 0.69 42 | 2.82 77 | 7.28 85 | 1.37 75 | 5.71 85 | 7.07 85 | 9.50 79 | 3.24 71 | 3.59 78 | 4.36 30 | 3.79 84 | 9.86 87 | 3.13 77 | 1.29 84 | 5.96 84 | 0.89 83 | 2.04 80 | 4.77 78 | 0.30 77 |
Learning Flow [11] | 76.0 | 0.89 66 | 3.59 78 | 0.62 65 | 2.93 64 | 6.52 73 | 0.92 55 | 3.33 83 | 7.23 83 | 1.64 83 | 5.36 81 | 6.54 83 | 9.51 80 | 3.75 85 | 4.10 84 | 5.32 84 | 3.34 73 | 7.55 67 | 3.12 76 | 1.01 72 | 4.41 72 | 0.74 73 | 2.04 80 | 4.85 80 | 0.37 84 |
Adaptive flow [45] | 76.3 | 1.98 85 | 4.23 84 | 1.80 86 | 4.57 85 | 7.46 85 | 3.10 88 | 2.35 68 | 4.62 55 | 1.30 70 | 5.62 84 | 5.69 74 | 10.7 85 | 3.74 84 | 4.07 83 | 5.06 81 | 3.81 85 | 9.47 86 | 3.13 77 | 0.78 51 | 3.18 47 | 0.69 69 | 1.87 72 | 4.67 74 | 0.29 73 |
GroupFlow [9] | 77.3 | 1.35 82 | 4.96 87 | 0.79 76 | 2.79 59 | 5.84 52 | 1.31 68 | 3.68 87 | 7.72 86 | 2.05 86 | 4.78 76 | 6.45 82 | 8.26 68 | 3.88 87 | 4.56 87 | 4.65 73 | 3.77 83 | 10.3 88 | 2.91 68 | 1.24 83 | 5.48 83 | 0.66 65 | 2.47 87 | 6.17 87 | 0.26 55 |
SILK [87] | 78.1 | 1.24 80 | 3.81 80 | 1.00 81 | 4.12 84 | 6.98 82 | 1.91 83 | 3.56 85 | 7.27 84 | 1.82 84 | 5.59 83 | 6.31 80 | 9.67 82 | 3.35 78 | 3.67 79 | 4.72 75 | 3.82 86 | 6.94 50 | 4.15 88 | 0.93 66 | 3.99 68 | 0.82 80 | 1.85 70 | 4.43 66 | 0.32 80 |
SLK [47] | 80.6 | 1.33 81 | 3.87 81 | 1.14 83 | 3.84 81 | 6.17 64 | 2.07 84 | 3.83 88 | 7.77 87 | 2.10 88 | 7.08 86 | 7.94 86 | 10.2 83 | 3.75 85 | 4.39 86 | 4.40 42 | 3.34 73 | 7.98 76 | 2.96 71 | 1.39 86 | 6.69 85 | 1.03 84 | 2.23 84 | 5.47 84 | 0.43 86 |
FOLKI [16] | 82.2 | 2.60 88 | 4.64 86 | 2.99 88 | 4.63 88 | 7.59 87 | 2.71 87 | 3.30 82 | 8.65 89 | 2.07 87 | 7.97 88 | 7.95 87 | 13.7 89 | 3.69 83 | 4.22 85 | 4.86 77 | 3.34 73 | 6.66 42 | 3.47 82 | 1.22 82 | 5.31 80 | 1.07 87 | 1.96 77 | 4.62 71 | 0.46 87 |
PGAM+LK [55] | 82.5 | 2.08 87 | 5.24 88 | 1.91 87 | 3.50 75 | 6.51 72 | 2.09 85 | 3.61 86 | 7.85 88 | 2.01 85 | 7.70 87 | 8.44 88 | 13.1 88 | 3.61 82 | 3.95 82 | 5.07 82 | 4.07 88 | 8.65 82 | 3.90 87 | 0.96 68 | 4.24 69 | 0.83 81 | 1.99 78 | 4.84 79 | 0.46 87 |
Pyramid LK [2] | 84.8 | 2.73 89 | 4.32 85 | 3.06 89 | 5.47 89 | 7.60 88 | 3.83 89 | 6.84 89 | 6.09 78 | 3.76 89 | 12.2 90 | 16.6 90 | 16.4 90 | 5.05 89 | 6.65 89 | 4.62 71 | 3.26 68 | 7.14 58 | 3.15 79 | 1.40 87 | 6.78 86 | 1.04 86 | 3.71 90 | 9.32 90 | 0.46 87 |
Periodicity [86] | 89.4 | 3.07 90 | 6.73 90 | 3.09 90 | 7.28 90 | 8.40 90 | 5.04 90 | 7.68 90 | 13.2 90 | 5.81 90 | 9.03 89 | 16.0 89 | 12.5 87 | 6.13 90 | 7.92 90 | 6.46 88 | 6.09 90 | 10.5 89 | 6.23 89 | 1.72 89 | 8.02 89 | 1.33 89 | 3.56 89 | 7.62 88 | 1.32 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |