Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R1.0 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 7.5 | 6.71 1 | 9.78 1 | 8.39 7 | 6.36 7 | 11.5 8 | 6.23 10 | 7.12 2 | 9.73 4 | 5.42 1 | 21.2 2 | 18.8 3 | 41.2 4 | 30.1 4 | 26.5 1 | 45.6 37 | 27.7 11 | 19.5 17 | 36.0 12 | 6.48 2 | 13.8 4 | 10.3 5 | 8.19 13 | 16.4 9 | 7.11 15 |
ComplexFlow [81] | 9.5 | 6.74 3 | 10.1 3 | 8.30 1 | 5.97 1 | 10.3 2 | 6.14 3 | 7.09 1 | 9.63 3 | 5.44 2 | 21.7 22 | 20.5 40 | 41.2 4 | 30.3 14 | 26.6 5 | 45.4 17 | 27.9 22 | 20.6 39 | 36.0 12 | 6.51 4 | 13.8 4 | 10.3 5 | 8.04 4 | 16.1 3 | 7.10 13 |
NN-field [73] | 12.2 | 6.88 9 | 10.8 10 | 8.48 9 | 5.99 2 | 10.3 2 | 6.13 2 | 7.65 29 | 9.54 2 | 5.81 19 | 21.9 31 | 21.0 55 | 41.4 14 | 30.2 7 | 26.6 5 | 45.4 17 | 27.8 17 | 20.0 29 | 36.0 12 | 6.48 2 | 13.7 3 | 10.3 5 | 8.02 3 | 16.1 3 | 7.04 7 |
IROF++ [58] | 14.7 | 7.07 15 | 11.3 16 | 8.50 11 | 6.64 14 | 12.0 12 | 6.19 6 | 7.54 22 | 10.6 14 | 5.84 21 | 21.2 2 | 18.6 1 | 41.5 19 | 30.2 7 | 26.9 12 | 45.0 7 | 27.6 8 | 18.8 6 | 36.2 20 | 6.69 18 | 14.7 16 | 10.5 36 | 8.17 11 | 16.4 9 | 7.33 49 |
Layers++ [37] | 15.5 | 7.17 22 | 11.1 13 | 8.79 36 | 6.14 5 | 10.3 2 | 6.41 22 | 7.34 9 | 10.3 6 | 5.69 10 | 21.3 6 | 19.0 9 | 41.3 8 | 30.5 26 | 27.1 29 | 45.4 17 | 28.1 30 | 21.1 50 | 36.2 20 | 6.51 4 | 13.8 4 | 10.2 1 | 8.20 14 | 16.4 9 | 7.13 20 |
nLayers [57] | 17.3 | 7.15 21 | 10.4 7 | 8.81 39 | 6.44 8 | 11.4 7 | 6.42 24 | 7.23 3 | 9.30 1 | 5.65 8 | 21.4 10 | 19.1 11 | 41.5 19 | 30.7 51 | 27.4 55 | 45.6 37 | 28.0 26 | 20.8 42 | 36.2 20 | 6.54 6 | 13.6 1 | 10.3 5 | 8.07 5 | 16.3 7 | 6.91 2 |
Sparse-NonSparse [56] | 17.6 | 7.09 17 | 11.3 16 | 8.57 17 | 6.53 10 | 11.8 9 | 6.21 8 | 7.40 14 | 10.5 11 | 5.64 6 | 21.5 13 | 19.0 9 | 41.7 31 | 30.4 19 | 27.0 20 | 45.4 17 | 28.3 43 | 21.5 56 | 36.4 38 | 6.66 13 | 14.4 10 | 10.3 5 | 8.23 15 | 16.6 16 | 7.09 10 |
LSM [39] | 20.9 | 7.17 22 | 11.8 28 | 8.58 19 | 6.64 14 | 12.1 15 | 6.17 5 | 7.49 18 | 10.9 25 | 5.69 10 | 21.6 17 | 19.6 20 | 41.6 25 | 30.5 26 | 27.1 29 | 45.4 17 | 28.3 43 | 21.6 57 | 36.3 32 | 6.68 16 | 14.6 13 | 10.2 1 | 8.35 20 | 16.9 23 | 7.03 6 |
SCR [74] | 21.2 | 7.18 24 | 11.5 21 | 8.52 14 | 6.59 11 | 11.8 9 | 6.27 13 | 7.40 14 | 10.4 7 | 5.76 17 | 21.6 17 | 19.1 11 | 41.4 14 | 30.6 37 | 27.2 36 | 45.4 17 | 28.3 43 | 21.8 60 | 36.2 20 | 6.76 32 | 15.1 37 | 10.3 5 | 8.35 20 | 16.9 23 | 7.04 7 |
LME [72] | 21.7 | 6.72 2 | 9.86 2 | 8.36 4 | 6.97 24 | 12.4 19 | 7.40 56 | 7.51 20 | 11.8 36 | 5.70 13 | 21.3 6 | 19.2 14 | 41.3 8 | 31.0 71 | 27.6 69 | 46.6 78 | 27.8 17 | 20.5 37 | 36.0 12 | 6.45 1 | 13.6 1 | 10.2 1 | 8.08 6 | 16.3 7 | 7.12 17 |
TV-L1-MCT [64] | 21.8 | 7.50 48 | 12.5 54 | 8.79 36 | 7.19 29 | 13.4 27 | 6.37 21 | 7.28 5 | 10.6 14 | 5.80 18 | 21.4 10 | 18.8 3 | 41.3 8 | 30.5 26 | 27.1 29 | 45.1 9 | 27.9 22 | 18.6 4 | 36.6 48 | 6.72 25 | 15.0 30 | 10.4 22 | 7.92 1 | 15.9 1 | 7.20 32 |
Epistemic [84] | 22.8 | 6.91 10 | 10.8 10 | 8.55 16 | 6.49 9 | 12.0 12 | 6.10 1 | 7.49 18 | 11.2 32 | 5.72 15 | 21.3 6 | 19.4 16 | 41.2 4 | 30.6 37 | 27.2 36 | 45.8 59 | 27.8 17 | 19.6 19 | 36.2 20 | 6.92 50 | 16.4 59 | 10.4 22 | 8.43 28 | 17.0 25 | 7.16 25 |
MDP-Flow [26] | 23.5 | 6.83 7 | 10.8 10 | 8.50 11 | 6.65 16 | 12.4 19 | 6.51 30 | 7.46 16 | 10.6 14 | 5.88 26 | 22.1 40 | 20.6 44 | 41.7 31 | 30.4 19 | 26.8 9 | 45.6 37 | 28.2 41 | 21.9 65 | 36.3 32 | 6.69 18 | 14.8 21 | 10.4 22 | 8.15 8 | 16.6 16 | 7.10 13 |
COFM [59] | 23.7 | 7.04 12 | 10.7 9 | 8.70 29 | 6.60 12 | 11.9 11 | 6.35 19 | 7.26 4 | 9.93 5 | 5.63 5 | 21.2 2 | 18.8 3 | 41.0 1 | 30.4 19 | 27.3 48 | 44.9 6 | 27.7 11 | 22.6 74 | 35.1 2 | 6.86 43 | 14.7 16 | 11.2 77 | 8.67 49 | 17.2 36 | 7.78 75 |
Levin3 [90] | 24.0 | 7.30 31 | 11.8 28 | 8.66 26 | 6.80 18 | 12.3 16 | 6.31 16 | 7.30 6 | 10.5 11 | 5.70 13 | 21.5 13 | 18.7 2 | 41.7 31 | 30.4 19 | 27.0 20 | 45.2 11 | 28.5 55 | 21.7 58 | 36.4 38 | 6.75 30 | 15.0 30 | 10.3 5 | 8.47 33 | 17.1 30 | 7.22 37 |
ADF [67] | 24.2 | 6.81 5 | 10.1 3 | 8.53 15 | 6.91 22 | 13.0 23 | 6.41 22 | 7.39 13 | 11.0 27 | 5.74 16 | 21.2 2 | 18.9 7 | 41.4 14 | 30.7 51 | 27.4 55 | 45.6 37 | 27.5 5 | 20.0 29 | 35.7 6 | 6.78 35 | 15.1 37 | 10.5 36 | 8.71 51 | 17.7 51 | 7.13 20 |
OFLADF [82] | 25.7 | 6.81 5 | 10.2 5 | 8.40 8 | 6.10 3 | 10.7 5 | 6.21 8 | 7.36 10 | 10.6 14 | 5.54 3 | 21.1 1 | 18.8 3 | 41.0 1 | 30.8 60 | 27.4 55 | 45.7 48 | 28.1 30 | 21.9 65 | 36.0 12 | 7.02 54 | 16.1 58 | 10.4 22 | 8.90 59 | 18.1 63 | 7.16 25 |
Ramp [62] | 26.0 | 7.31 33 | 12.1 35 | 8.78 34 | 6.60 12 | 12.0 12 | 6.27 13 | 7.36 10 | 10.4 7 | 5.65 8 | 21.3 6 | 18.9 7 | 41.4 14 | 30.5 26 | 27.1 29 | 45.4 17 | 28.7 63 | 22.3 73 | 36.6 48 | 6.73 28 | 14.9 25 | 10.3 5 | 8.55 38 | 17.3 40 | 7.26 42 |
Second-order prior [8] | 26.2 | 7.30 31 | 11.3 16 | 8.90 44 | 8.52 50 | 15.6 50 | 6.74 40 | 8.32 63 | 13.6 68 | 6.42 58 | 21.8 25 | 20.0 26 | 41.5 19 | 30.1 4 | 26.5 1 | 45.5 28 | 27.5 5 | 19.0 8 | 36.0 12 | 6.67 14 | 14.6 13 | 10.3 5 | 8.25 16 | 16.8 19 | 7.11 15 |
Aniso. Huber-L1 [22] | 27.4 | 7.61 54 | 12.2 42 | 9.19 55 | 8.99 57 | 15.7 53 | 7.12 51 | 7.73 34 | 11.0 27 | 5.86 23 | 21.8 25 | 20.0 26 | 41.6 25 | 30.2 7 | 26.6 5 | 45.5 28 | 27.4 3 | 19.6 19 | 35.7 6 | 6.68 16 | 14.6 13 | 10.3 5 | 8.34 19 | 16.8 19 | 7.29 45 |
Classic+NL [31] | 28.2 | 7.44 44 | 12.3 43 | 8.86 41 | 6.78 17 | 12.3 16 | 6.28 15 | 7.32 8 | 10.4 7 | 5.69 10 | 21.6 17 | 19.4 16 | 41.8 37 | 30.5 26 | 27.1 29 | 45.5 28 | 28.6 61 | 21.8 60 | 36.6 48 | 6.72 25 | 14.7 16 | 10.3 5 | 8.50 34 | 17.2 36 | 7.24 39 |
FC-2Layers-FF [77] | 28.7 | 7.22 26 | 11.9 33 | 8.70 29 | 6.10 3 | 10.2 1 | 6.47 26 | 7.31 7 | 10.5 11 | 5.64 6 | 21.4 10 | 19.1 11 | 41.6 25 | 30.7 51 | 27.5 61 | 45.6 37 | 28.6 61 | 22.7 76 | 36.4 38 | 6.77 33 | 15.0 30 | 10.3 5 | 8.57 40 | 17.2 36 | 7.20 32 |
FESL [75] | 29.7 | 7.36 36 | 11.7 25 | 8.65 25 | 6.82 19 | 12.6 21 | 6.33 17 | 7.51 20 | 10.7 20 | 5.89 27 | 21.6 17 | 19.6 20 | 41.3 8 | 30.9 70 | 27.5 61 | 45.7 48 | 28.4 51 | 22.1 71 | 36.2 20 | 6.70 21 | 14.8 21 | 10.2 1 | 8.59 41 | 17.4 44 | 7.08 9 |
p-harmonic [29] | 31.1 | 7.04 12 | 11.3 16 | 8.62 23 | 8.81 53 | 15.8 54 | 6.98 48 | 7.76 37 | 13.1 60 | 6.18 43 | 22.4 52 | 20.7 46 | 41.9 44 | 30.5 26 | 27.0 20 | 45.5 28 | 27.8 17 | 19.2 11 | 36.4 38 | 6.71 22 | 15.1 37 | 10.3 5 | 8.29 18 | 16.8 19 | 7.12 17 |
Brox et al. [5] | 31.3 | 7.28 28 | 11.4 20 | 8.76 33 | 7.86 35 | 14.6 37 | 6.92 47 | 8.03 52 | 13.1 60 | 6.34 52 | 21.9 31 | 19.9 23 | 41.4 14 | 30.6 37 | 27.0 20 | 45.8 59 | 27.7 11 | 19.5 17 | 36.2 20 | 6.80 36 | 15.4 44 | 10.4 22 | 8.16 10 | 16.5 13 | 7.19 30 |
IROF-TV [53] | 31.6 | 7.33 35 | 12.3 43 | 8.82 40 | 6.83 21 | 12.3 16 | 6.23 10 | 7.70 33 | 12.9 58 | 5.93 30 | 21.5 13 | 19.5 19 | 42.0 47 | 30.8 60 | 27.3 48 | 45.9 68 | 27.5 5 | 20.2 32 | 35.6 4 | 6.75 30 | 15.1 37 | 10.5 36 | 8.18 12 | 16.4 9 | 7.37 52 |
EP-PM [83] | 31.7 | 6.77 4 | 10.4 7 | 8.32 2 | 7.00 25 | 13.4 27 | 6.16 4 | 8.19 56 | 13.6 68 | 6.26 46 | 21.7 22 | 20.3 31 | 41.5 19 | 30.5 26 | 27.2 36 | 45.5 28 | 28.5 55 | 21.8 60 | 36.5 44 | 6.84 40 | 15.6 48 | 10.6 54 | 8.41 25 | 17.1 30 | 6.95 4 |
Deep-Matching [85] | 31.7 | 7.32 34 | 11.1 13 | 9.03 45 | 8.14 42 | 14.5 36 | 8.01 59 | 7.61 26 | 12.4 48 | 5.94 31 | 22.2 43 | 19.9 23 | 42.0 47 | 30.6 37 | 26.9 12 | 46.0 74 | 28.1 30 | 17.7 1 | 37.3 73 | 6.56 7 | 14.1 7 | 10.4 22 | 8.01 2 | 16.0 2 | 7.32 47 |
Efficient-NL [60] | 32.4 | 7.28 28 | 11.6 23 | 8.61 22 | 7.24 31 | 13.3 26 | 6.35 19 | 8.21 58 | 10.8 22 | 6.39 56 | 21.7 22 | 19.6 20 | 41.2 4 | 30.4 19 | 27.0 20 | 45.3 14 | 28.3 43 | 22.8 77 | 35.6 4 | 6.86 43 | 15.6 48 | 10.4 22 | 9.10 66 | 18.3 68 | 7.14 23 |
FastOF [78] | 32.9 | 7.72 60 | 12.1 35 | 9.11 48 | 8.87 54 | 15.4 45 | 8.67 62 | 8.24 60 | 14.2 76 | 6.40 57 | 22.2 43 | 20.7 46 | 41.1 3 | 30.2 7 | 26.6 5 | 45.5 28 | 28.1 30 | 18.5 3 | 36.8 58 | 6.57 8 | 14.5 11 | 10.3 5 | 8.26 17 | 16.7 18 | 7.09 10 |
DPOF [18] | 34.7 | 7.58 53 | 13.2 70 | 9.07 46 | 6.27 6 | 11.0 6 | 6.54 31 | 8.10 54 | 10.6 14 | 6.27 48 | 22.0 37 | 20.5 40 | 41.9 44 | 30.2 7 | 26.8 9 | 45.4 17 | 28.0 26 | 21.2 52 | 35.8 9 | 6.84 40 | 15.0 30 | 10.7 63 | 8.62 45 | 17.4 44 | 7.26 42 |
ComplOF-FED-GPU [35] | 35.2 | 7.23 27 | 11.8 28 | 8.72 31 | 7.20 30 | 13.9 30 | 6.62 35 | 8.43 65 | 12.6 51 | 6.45 59 | 21.9 31 | 20.8 51 | 42.3 55 | 30.4 19 | 26.9 12 | 45.4 17 | 27.7 11 | 20.1 31 | 36.1 18 | 6.86 43 | 15.4 44 | 10.5 36 | 8.55 38 | 17.3 40 | 7.28 44 |
PMF [76] | 35.2 | 6.83 7 | 10.3 6 | 8.37 5 | 6.96 23 | 13.1 24 | 6.19 6 | 7.86 42 | 13.1 60 | 6.03 37 | 21.5 13 | 19.4 16 | 41.3 8 | 31.0 71 | 27.7 71 | 45.8 59 | 28.7 63 | 20.5 37 | 37.2 70 | 6.80 36 | 15.0 30 | 10.5 36 | 8.87 55 | 18.2 66 | 7.00 5 |
Sparse Occlusion [54] | 35.5 | 7.37 38 | 12.3 43 | 8.87 42 | 8.04 38 | 15.3 44 | 6.48 27 | 7.58 25 | 10.8 22 | 5.87 24 | 22.0 37 | 20.4 35 | 41.5 19 | 30.6 37 | 27.2 36 | 45.5 28 | 28.3 43 | 21.8 60 | 36.4 38 | 6.80 36 | 15.3 42 | 10.3 5 | 8.74 52 | 17.7 51 | 7.18 29 |
CLG-TV [48] | 36.4 | 7.52 49 | 12.3 43 | 9.14 50 | 8.67 52 | 15.8 54 | 7.11 50 | 7.97 49 | 12.7 54 | 6.26 46 | 22.1 40 | 20.3 31 | 42.0 47 | 30.5 26 | 26.9 12 | 45.7 48 | 27.6 8 | 19.1 9 | 36.2 20 | 6.71 22 | 14.9 25 | 10.4 22 | 8.53 37 | 17.3 40 | 7.24 39 |
TC/T-Flow [80] | 36.5 | 7.37 38 | 11.8 28 | 8.59 20 | 7.31 32 | 14.0 31 | 6.42 24 | 7.47 17 | 11.1 29 | 5.81 19 | 21.8 25 | 20.5 40 | 41.7 31 | 30.8 60 | 27.5 61 | 45.7 48 | 28.1 30 | 20.9 43 | 36.2 20 | 7.03 56 | 16.0 56 | 10.6 54 | 8.62 45 | 17.6 48 | 7.13 20 |
SuperFlow [89] | 37.0 | 7.43 43 | 11.5 21 | 9.30 58 | 8.55 51 | 14.8 39 | 9.15 67 | 7.91 47 | 12.0 40 | 6.31 49 | 22.1 40 | 19.9 23 | 42.0 47 | 30.7 51 | 27.2 36 | 45.9 68 | 27.3 2 | 18.4 2 | 35.9 10 | 6.86 43 | 15.8 51 | 10.6 54 | 8.15 8 | 16.5 13 | 7.16 25 |
SIOF [69] | 37.3 | 7.66 56 | 12.6 56 | 9.09 47 | 9.45 65 | 16.6 64 | 8.48 61 | 7.65 29 | 11.9 38 | 5.98 34 | 21.9 31 | 20.1 28 | 41.8 37 | 30.0 2 | 26.5 1 | 45.3 14 | 28.1 30 | 19.7 26 | 36.6 48 | 6.63 11 | 14.7 16 | 10.5 36 | 8.82 53 | 17.9 56 | 7.46 57 |
TC-Flow [46] | 37.9 | 7.18 24 | 11.8 28 | 8.78 34 | 7.46 34 | 14.6 37 | 6.77 43 | 7.86 42 | 12.6 51 | 5.89 27 | 21.8 25 | 20.3 31 | 41.9 44 | 30.7 51 | 27.4 55 | 45.7 48 | 28.3 43 | 21.0 46 | 36.6 48 | 6.73 28 | 14.8 21 | 10.5 36 | 8.51 35 | 17.3 40 | 7.24 39 |
IAOF [50] | 38.0 | 8.70 76 | 12.9 63 | 10.3 74 | 12.4 82 | 19.2 84 | 9.77 72 | 7.74 35 | 12.0 40 | 6.21 44 | 22.8 61 | 20.2 30 | 42.0 47 | 30.2 7 | 26.5 1 | 45.5 28 | 27.7 11 | 19.6 19 | 36.1 18 | 6.67 14 | 15.0 30 | 10.3 5 | 8.41 25 | 17.1 30 | 7.12 17 |
TCOF [71] | 38.4 | 7.36 36 | 12.1 35 | 8.68 27 | 9.41 64 | 16.6 64 | 7.17 53 | 7.38 12 | 10.7 20 | 5.61 4 | 21.8 25 | 20.4 35 | 41.8 37 | 30.4 19 | 27.0 20 | 45.6 37 | 28.1 30 | 21.8 60 | 35.9 10 | 6.85 42 | 15.7 50 | 10.4 22 | 9.30 73 | 19.0 77 | 7.61 70 |
ALD-Flow [68] | 40.1 | 7.54 50 | 12.1 35 | 9.14 50 | 7.43 33 | 14.3 34 | 6.85 45 | 7.66 31 | 12.5 50 | 5.87 24 | 21.8 25 | 20.4 35 | 42.3 55 | 30.8 60 | 27.4 55 | 45.9 68 | 28.1 30 | 19.9 28 | 36.6 48 | 6.62 9 | 14.2 8 | 10.5 36 | 8.68 50 | 17.5 47 | 7.46 57 |
OFH [38] | 40.5 | 7.39 41 | 12.1 35 | 8.88 43 | 8.07 39 | 15.0 42 | 6.66 37 | 8.03 52 | 13.8 71 | 5.96 33 | 21.9 31 | 21.1 58 | 42.1 52 | 30.5 26 | 27.3 48 | 45.4 17 | 27.8 17 | 20.4 35 | 36.2 20 | 7.11 58 | 16.4 59 | 10.5 36 | 8.61 44 | 17.6 48 | 7.19 30 |
Modified CLG [34] | 43.2 | 7.63 55 | 11.6 23 | 9.65 61 | 10.7 73 | 17.2 71 | 10.7 76 | 8.25 61 | 14.3 77 | 6.60 65 | 22.4 52 | 21.1 58 | 41.8 37 | 30.6 37 | 26.9 12 | 45.8 59 | 27.7 11 | 19.2 11 | 36.3 32 | 6.69 18 | 14.9 25 | 10.4 22 | 8.41 25 | 17.0 25 | 7.35 51 |
Fusion [6] | 43.5 | 7.13 20 | 12.3 43 | 8.60 21 | 7.18 28 | 13.1 24 | 6.56 32 | 7.63 27 | 10.9 25 | 6.13 42 | 22.5 57 | 21.1 58 | 41.5 19 | 30.7 51 | 28.2 79 | 44.3 2 | 28.1 30 | 23.8 83 | 35.2 3 | 7.22 66 | 17.9 69 | 10.6 54 | 9.64 80 | 19.9 83 | 7.32 47 |
CostFilter [40] | 43.5 | 6.91 10 | 11.1 13 | 8.37 5 | 6.82 19 | 12.9 22 | 6.25 12 | 7.99 50 | 13.9 72 | 6.10 39 | 21.9 31 | 20.6 44 | 41.7 31 | 31.1 74 | 27.9 75 | 45.9 68 | 29.8 78 | 20.3 33 | 39.1 84 | 6.94 52 | 15.8 51 | 10.6 54 | 8.82 53 | 18.1 63 | 7.09 10 |
F-TV-L1 [15] | 43.5 | 8.24 67 | 13.1 67 | 9.92 67 | 9.28 60 | 16.3 60 | 7.48 57 | 8.00 51 | 13.2 65 | 6.35 54 | 22.3 48 | 20.9 52 | 42.3 55 | 29.9 1 | 26.9 12 | 44.8 5 | 27.9 22 | 19.4 15 | 36.5 44 | 6.87 47 | 15.4 44 | 10.5 36 | 8.46 30 | 16.8 19 | 7.58 67 |
Complementary OF [21] | 45.1 | 7.11 18 | 12.1 35 | 8.50 11 | 7.17 27 | 14.0 31 | 6.58 34 | 8.76 72 | 12.0 40 | 6.55 62 | 22.3 48 | 21.4 67 | 42.6 67 | 30.6 37 | 27.5 61 | 45.2 11 | 28.1 30 | 20.9 43 | 36.4 38 | 7.15 60 | 16.7 62 | 10.5 36 | 9.09 65 | 18.7 74 | 7.38 53 |
LDOF [28] | 45.4 | 8.08 62 | 12.3 43 | 9.79 65 | 8.94 56 | 14.9 40 | 9.18 68 | 8.23 59 | 13.5 67 | 6.52 61 | 22.3 48 | 21.1 58 | 42.4 61 | 30.6 37 | 27.0 20 | 45.8 59 | 27.9 22 | 18.8 6 | 36.6 48 | 6.77 33 | 15.3 42 | 10.4 22 | 8.44 29 | 17.1 30 | 7.38 53 |
SimpleFlow [49] | 45.9 | 7.37 38 | 12.4 51 | 8.74 32 | 7.88 36 | 14.3 34 | 6.50 29 | 8.59 69 | 11.5 34 | 6.51 60 | 21.6 17 | 19.3 15 | 41.8 37 | 30.6 37 | 27.3 48 | 45.5 28 | 28.5 55 | 22.9 78 | 36.2 20 | 7.66 81 | 20.5 85 | 10.8 70 | 8.89 58 | 18.2 66 | 7.15 24 |
Classic++ [32] | 46.9 | 7.49 47 | 12.5 54 | 9.11 48 | 8.07 39 | 15.2 43 | 6.67 38 | 7.89 46 | 12.6 51 | 6.04 38 | 22.3 48 | 20.7 46 | 42.2 54 | 30.6 37 | 27.2 36 | 45.7 48 | 29.0 69 | 21.0 46 | 37.6 75 | 6.81 39 | 15.2 41 | 10.5 36 | 8.62 45 | 17.4 44 | 7.46 57 |
Occlusion-TV-L1 [63] | 47.0 | 7.44 44 | 12.3 43 | 9.14 50 | 8.91 55 | 16.5 63 | 6.85 45 | 7.83 40 | 12.8 55 | 6.32 50 | 22.6 60 | 21.5 69 | 42.5 63 | 30.5 26 | 26.9 12 | 45.8 59 | 28.4 51 | 19.6 19 | 37.1 66 | 7.15 60 | 14.8 21 | 10.7 63 | 8.51 35 | 17.1 30 | 7.34 50 |
Local-TV-L1 [65] | 47.0 | 8.46 73 | 12.6 56 | 10.4 75 | 9.68 66 | 16.0 59 | 8.93 66 | 7.56 24 | 11.2 32 | 5.84 21 | 23.1 67 | 20.4 35 | 46.0 82 | 30.6 37 | 27.1 29 | 45.9 68 | 30.1 81 | 19.1 9 | 39.9 86 | 6.72 25 | 14.9 25 | 10.5 36 | 8.13 7 | 16.1 3 | 7.58 67 |
2D-CLG [1] | 48.2 | 8.44 71 | 12.3 43 | 10.6 76 | 11.9 79 | 18.0 77 | 12.3 83 | 8.94 74 | 13.9 72 | 7.33 77 | 23.1 67 | 21.2 64 | 41.3 8 | 30.5 26 | 26.9 12 | 45.8 59 | 27.6 8 | 19.2 11 | 36.2 20 | 7.14 59 | 17.2 66 | 10.5 36 | 8.37 23 | 16.5 13 | 7.20 32 |
Nguyen [33] | 48.6 | 9.74 79 | 12.6 56 | 12.4 81 | 12.3 80 | 18.6 80 | 11.1 77 | 8.27 62 | 14.8 78 | 6.69 66 | 23.4 73 | 21.7 71 | 41.8 37 | 30.3 14 | 26.8 9 | 45.3 14 | 27.4 3 | 19.6 19 | 35.7 6 | 7.24 68 | 18.3 72 | 10.5 36 | 8.37 23 | 17.0 25 | 7.22 37 |
Adaptive [20] | 49.8 | 7.71 59 | 13.2 70 | 9.21 56 | 9.40 63 | 16.8 66 | 7.07 49 | 7.87 45 | 12.4 48 | 6.12 40 | 22.0 37 | 20.3 31 | 41.8 37 | 30.7 51 | 27.3 48 | 45.6 37 | 28.4 51 | 20.7 41 | 36.8 58 | 6.95 53 | 16.0 56 | 10.4 22 | 8.87 55 | 17.9 56 | 7.55 65 |
Shiralkar [42] | 49.8 | 7.48 46 | 12.8 61 | 8.80 38 | 9.00 58 | 15.8 54 | 6.65 36 | 8.52 67 | 16.1 81 | 6.84 69 | 23.4 73 | 22.3 74 | 41.6 25 | 30.0 2 | 27.0 20 | 44.5 3 | 28.7 63 | 21.1 50 | 37.1 66 | 7.49 74 | 18.7 78 | 10.6 54 | 8.64 48 | 17.7 51 | 6.93 3 |
CRTflow [88] | 51.6 | 7.69 57 | 12.6 56 | 9.28 57 | 8.45 49 | 15.5 47 | 6.81 44 | 8.55 68 | 14.0 74 | 7.29 75 | 22.4 52 | 20.7 46 | 43.8 74 | 30.7 51 | 27.2 36 | 45.7 48 | 28.1 30 | 19.6 19 | 36.7 56 | 6.87 47 | 15.8 51 | 10.6 54 | 8.59 41 | 17.2 36 | 7.65 71 |
Black & Anandan [4] | 52.5 | 8.54 74 | 12.8 61 | 10.2 73 | 10.9 75 | 17.3 72 | 9.40 70 | 9.06 76 | 13.6 68 | 6.99 73 | 22.9 64 | 21.3 66 | 41.7 31 | 30.7 51 | 27.2 36 | 45.9 68 | 28.0 26 | 18.6 4 | 36.7 56 | 6.93 51 | 15.9 55 | 10.4 22 | 8.46 30 | 17.0 25 | 7.20 32 |
HBpMotionGpu [43] | 52.6 | 9.39 78 | 14.6 79 | 11.3 78 | 11.7 78 | 18.9 82 | 11.5 80 | 7.55 23 | 11.1 29 | 6.00 36 | 23.3 71 | 22.3 74 | 43.5 73 | 30.3 14 | 27.2 36 | 45.2 11 | 28.7 63 | 20.9 43 | 37.1 66 | 6.62 9 | 14.2 8 | 10.5 36 | 8.99 63 | 17.8 55 | 8.04 78 |
CBF [12] | 52.9 | 7.41 42 | 11.9 33 | 9.31 59 | 8.07 39 | 14.9 40 | 7.14 52 | 7.69 32 | 11.1 29 | 5.95 32 | 22.8 61 | 20.7 46 | 45.1 79 | 30.8 60 | 27.3 48 | 47.0 81 | 28.2 41 | 20.6 39 | 36.5 44 | 7.17 63 | 16.6 61 | 11.2 77 | 9.16 70 | 17.9 56 | 8.83 85 |
GraphCuts [14] | 53.5 | 8.65 75 | 14.1 78 | 9.83 66 | 8.28 45 | 14.2 33 | 9.28 69 | 9.89 83 | 10.6 14 | 7.38 78 | 23.0 65 | 21.1 58 | 42.5 63 | 30.3 14 | 27.3 48 | 44.7 4 | 27.2 1 | 21.4 54 | 34.7 1 | 7.42 72 | 17.8 68 | 11.0 74 | 9.32 74 | 18.9 75 | 7.66 72 |
TriangleFlow [30] | 54.1 | 7.79 61 | 13.0 66 | 9.16 54 | 8.36 48 | 15.5 47 | 6.69 39 | 8.20 57 | 11.9 38 | 6.59 63 | 22.5 57 | 21.0 55 | 42.5 63 | 30.1 4 | 27.0 20 | 45.0 7 | 28.9 68 | 22.6 74 | 36.5 44 | 7.42 72 | 18.3 72 | 11.0 74 | 9.49 77 | 19.3 79 | 7.47 60 |
Correlation Flow [79] | 54.2 | 7.05 14 | 11.7 25 | 8.32 2 | 8.29 46 | 15.6 50 | 6.56 32 | 7.64 28 | 10.8 22 | 5.89 27 | 22.2 43 | 20.1 28 | 42.9 70 | 31.7 79 | 27.7 71 | 49.9 88 | 29.6 76 | 23.8 83 | 37.2 70 | 7.62 79 | 19.0 80 | 11.3 79 | 9.22 72 | 18.6 72 | 7.51 64 |
IAOF2 [51] | 55.2 | 8.43 70 | 13.6 75 | 9.76 64 | 9.86 69 | 17.4 73 | 8.67 62 | 7.74 35 | 12.2 45 | 6.33 51 | 23.1 67 | 21.7 71 | 42.3 55 | 31.0 71 | 27.9 75 | 45.6 37 | 28.5 55 | 21.0 46 | 36.6 48 | 6.71 22 | 15.0 30 | 10.3 5 | 9.14 68 | 18.4 69 | 7.49 62 |
Direct ZNCC [66] | 56.5 | 7.07 15 | 12.1 35 | 8.48 9 | 8.26 44 | 15.6 50 | 6.49 28 | 7.86 42 | 11.6 35 | 6.22 45 | 22.4 52 | 21.2 64 | 42.8 68 | 31.3 76 | 27.7 71 | 49.0 87 | 29.3 73 | 23.5 81 | 37.1 66 | 7.60 78 | 19.2 81 | 10.9 71 | 9.13 67 | 18.6 72 | 7.31 46 |
BlockOverlap [61] | 58.3 | 8.81 77 | 12.4 51 | 11.1 77 | 10.0 71 | 15.8 54 | 10.6 75 | 7.84 41 | 10.4 7 | 6.59 63 | 23.3 71 | 20.4 35 | 46.3 83 | 31.9 81 | 27.9 75 | 48.8 86 | 30.3 84 | 19.7 26 | 39.8 85 | 7.08 57 | 14.5 11 | 11.7 84 | 8.35 20 | 16.1 3 | 8.60 83 |
SegOF [10] | 58.7 | 8.16 65 | 12.4 51 | 10.1 72 | 9.10 59 | 15.5 47 | 8.83 65 | 9.48 80 | 14.1 75 | 7.46 79 | 22.8 61 | 23.0 81 | 41.6 25 | 30.8 60 | 27.4 55 | 45.8 59 | 28.3 43 | 22.0 69 | 36.3 32 | 7.83 83 | 21.5 86 | 11.0 74 | 8.46 30 | 17.1 30 | 7.17 28 |
TV-L1-improved [17] | 59.0 | 7.55 51 | 12.9 63 | 9.15 53 | 9.36 61 | 16.9 67 | 7.19 54 | 8.63 70 | 12.2 45 | 6.92 71 | 22.2 43 | 21.0 55 | 42.3 55 | 30.8 60 | 27.5 61 | 45.6 37 | 28.5 55 | 21.4 54 | 36.8 58 | 7.38 70 | 18.6 77 | 10.7 63 | 8.94 61 | 18.0 59 | 7.75 74 |
LocallyOriented [52] | 59.6 | 8.08 62 | 13.1 67 | 9.72 62 | 9.73 67 | 17.0 69 | 7.88 58 | 8.34 64 | 12.8 55 | 6.34 52 | 23.0 65 | 22.1 73 | 43.0 71 | 30.6 37 | 27.2 36 | 45.6 37 | 30.0 79 | 21.9 65 | 38.5 82 | 7.02 54 | 15.8 51 | 10.5 36 | 9.05 64 | 18.4 69 | 7.39 55 |
Dynamic MRF [7] | 59.8 | 7.29 30 | 13.1 67 | 8.69 28 | 8.20 43 | 16.3 60 | 6.74 40 | 9.18 78 | 16.4 83 | 7.22 74 | 24.5 80 | 23.1 82 | 44.4 75 | 30.3 14 | 27.2 36 | 45.1 9 | 29.2 72 | 23.4 80 | 37.2 70 | 7.64 80 | 19.8 84 | 10.7 63 | 9.14 68 | 18.0 59 | 7.48 61 |
Ad-TV-NDC [36] | 60.9 | 10.8 82 | 13.9 77 | 13.4 82 | 11.6 77 | 17.6 74 | 11.2 78 | 7.77 38 | 12.3 47 | 6.12 40 | 24.0 77 | 21.6 70 | 44.4 75 | 31.1 74 | 27.6 69 | 46.1 75 | 29.0 69 | 19.3 14 | 38.0 78 | 6.87 47 | 15.4 44 | 10.5 36 | 8.59 41 | 17.0 25 | 7.71 73 |
SPSA-learn [13] | 61.3 | 8.28 68 | 12.9 63 | 9.95 69 | 9.92 70 | 16.3 60 | 9.49 71 | 9.15 77 | 12.8 55 | 7.30 76 | 23.1 67 | 20.5 40 | 41.6 25 | 30.8 60 | 27.5 61 | 45.7 48 | 28.0 26 | 20.4 35 | 36.3 32 | 8.81 90 | 27.1 90 | 11.8 85 | 10.0 85 | 21.0 86 | 7.20 32 |
Rannacher [23] | 61.4 | 7.69 57 | 13.2 70 | 9.32 60 | 9.37 62 | 16.9 67 | 7.28 55 | 8.67 71 | 13.0 59 | 6.91 70 | 22.2 43 | 21.1 58 | 42.4 61 | 30.8 60 | 27.5 61 | 45.7 48 | 28.5 55 | 21.2 52 | 36.9 63 | 7.35 69 | 18.5 76 | 10.7 63 | 8.90 59 | 18.0 59 | 7.78 75 |
ACK-Prior [27] | 62.8 | 7.12 19 | 11.7 25 | 8.57 17 | 7.08 26 | 13.8 29 | 6.34 18 | 8.81 73 | 11.8 36 | 6.69 66 | 22.5 57 | 21.4 67 | 42.3 55 | 32.6 86 | 29.3 85 | 48.2 84 | 30.7 87 | 25.6 88 | 38.1 80 | 7.95 86 | 18.8 79 | 12.0 86 | 10.8 88 | 21.8 88 | 8.53 82 |
Horn & Schunck [3] | 63.0 | 8.45 72 | 13.3 74 | 10.0 70 | 11.4 76 | 18.1 79 | 9.84 73 | 9.65 81 | 16.1 81 | 7.89 82 | 24.6 81 | 22.8 77 | 42.8 68 | 30.6 37 | 27.2 36 | 45.6 37 | 28.3 43 | 19.4 15 | 36.8 58 | 7.41 71 | 18.0 71 | 10.6 54 | 8.94 61 | 17.7 51 | 7.55 65 |
StereoFlow [44] | 64.4 | 13.8 87 | 20.2 89 | 14.0 83 | 14.1 86 | 21.3 89 | 12.0 82 | 7.79 39 | 13.3 66 | 5.98 34 | 22.4 52 | 20.9 52 | 42.1 52 | 33.7 89 | 32.3 89 | 46.1 75 | 30.5 85 | 31.8 90 | 36.3 32 | 6.63 11 | 14.7 16 | 10.4 22 | 9.98 84 | 21.0 86 | 7.42 56 |
TI-DOFE [24] | 65.1 | 11.8 84 | 14.7 80 | 14.8 85 | 13.9 85 | 20.3 86 | 13.5 86 | 9.26 79 | 16.5 85 | 7.69 81 | 25.1 83 | 22.8 77 | 43.3 72 | 30.2 7 | 27.1 29 | 45.4 17 | 28.4 51 | 19.6 19 | 36.8 58 | 7.22 66 | 17.2 66 | 10.7 63 | 9.21 71 | 18.1 63 | 7.59 69 |
Filter Flow [19] | 67.9 | 8.30 69 | 13.2 70 | 10.0 70 | 10.8 74 | 17.1 70 | 11.7 81 | 7.96 48 | 12.1 43 | 6.38 55 | 23.7 76 | 20.9 52 | 44.5 77 | 31.5 78 | 28.2 79 | 46.7 79 | 28.8 67 | 21.0 46 | 37.3 73 | 7.15 60 | 17.0 65 | 10.7 63 | 9.54 79 | 18.9 75 | 8.47 81 |
NL-TV-NCC [25] | 69.6 | 7.56 52 | 12.7 60 | 8.62 23 | 8.00 37 | 15.4 45 | 6.74 40 | 8.46 66 | 13.1 60 | 6.70 68 | 24.2 79 | 24.0 84 | 45.0 78 | 32.8 87 | 28.3 81 | 52.0 90 | 29.4 74 | 24.1 85 | 36.9 63 | 7.89 85 | 17.9 69 | 12.4 90 | 10.1 86 | 19.9 83 | 8.92 86 |
Bartels [41] | 70.3 | 8.10 64 | 13.8 76 | 9.94 68 | 8.35 47 | 15.8 54 | 8.75 64 | 8.11 55 | 12.1 43 | 6.97 72 | 24.1 78 | 22.7 76 | 47.6 85 | 32.4 84 | 27.8 74 | 51.1 89 | 35.4 89 | 23.0 79 | 46.5 89 | 7.18 64 | 14.9 25 | 12.3 89 | 9.36 76 | 18.0 59 | 9.76 89 |
SILK [87] | 71.4 | 9.77 80 | 15.1 82 | 11.8 80 | 12.3 80 | 18.7 81 | 11.2 78 | 10.3 84 | 16.4 83 | 8.14 84 | 25.2 84 | 22.8 77 | 45.9 81 | 30.8 60 | 27.5 61 | 45.7 48 | 30.6 86 | 20.3 33 | 40.1 87 | 7.19 65 | 16.8 63 | 10.9 71 | 8.87 55 | 17.6 48 | 7.50 63 |
GroupFlow [9] | 74.9 | 10.1 81 | 16.9 86 | 11.3 78 | 10.4 72 | 17.8 76 | 10.0 74 | 10.8 86 | 17.5 86 | 9.21 86 | 23.6 75 | 23.9 83 | 42.5 63 | 31.9 81 | 29.3 85 | 46.2 77 | 30.1 81 | 24.5 86 | 37.8 76 | 7.55 76 | 18.4 75 | 10.6 54 | 9.52 78 | 19.8 82 | 6.89 1 |
SLK [47] | 75.0 | 11.4 83 | 15.4 83 | 14.4 84 | 12.4 82 | 18.0 77 | 12.6 84 | 10.9 87 | 17.6 87 | 8.85 85 | 27.8 86 | 25.2 86 | 46.6 84 | 30.6 37 | 28.1 78 | 43.6 1 | 29.0 69 | 21.9 65 | 37.0 65 | 8.25 87 | 22.4 87 | 11.3 79 | 9.33 75 | 18.5 71 | 7.91 77 |
Learning Flow [11] | 76.5 | 8.21 66 | 14.8 81 | 9.74 63 | 9.78 68 | 17.6 74 | 8.11 60 | 9.68 82 | 15.5 80 | 7.56 80 | 25.0 82 | 24.3 85 | 45.4 80 | 31.9 81 | 28.7 83 | 47.3 82 | 29.4 74 | 22.0 69 | 37.8 76 | 7.49 74 | 18.3 72 | 10.9 71 | 10.2 87 | 20.2 85 | 8.31 80 |
Adaptive flow [45] | 81.6 | 13.2 86 | 15.9 84 | 16.2 87 | 14.2 87 | 19.9 85 | 16.4 88 | 9.02 75 | 13.1 60 | 8.03 83 | 26.0 85 | 22.8 77 | 48.6 86 | 32.4 84 | 29.4 87 | 47.9 83 | 30.1 81 | 24.6 87 | 38.0 78 | 7.55 76 | 16.9 64 | 12.2 87 | 9.85 81 | 19.5 80 | 8.97 88 |
FOLKI [16] | 82.6 | 15.0 89 | 17.4 87 | 19.4 89 | 14.3 88 | 20.9 88 | 14.4 87 | 10.7 85 | 19.2 89 | 9.99 88 | 29.8 88 | 26.8 87 | 53.1 89 | 31.3 76 | 28.6 82 | 45.8 59 | 30.0 79 | 21.7 58 | 38.9 83 | 7.85 84 | 19.4 82 | 11.6 82 | 9.85 81 | 19.2 78 | 8.80 84 |
Pyramid LK [2] | 84.3 | 16.3 90 | 16.1 85 | 21.6 90 | 16.0 89 | 20.3 86 | 18.2 89 | 16.7 89 | 15.3 79 | 14.3 89 | 35.7 90 | 36.7 90 | 56.5 90 | 32.8 87 | 31.2 88 | 45.7 48 | 29.7 77 | 22.1 71 | 38.2 81 | 8.31 88 | 23.1 88 | 11.6 82 | 11.8 89 | 25.0 89 | 8.22 79 |
PGAM+LK [55] | 84.5 | 12.7 85 | 18.1 88 | 15.3 86 | 12.4 82 | 19.1 83 | 13.0 85 | 11.1 88 | 18.6 88 | 9.33 87 | 29.2 87 | 27.5 88 | 51.6 88 | 31.7 79 | 28.8 84 | 46.7 79 | 31.3 88 | 23.7 82 | 40.1 87 | 7.67 82 | 19.4 82 | 11.4 81 | 9.89 83 | 19.5 80 | 8.95 87 |
Periodicity [86] | 89.1 | 14.9 88 | 20.8 90 | 18.2 88 | 20.1 90 | 22.0 90 | 21.5 90 | 17.7 90 | 26.4 90 | 16.1 90 | 29.8 88 | 34.8 89 | 49.7 87 | 35.4 90 | 34.2 90 | 48.7 85 | 37.1 90 | 25.8 89 | 47.4 90 | 8.68 89 | 23.6 89 | 12.2 87 | 13.3 90 | 25.1 90 | 11.6 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |