Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R0.5 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 5.9 | 35.7 1 | 30.6 1 | 47.8 6 | 25.9 6 | 30.5 8 | 36.9 2 | 28.6 1 | 29.8 3 | 38.5 1 | 51.9 4 | 46.5 11 | 80.3 3 | 71.9 3 | 66.6 2 | 87.2 6 | 68.6 3 | 53.9 15 | 82.1 19 | 28.1 1 | 43.6 6 | 42.4 6 | 36.6 15 | 55.6 15 | 50.0 4 |
ComplexFlow [81] | 7.9 | 35.7 1 | 31.4 4 | 47.6 1 | 25.5 1 | 29.6 4 | 36.9 2 | 28.6 1 | 29.9 4 | 38.5 1 | 52.4 21 | 48.0 41 | 80.3 3 | 72.0 7 | 66.6 2 | 87.4 24 | 68.7 11 | 54.4 33 | 82.0 9 | 28.1 1 | 43.5 3 | 42.4 6 | 36.2 2 | 55.0 3 | 50.0 4 |
NN-field [73] | 11.0 | 36.0 11 | 32.2 13 | 47.9 13 | 25.5 1 | 29.3 3 | 36.8 1 | 29.4 34 | 29.7 2 | 39.0 27 | 52.4 21 | 48.1 46 | 80.3 3 | 72.0 7 | 66.7 7 | 87.3 12 | 68.7 11 | 54.0 19 | 82.0 9 | 28.1 1 | 43.4 2 | 42.4 6 | 36.4 7 | 55.2 5 | 50.0 4 |
IROF++ [58] | 12.6 | 36.2 16 | 33.0 24 | 47.8 6 | 26.1 10 | 30.9 13 | 36.9 2 | 29.1 18 | 31.0 16 | 38.9 18 | 51.6 1 | 45.6 1 | 80.4 10 | 72.0 7 | 66.8 10 | 87.2 6 | 68.6 3 | 53.4 4 | 82.2 34 | 28.3 9 | 44.6 21 | 42.4 6 | 36.5 11 | 55.3 6 | 50.4 51 |
Sparse-NonSparse [56] | 13.6 | 36.2 16 | 32.8 22 | 48.0 18 | 25.9 6 | 30.4 6 | 37.0 8 | 29.0 12 | 30.9 13 | 38.8 5 | 52.0 10 | 46.1 5 | 80.6 27 | 72.1 16 | 66.8 10 | 87.3 12 | 68.9 28 | 54.6 37 | 82.1 19 | 28.3 9 | 44.0 11 | 42.4 6 | 36.4 7 | 55.4 9 | 50.1 15 |
nLayers [57] | 16.4 | 36.4 30 | 32.0 8 | 48.2 34 | 26.0 8 | 30.4 6 | 37.3 24 | 28.7 4 | 29.4 1 | 38.8 5 | 52.2 19 | 46.8 16 | 80.4 10 | 72.3 49 | 67.1 46 | 87.4 24 | 68.8 21 | 54.7 39 | 82.0 9 | 28.3 9 | 43.7 8 | 42.4 6 | 36.4 7 | 55.4 9 | 49.9 1 |
Layers++ [37] | 18.2 | 36.3 24 | 32.4 17 | 48.2 34 | 25.7 3 | 29.2 2 | 37.3 24 | 28.9 8 | 30.6 7 | 38.9 18 | 52.0 10 | 46.4 9 | 80.4 10 | 72.2 25 | 67.0 31 | 87.5 55 | 68.9 28 | 55.2 55 | 82.0 9 | 28.3 9 | 44.0 11 | 42.4 6 | 36.6 15 | 55.5 13 | 50.1 15 |
LSM [39] | 19.0 | 36.3 24 | 33.7 40 | 48.0 18 | 26.1 10 | 31.0 15 | 37.0 8 | 29.1 18 | 31.8 30 | 38.9 18 | 52.2 19 | 46.9 19 | 80.6 27 | 72.1 16 | 66.9 18 | 87.3 12 | 69.0 37 | 54.9 45 | 82.1 19 | 28.3 9 | 44.1 13 | 42.4 6 | 36.5 11 | 55.7 19 | 50.0 4 |
Epistemic [84] | 19.4 | 36.0 11 | 32.2 13 | 48.0 18 | 26.1 10 | 31.1 17 | 36.9 2 | 29.1 18 | 32.3 35 | 38.8 5 | 52.0 10 | 47.0 21 | 80.3 3 | 72.2 25 | 67.1 46 | 87.3 12 | 68.7 11 | 53.9 15 | 82.1 19 | 28.5 37 | 46.1 59 | 42.4 6 | 36.7 23 | 55.8 22 | 50.2 27 |
ADF [67] | 19.5 | 35.7 1 | 30.9 2 | 47.9 13 | 26.4 20 | 31.7 20 | 37.2 21 | 29.0 12 | 31.7 27 | 38.8 5 | 51.8 3 | 46.1 5 | 80.4 10 | 72.3 49 | 67.1 46 | 87.4 24 | 68.6 3 | 54.1 22 | 81.9 4 | 28.4 24 | 44.9 31 | 42.4 6 | 37.0 43 | 56.6 49 | 50.2 27 |
SCR [74] | 19.6 | 36.3 24 | 33.1 26 | 47.8 6 | 26.1 10 | 30.8 10 | 37.2 21 | 29.0 12 | 30.6 7 | 38.8 5 | 52.1 15 | 46.4 9 | 80.4 10 | 72.3 49 | 67.1 46 | 87.4 24 | 69.0 37 | 55.1 52 | 82.1 19 | 28.3 9 | 44.7 25 | 42.3 1 | 36.7 23 | 56.1 30 | 49.9 1 |
TV-L1-MCT [64] | 20.0 | 36.8 56 | 34.7 70 | 48.2 34 | 26.7 22 | 32.4 25 | 37.3 24 | 28.6 1 | 30.9 13 | 39.0 27 | 51.9 4 | 45.7 2 | 80.5 23 | 72.2 25 | 67.0 31 | 87.3 12 | 68.6 3 | 53.0 2 | 82.3 45 | 28.3 9 | 44.4 16 | 42.4 6 | 36.1 1 | 54.9 1 | 50.2 27 |
LME [72] | 22.5 | 35.8 4 | 31.0 3 | 47.8 6 | 26.9 31 | 32.2 24 | 38.4 57 | 29.2 23 | 32.6 37 | 38.8 5 | 51.9 4 | 46.7 14 | 80.4 10 | 72.6 74 | 67.4 70 | 87.7 80 | 68.8 21 | 54.9 45 | 82.0 9 | 28.1 1 | 43.5 3 | 42.4 6 | 36.3 4 | 55.3 6 | 50.0 4 |
Levin3 [90] | 22.7 | 36.5 36 | 33.7 40 | 48.0 18 | 26.2 16 | 31.1 17 | 37.0 8 | 28.7 4 | 30.6 7 | 38.9 18 | 51.9 4 | 45.9 3 | 80.6 27 | 72.2 25 | 66.9 18 | 87.3 12 | 69.2 53 | 55.3 58 | 82.2 34 | 28.4 24 | 44.7 25 | 42.4 6 | 36.8 27 | 56.2 37 | 50.2 27 |
COFM [59] | 23.4 | 36.1 14 | 32.0 8 | 48.1 28 | 26.1 10 | 30.8 10 | 37.1 13 | 28.8 6 | 30.3 5 | 38.8 5 | 51.7 2 | 46.0 4 | 80.0 1 | 72.2 25 | 67.2 55 | 87.2 6 | 68.9 28 | 56.1 74 | 81.7 1 | 28.1 1 | 42.8 1 | 43.1 82 | 37.1 51 | 56.9 59 | 50.7 73 |
Ramp [62] | 23.7 | 36.5 36 | 34.0 56 | 48.2 34 | 26.0 8 | 30.8 10 | 37.1 13 | 28.9 8 | 30.8 11 | 38.8 5 | 51.9 4 | 46.1 5 | 80.4 10 | 72.2 25 | 67.0 31 | 87.4 24 | 69.1 45 | 55.4 64 | 82.2 34 | 28.4 24 | 44.7 25 | 42.4 6 | 36.8 27 | 56.2 37 | 50.2 27 |
OFLADF [82] | 23.8 | 35.8 4 | 31.5 5 | 47.8 6 | 25.7 3 | 29.8 5 | 37.0 8 | 29.0 12 | 31.2 18 | 38.7 3 | 52.0 10 | 46.8 16 | 80.1 2 | 72.4 64 | 67.3 66 | 87.4 24 | 68.9 28 | 55.3 58 | 82.0 9 | 28.6 47 | 45.4 47 | 42.4 6 | 37.1 51 | 57.1 65 | 50.1 15 |
MDP-Flow [26] | 24.7 | 35.8 4 | 31.5 5 | 48.0 18 | 26.2 16 | 31.4 19 | 37.4 33 | 29.0 12 | 31.1 17 | 38.9 18 | 52.7 34 | 47.8 37 | 80.7 38 | 72.2 25 | 66.9 18 | 87.5 55 | 68.9 28 | 55.2 55 | 82.1 19 | 28.5 37 | 45.3 46 | 42.5 41 | 36.3 4 | 55.4 9 | 50.0 4 |
IROF-TV [53] | 25.0 | 36.3 24 | 33.6 37 | 48.2 34 | 26.2 16 | 31.0 15 | 37.0 8 | 29.3 26 | 33.6 53 | 39.1 31 | 51.9 4 | 46.5 11 | 80.8 44 | 72.3 49 | 67.0 31 | 87.6 74 | 68.5 1 | 53.9 15 | 81.9 4 | 28.3 9 | 44.9 31 | 42.3 1 | 36.6 15 | 55.6 15 | 50.4 51 |
Deep-Matching [85] | 25.2 | 36.2 16 | 31.7 7 | 48.4 46 | 27.7 41 | 33.1 30 | 39.2 59 | 29.3 26 | 33.1 45 | 39.0 27 | 52.7 34 | 47.1 23 | 80.8 44 | 72.2 25 | 66.8 10 | 87.5 55 | 68.7 11 | 52.7 1 | 82.5 64 | 28.1 1 | 43.5 3 | 42.4 6 | 36.2 2 | 54.9 1 | 50.2 27 |
Classic+NL [31] | 25.2 | 36.5 36 | 34.0 56 | 48.2 34 | 26.2 16 | 30.9 13 | 37.1 13 | 28.8 6 | 30.6 7 | 38.8 5 | 52.1 15 | 46.5 11 | 80.6 27 | 72.2 25 | 67.0 31 | 87.4 24 | 69.2 53 | 55.3 58 | 82.2 34 | 28.4 24 | 44.6 21 | 42.4 6 | 36.8 27 | 56.2 37 | 50.2 27 |
SuperFlow [89] | 27.2 | 36.5 36 | 32.2 13 | 48.8 59 | 28.3 52 | 33.4 35 | 40.9 67 | 29.5 42 | 32.6 37 | 39.4 45 | 52.5 24 | 46.7 14 | 80.9 49 | 72.2 25 | 66.9 18 | 87.5 55 | 68.5 1 | 53.4 4 | 82.0 9 | 28.3 9 | 44.7 25 | 42.4 6 | 36.3 4 | 55.4 9 | 50.1 15 |
FC-2Layers-FF [77] | 27.5 | 36.4 30 | 33.8 46 | 48.1 28 | 25.7 3 | 29.1 1 | 37.4 33 | 28.9 8 | 30.9 13 | 38.8 5 | 52.1 15 | 46.8 16 | 80.6 27 | 72.3 49 | 67.2 55 | 87.4 24 | 69.1 45 | 55.5 66 | 82.1 19 | 28.4 24 | 44.7 25 | 42.5 41 | 36.9 39 | 56.3 43 | 50.0 4 |
Second-order prior [8] | 28.6 | 36.2 16 | 32.1 11 | 48.1 28 | 27.9 47 | 34.1 43 | 37.4 33 | 29.9 56 | 34.6 67 | 39.7 59 | 52.4 21 | 47.2 25 | 80.6 27 | 71.9 3 | 66.6 2 | 87.5 55 | 68.7 11 | 54.0 19 | 82.1 19 | 28.5 37 | 45.2 45 | 42.4 6 | 36.5 11 | 55.7 19 | 50.2 27 |
Aniso. Huber-L1 [22] | 29.2 | 36.7 50 | 33.5 34 | 48.6 55 | 28.5 56 | 34.3 47 | 38.2 53 | 29.3 26 | 31.8 30 | 38.9 18 | 52.5 24 | 47.5 29 | 80.6 27 | 72.0 7 | 66.7 7 | 87.4 24 | 68.6 3 | 54.3 30 | 81.9 4 | 28.5 37 | 45.0 38 | 42.4 6 | 36.8 27 | 56.0 26 | 50.3 42 |
Brox et al. [5] | 30.2 | 36.3 24 | 32.4 17 | 48.2 34 | 27.8 45 | 34.1 43 | 38.0 51 | 29.8 53 | 33.9 59 | 39.6 57 | 52.5 24 | 47.0 21 | 80.4 10 | 72.2 25 | 66.9 18 | 87.5 55 | 68.7 11 | 53.8 11 | 82.1 19 | 28.4 24 | 44.9 31 | 42.5 41 | 36.5 11 | 55.5 13 | 50.2 27 |
p-harmonic [29] | 31.6 | 35.9 8 | 32.1 11 | 47.9 13 | 28.2 49 | 34.3 47 | 37.8 47 | 29.4 34 | 34.2 63 | 39.4 45 | 53.0 52 | 47.7 33 | 80.7 38 | 72.2 25 | 67.0 31 | 87.3 12 | 68.8 21 | 54.1 22 | 82.3 45 | 28.5 37 | 45.5 52 | 42.4 6 | 36.6 15 | 56.0 26 | 50.2 27 |
ComplOF-FED-GPU [35] | 31.8 | 36.3 24 | 33.4 31 | 48.0 18 | 26.8 27 | 33.0 28 | 37.3 24 | 30.4 67 | 34.0 60 | 39.6 57 | 52.5 24 | 48.1 46 | 80.9 49 | 72.1 16 | 66.8 10 | 87.4 24 | 68.7 11 | 54.3 30 | 82.1 19 | 28.5 37 | 45.1 41 | 42.5 41 | 36.8 27 | 56.0 26 | 50.2 27 |
FESL [75] | 31.9 | 36.6 44 | 33.9 51 | 48.0 18 | 26.4 20 | 31.7 20 | 37.3 24 | 29.1 18 | 31.3 19 | 38.9 18 | 52.6 31 | 47.6 30 | 80.3 3 | 72.4 64 | 67.3 66 | 87.4 24 | 69.3 62 | 55.9 71 | 82.1 19 | 28.4 24 | 44.9 31 | 42.3 1 | 37.0 43 | 56.6 49 | 50.1 15 |
TC-Flow [46] | 32.8 | 36.2 16 | 33.2 27 | 48.2 34 | 26.9 31 | 33.5 36 | 37.5 39 | 29.5 42 | 33.6 53 | 38.9 18 | 52.1 15 | 47.1 23 | 80.6 27 | 72.3 49 | 67.2 55 | 87.5 55 | 69.0 37 | 54.8 43 | 82.3 45 | 28.4 24 | 44.4 16 | 42.5 41 | 36.6 15 | 56.1 30 | 50.1 15 |
EP-PM [83] | 33.2 | 35.8 4 | 32.3 16 | 47.6 1 | 26.7 22 | 33.0 28 | 36.9 2 | 30.0 59 | 35.5 75 | 39.4 45 | 52.6 31 | 48.9 64 | 80.4 10 | 72.2 25 | 67.1 46 | 87.4 24 | 69.3 62 | 55.9 71 | 82.3 45 | 28.4 24 | 44.9 31 | 42.5 41 | 36.8 27 | 56.1 30 | 50.1 15 |
DPOF [18] | 33.9 | 36.7 50 | 34.5 65 | 48.6 55 | 26.1 10 | 30.6 9 | 37.6 42 | 29.8 53 | 31.4 20 | 39.3 42 | 52.8 43 | 48.6 59 | 80.8 44 | 72.0 7 | 66.8 10 | 87.3 12 | 69.1 45 | 55.3 58 | 81.9 4 | 28.5 37 | 44.5 19 | 42.5 41 | 36.9 39 | 56.5 46 | 50.0 4 |
OFH [38] | 34.0 | 36.4 30 | 33.8 46 | 48.2 34 | 27.4 36 | 33.3 34 | 37.4 33 | 29.7 49 | 35.0 71 | 39.0 27 | 52.5 24 | 48.3 54 | 80.9 49 | 72.2 25 | 67.0 31 | 87.4 24 | 68.7 11 | 54.2 28 | 82.1 19 | 28.6 47 | 45.4 47 | 42.5 41 | 36.6 15 | 56.0 26 | 50.1 15 |
Efficient-NL [60] | 34.9 | 36.5 36 | 33.6 37 | 48.0 18 | 26.7 22 | 32.0 22 | 37.1 13 | 29.9 56 | 31.4 20 | 39.3 42 | 52.7 34 | 47.7 33 | 80.4 10 | 72.2 25 | 67.0 31 | 87.3 12 | 69.5 70 | 57.0 82 | 81.9 4 | 28.6 47 | 45.9 57 | 42.4 6 | 37.9 71 | 58.1 75 | 50.1 15 |
Sparse Occlusion [54] | 36.5 | 36.5 36 | 33.7 40 | 48.2 34 | 27.6 40 | 34.1 43 | 37.3 24 | 29.3 26 | 31.8 30 | 38.8 5 | 52.8 43 | 48.1 46 | 80.5 23 | 72.3 49 | 67.1 46 | 87.4 24 | 69.2 53 | 56.1 74 | 82.0 9 | 28.5 37 | 45.4 47 | 42.3 1 | 37.2 57 | 57.0 62 | 50.2 27 |
PMF [76] | 36.5 | 35.9 8 | 32.0 8 | 47.7 4 | 26.9 31 | 33.5 36 | 36.9 2 | 29.6 46 | 34.5 65 | 39.1 31 | 52.5 24 | 47.8 37 | 80.4 10 | 72.5 70 | 67.5 74 | 87.4 24 | 69.2 53 | 55.0 51 | 82.4 55 | 28.5 37 | 45.0 38 | 42.5 41 | 37.3 60 | 57.3 67 | 50.0 4 |
TC/T-Flow [80] | 36.5 | 36.6 44 | 33.7 40 | 47.9 13 | 26.8 27 | 32.9 27 | 37.1 13 | 29.1 18 | 31.9 33 | 38.8 5 | 52.7 34 | 48.5 57 | 80.4 10 | 72.5 70 | 67.4 70 | 87.5 55 | 69.1 45 | 55.2 55 | 82.1 19 | 28.6 47 | 45.4 47 | 42.5 41 | 37.0 43 | 56.9 59 | 50.0 4 |
Local-TV-L1 [65] | 36.9 | 37.5 66 | 33.0 24 | 49.7 72 | 29.3 65 | 34.5 54 | 40.3 64 | 29.2 23 | 31.6 25 | 39.1 31 | 53.3 60 | 47.3 27 | 83.1 83 | 72.1 16 | 66.9 18 | 87.4 24 | 69.3 62 | 53.4 4 | 83.2 84 | 28.2 7 | 43.9 9 | 42.4 6 | 36.4 7 | 55.1 4 | 50.4 51 |
CLG-TV [48] | 37.2 | 36.6 44 | 33.4 31 | 48.5 50 | 28.2 49 | 34.4 52 | 38.2 53 | 29.7 49 | 33.6 53 | 39.4 45 | 52.8 43 | 48.0 41 | 80.9 49 | 72.2 25 | 66.9 18 | 87.5 55 | 68.7 11 | 54.0 19 | 82.1 19 | 28.4 24 | 45.1 41 | 42.4 6 | 37.0 43 | 56.5 46 | 50.2 27 |
SIOF [69] | 37.7 | 36.7 50 | 34.1 58 | 48.2 34 | 29.1 62 | 35.4 67 | 39.7 60 | 29.4 34 | 32.9 40 | 39.1 31 | 52.7 34 | 47.7 33 | 80.9 49 | 71.9 3 | 66.6 2 | 87.4 24 | 69.1 45 | 54.3 30 | 82.4 55 | 28.3 9 | 44.6 21 | 42.4 6 | 37.3 60 | 56.8 56 | 50.3 42 |
ALD-Flow [68] | 38.4 | 36.7 50 | 33.9 51 | 48.6 55 | 27.0 34 | 33.2 32 | 37.9 49 | 29.3 26 | 33.4 51 | 38.9 18 | 52.5 24 | 48.0 41 | 80.9 49 | 72.4 64 | 67.2 55 | 87.6 74 | 68.9 28 | 54.4 33 | 82.2 34 | 28.2 7 | 43.6 6 | 42.4 6 | 37.0 43 | 56.6 49 | 50.3 42 |
LDOF [28] | 38.9 | 37.1 61 | 33.7 40 | 48.8 59 | 29.5 66 | 35.3 65 | 40.6 66 | 30.0 59 | 34.3 64 | 39.7 59 | 52.8 43 | 47.9 39 | 80.9 49 | 72.2 25 | 66.9 18 | 87.4 24 | 68.8 21 | 53.6 9 | 82.3 45 | 28.3 9 | 44.5 19 | 42.4 6 | 36.6 15 | 55.8 22 | 50.4 51 |
FastOF [78] | 38.9 | 37.0 59 | 33.9 51 | 48.4 46 | 28.5 56 | 34.1 43 | 39.9 62 | 30.2 65 | 35.8 78 | 39.7 59 | 53.4 61 | 49.1 68 | 80.3 3 | 72.1 16 | 66.9 18 | 87.3 12 | 69.0 37 | 53.7 10 | 82.5 64 | 28.3 9 | 44.6 21 | 42.4 6 | 36.7 23 | 55.9 25 | 50.3 42 |
Complementary OF [21] | 39.0 | 36.1 14 | 33.3 30 | 47.8 6 | 26.7 22 | 33.2 32 | 37.3 24 | 30.4 67 | 32.9 40 | 39.5 51 | 52.8 43 | 48.7 62 | 81.1 65 | 72.3 49 | 67.2 55 | 87.3 12 | 68.8 21 | 54.7 39 | 82.2 34 | 28.7 55 | 45.6 54 | 42.5 41 | 36.8 27 | 56.7 52 | 50.3 42 |
SimpleFlow [49] | 39.4 | 36.5 36 | 34.2 62 | 48.2 34 | 27.2 35 | 32.8 26 | 37.3 24 | 30.1 63 | 31.7 27 | 39.4 45 | 52.0 10 | 46.3 8 | 80.7 38 | 72.3 49 | 67.2 55 | 87.4 24 | 69.0 37 | 55.4 64 | 82.0 9 | 28.7 55 | 47.1 68 | 42.6 62 | 37.0 43 | 56.8 56 | 50.1 15 |
F-TV-L1 [15] | 39.8 | 37.4 64 | 34.6 67 | 49.2 63 | 28.8 60 | 34.9 60 | 38.3 55 | 29.7 49 | 34.1 62 | 39.5 51 | 52.7 34 | 47.6 30 | 81.0 59 | 71.7 1 | 66.5 1 | 87.4 24 | 68.8 21 | 53.5 8 | 82.4 55 | 28.3 9 | 44.3 15 | 42.4 6 | 37.1 51 | 56.3 43 | 50.6 68 |
Classic++ [32] | 40.3 | 36.4 30 | 33.5 34 | 48.4 46 | 27.4 36 | 33.7 39 | 37.6 42 | 29.6 46 | 33.6 53 | 39.2 39 | 52.7 34 | 47.3 27 | 80.9 49 | 72.2 25 | 67.0 31 | 87.5 55 | 69.1 45 | 54.5 36 | 82.5 64 | 28.5 37 | 44.9 31 | 42.6 62 | 36.8 27 | 56.2 37 | 50.3 42 |
IAOF [50] | 40.3 | 38.0 75 | 34.2 62 | 49.8 73 | 31.7 77 | 37.9 78 | 41.1 69 | 28.9 8 | 32.6 37 | 39.4 45 | 53.7 66 | 48.1 46 | 80.8 44 | 72.0 7 | 66.7 7 | 87.5 55 | 68.9 28 | 54.1 22 | 82.2 34 | 28.3 9 | 45.1 41 | 42.3 1 | 36.8 27 | 56.1 30 | 50.2 27 |
Occlusion-TV-L1 [63] | 42.2 | 36.6 44 | 33.8 46 | 48.5 50 | 28.4 54 | 34.8 58 | 37.7 45 | 29.5 42 | 33.0 43 | 39.5 51 | 53.0 52 | 48.1 46 | 81.1 65 | 72.1 16 | 66.8 10 | 87.5 55 | 68.9 28 | 53.4 4 | 82.4 55 | 29.0 70 | 44.7 25 | 42.6 62 | 36.8 27 | 55.6 15 | 50.4 51 |
Shiralkar [42] | 42.5 | 36.5 36 | 34.6 67 | 48.1 28 | 28.3 52 | 34.3 47 | 37.2 21 | 29.8 53 | 36.9 82 | 40.0 66 | 53.9 70 | 49.0 65 | 80.5 23 | 71.8 2 | 66.6 2 | 87.2 6 | 69.2 53 | 55.1 52 | 82.4 55 | 29.2 74 | 48.0 75 | 42.5 41 | 36.6 15 | 55.7 19 | 50.1 15 |
CostFilter [40] | 42.6 | 35.9 8 | 32.7 20 | 47.6 1 | 26.8 27 | 33.5 36 | 37.1 13 | 29.7 49 | 35.6 77 | 39.2 39 | 52.9 49 | 49.4 71 | 80.3 3 | 72.6 74 | 67.6 75 | 87.4 24 | 69.6 72 | 54.8 43 | 83.1 83 | 28.6 47 | 45.6 54 | 42.6 62 | 37.0 43 | 56.7 52 | 49.9 1 |
CRTflow [88] | 42.8 | 36.7 50 | 33.8 46 | 48.5 50 | 27.7 41 | 33.8 40 | 37.4 33 | 30.7 71 | 35.3 72 | 40.9 80 | 52.9 49 | 48.1 46 | 81.8 74 | 72.2 25 | 66.9 18 | 87.4 24 | 68.9 28 | 54.1 22 | 82.3 45 | 28.4 24 | 44.9 31 | 42.5 41 | 36.8 27 | 56.1 30 | 50.5 60 |
Fusion [6] | 43.5 | 36.0 11 | 32.7 20 | 47.8 6 | 26.8 27 | 32.1 23 | 37.5 39 | 29.5 42 | 31.5 24 | 39.5 51 | 53.5 62 | 48.6 59 | 80.7 38 | 72.6 74 | 68.0 82 | 87.1 2 | 69.3 62 | 57.6 86 | 81.8 3 | 28.7 55 | 47.1 68 | 42.5 41 | 38.2 78 | 59.9 86 | 50.0 4 |
Modified CLG [34] | 45.2 | 36.9 58 | 32.8 22 | 49.4 67 | 30.9 74 | 36.3 73 | 42.8 75 | 30.0 59 | 34.8 69 | 39.9 63 | 53.0 52 | 47.9 39 | 80.7 38 | 72.2 25 | 66.9 18 | 87.5 55 | 68.7 11 | 53.8 11 | 82.2 34 | 28.4 24 | 45.1 41 | 42.5 41 | 36.9 39 | 56.2 37 | 50.5 60 |
Adaptive [20] | 45.8 | 36.8 56 | 34.4 64 | 48.5 50 | 28.8 60 | 35.2 64 | 37.7 45 | 29.4 34 | 33.2 47 | 39.2 39 | 52.6 31 | 47.6 30 | 80.6 27 | 72.3 49 | 67.0 31 | 87.5 55 | 69.1 45 | 54.7 39 | 82.3 45 | 28.7 55 | 46.0 58 | 42.4 6 | 37.3 60 | 56.9 59 | 50.4 51 |
TCOF [71] | 45.9 | 36.6 44 | 33.9 51 | 48.1 28 | 29.1 62 | 35.7 68 | 38.3 55 | 29.0 12 | 31.4 20 | 38.7 3 | 52.8 43 | 48.7 62 | 80.6 27 | 72.2 25 | 67.1 46 | 87.4 24 | 69.3 62 | 56.0 73 | 82.1 19 | 28.7 55 | 46.2 61 | 42.5 41 | 38.2 78 | 58.7 82 | 50.5 60 |
Nguyen [33] | 47.7 | 39.6 79 | 33.9 51 | 52.6 81 | 32.5 81 | 37.9 78 | 43.3 77 | 30.0 59 | 35.5 75 | 40.2 71 | 54.1 73 | 49.0 65 | 80.9 49 | 72.0 7 | 66.8 10 | 87.4 24 | 68.6 3 | 53.8 11 | 82.0 9 | 28.8 63 | 47.8 73 | 42.4 6 | 36.8 27 | 56.1 30 | 50.3 42 |
SPSA-learn [13] | 51.1 | 37.4 64 | 33.6 37 | 49.4 67 | 29.8 69 | 35.1 62 | 41.4 72 | 30.9 74 | 33.2 47 | 40.7 75 | 53.5 62 | 47.2 25 | 80.4 10 | 72.2 25 | 67.0 31 | 87.4 24 | 68.8 21 | 54.1 22 | 82.2 34 | 29.5 83 | 52.2 90 | 42.9 77 | 37.1 51 | 57.0 62 | 50.3 42 |
GraphCuts [14] | 51.4 | 38.0 75 | 35.1 73 | 49.5 69 | 28.4 54 | 33.9 42 | 41.3 71 | 31.3 78 | 30.8 11 | 40.7 75 | 53.7 66 | 48.3 54 | 81.0 59 | 72.1 16 | 67.1 46 | 87.1 2 | 68.6 3 | 54.9 45 | 81.7 1 | 28.8 63 | 46.3 62 | 42.8 73 | 37.7 67 | 58.5 78 | 50.4 51 |
HBpMotionGpu [43] | 52.0 | 38.8 78 | 35.9 77 | 50.9 77 | 32.1 79 | 38.2 80 | 44.4 81 | 29.2 23 | 31.7 27 | 39.3 42 | 53.9 70 | 49.6 73 | 81.5 72 | 72.1 16 | 67.0 31 | 87.1 2 | 69.5 70 | 54.9 45 | 82.4 55 | 28.3 9 | 44.4 16 | 42.5 41 | 37.3 60 | 56.5 46 | 51.1 77 |
Dynamic MRF [7] | 52.1 | 36.2 16 | 34.1 58 | 48.0 18 | 27.5 38 | 34.6 55 | 37.4 33 | 30.9 74 | 36.8 81 | 40.4 73 | 54.5 77 | 49.3 70 | 81.9 75 | 71.9 3 | 66.8 10 | 87.2 6 | 69.4 68 | 55.5 66 | 82.5 64 | 29.0 70 | 47.8 73 | 42.5 41 | 37.5 66 | 56.8 56 | 50.5 60 |
2D-CLG [1] | 52.2 | 37.9 71 | 33.5 34 | 50.5 76 | 32.5 81 | 37.4 75 | 45.0 82 | 30.8 73 | 34.8 69 | 40.7 75 | 53.7 66 | 48.3 54 | 80.5 23 | 72.3 49 | 67.1 46 | 87.6 74 | 68.6 3 | 53.2 3 | 82.2 34 | 28.8 63 | 46.7 66 | 42.5 41 | 36.9 39 | 55.6 15 | 50.3 42 |
TV-L1-improved [17] | 52.3 | 36.6 44 | 34.1 58 | 48.4 46 | 28.6 58 | 35.1 62 | 37.8 47 | 30.5 69 | 33.2 47 | 40.0 66 | 52.7 34 | 48.0 41 | 80.9 49 | 72.3 49 | 67.2 55 | 87.4 24 | 69.1 45 | 54.9 45 | 82.3 45 | 28.8 63 | 47.3 70 | 42.6 62 | 37.2 57 | 56.7 52 | 50.6 68 |
Black & Anandan [4] | 52.7 | 37.9 71 | 34.1 58 | 49.6 70 | 30.7 72 | 36.0 69 | 41.2 70 | 31.0 76 | 34.7 68 | 40.3 72 | 53.9 70 | 48.6 59 | 80.7 38 | 72.3 49 | 67.0 31 | 87.4 24 | 69.0 37 | 53.8 11 | 82.5 64 | 28.8 63 | 46.5 63 | 42.4 6 | 37.0 43 | 56.1 30 | 50.4 51 |
CBF [12] | 53.0 | 36.4 30 | 32.5 19 | 48.9 61 | 27.5 38 | 33.8 40 | 37.9 49 | 29.3 26 | 31.6 25 | 39.1 31 | 53.2 56 | 48.1 46 | 82.6 78 | 72.4 64 | 67.2 55 | 87.7 80 | 69.2 53 | 55.3 58 | 82.3 45 | 28.7 55 | 46.1 59 | 42.9 77 | 37.9 71 | 57.7 73 | 51.7 83 |
Rannacher [23] | 54.5 | 36.7 50 | 34.5 65 | 48.7 58 | 28.7 59 | 35.3 65 | 38.1 52 | 30.5 69 | 34.0 60 | 39.9 63 | 52.7 34 | 48.0 41 | 80.8 44 | 72.4 64 | 67.2 55 | 87.5 55 | 69.0 37 | 54.6 37 | 82.3 45 | 28.8 63 | 47.0 67 | 42.6 62 | 37.1 51 | 56.4 45 | 50.6 68 |
Correlation Flow [79] | 55.0 | 36.2 16 | 33.4 31 | 47.7 4 | 27.7 41 | 34.3 47 | 37.3 24 | 29.4 34 | 31.4 20 | 38.8 5 | 53.1 55 | 48.5 57 | 81.3 69 | 72.8 79 | 67.6 75 | 88.6 88 | 70.1 78 | 57.1 83 | 82.6 72 | 29.4 79 | 48.8 82 | 43.0 79 | 37.7 67 | 57.9 74 | 50.5 60 |
Direct ZNCC [66] | 55.3 | 36.2 16 | 33.8 46 | 47.9 13 | 27.7 41 | 34.3 47 | 37.1 13 | 29.6 46 | 32.1 34 | 39.1 31 | 53.2 56 | 49.5 72 | 81.2 68 | 72.6 74 | 67.4 70 | 88.4 87 | 69.8 75 | 56.5 80 | 82.5 64 | 29.4 79 | 49.0 84 | 42.8 73 | 37.4 64 | 57.5 68 | 50.2 27 |
TriangleFlow [30] | 56.3 | 37.0 59 | 34.9 71 | 48.5 50 | 28.0 48 | 34.7 56 | 37.5 39 | 30.2 65 | 33.0 43 | 39.9 63 | 53.2 56 | 49.0 65 | 81.1 65 | 72.0 7 | 66.9 18 | 87.1 2 | 69.8 75 | 56.1 74 | 82.4 55 | 29.2 74 | 48.5 79 | 42.8 73 | 38.1 76 | 58.5 78 | 50.5 60 |
SegOF [10] | 56.6 | 37.6 68 | 33.2 27 | 50.0 75 | 29.1 62 | 34.7 56 | 41.0 68 | 31.4 79 | 35.3 72 | 40.7 75 | 53.6 64 | 50.7 81 | 80.6 27 | 72.3 49 | 67.2 55 | 87.5 55 | 69.0 37 | 55.3 58 | 82.2 34 | 29.0 70 | 48.6 80 | 42.7 71 | 36.7 23 | 55.8 22 | 50.4 51 |
BlockOverlap [61] | 56.7 | 38.5 77 | 33.2 27 | 51.3 78 | 30.0 71 | 34.4 52 | 42.8 75 | 29.4 34 | 30.4 6 | 40.0 66 | 53.2 56 | 46.9 19 | 83.0 81 | 72.9 82 | 67.6 75 | 88.3 85 | 69.7 74 | 54.1 22 | 83.3 86 | 28.7 55 | 44.1 13 | 43.5 85 | 37.1 51 | 55.3 6 | 51.8 84 |
IAOF2 [51] | 57.9 | 37.9 71 | 35.9 77 | 49.1 62 | 29.6 67 | 36.1 71 | 40.0 63 | 29.3 26 | 33.4 51 | 40.0 66 | 54.1 73 | 50.2 78 | 81.0 59 | 72.4 64 | 67.4 70 | 87.4 24 | 69.2 53 | 54.9 45 | 82.4 55 | 28.6 47 | 45.5 52 | 42.4 6 | 37.9 71 | 57.6 71 | 50.6 68 |
Ad-TV-NDC [36] | 58.3 | 40.4 82 | 35.1 73 | 53.1 82 | 31.9 78 | 36.7 74 | 43.8 79 | 29.4 34 | 32.9 40 | 39.1 31 | 54.5 77 | 49.2 69 | 82.1 76 | 72.5 70 | 67.3 66 | 87.5 55 | 69.3 62 | 53.9 15 | 82.7 74 | 28.6 47 | 45.4 47 | 42.4 6 | 37.2 57 | 56.2 37 | 50.6 68 |
LocallyOriented [52] | 64.2 | 37.5 66 | 35.9 77 | 49.2 63 | 29.6 67 | 36.2 72 | 39.1 58 | 30.1 63 | 33.8 57 | 39.5 51 | 53.7 66 | 50.0 76 | 81.3 69 | 72.3 49 | 67.2 55 | 87.5 55 | 70.2 82 | 56.2 79 | 82.9 79 | 28.8 63 | 45.6 54 | 42.5 41 | 37.7 67 | 57.6 71 | 50.5 60 |
StereoFlow [44] | 64.8 | 46.3 90 | 45.9 90 | 54.3 83 | 38.3 89 | 45.4 90 | 45.7 84 | 29.3 26 | 33.8 57 | 39.1 31 | 52.9 49 | 47.7 33 | 81.0 59 | 74.4 89 | 70.5 90 | 87.6 74 | 72.0 89 | 66.3 90 | 82.4 55 | 28.4 24 | 45.0 38 | 42.4 6 | 38.0 75 | 59.1 83 | 50.5 60 |
ACK-Prior [27] | 64.9 | 36.4 30 | 33.7 40 | 48.1 28 | 26.7 22 | 33.1 30 | 37.1 13 | 30.7 71 | 33.3 50 | 39.7 59 | 53.6 64 | 50.0 76 | 81.0 59 | 73.5 86 | 68.6 84 | 88.3 85 | 70.8 86 | 59.8 89 | 82.7 74 | 29.7 87 | 48.7 81 | 43.6 87 | 39.5 88 | 62.1 89 | 51.3 79 |
Filter Flow [19] | 65.5 | 37.8 70 | 34.6 67 | 49.8 73 | 30.8 73 | 36.0 69 | 44.3 80 | 29.4 34 | 32.4 36 | 39.5 51 | 54.2 75 | 48.1 46 | 82.2 77 | 72.7 78 | 67.7 80 | 87.6 74 | 69.2 53 | 55.1 52 | 82.5 64 | 28.7 55 | 46.5 63 | 42.6 62 | 38.3 82 | 58.4 77 | 51.4 80 |
Horn & Schunck [3] | 66.3 | 37.9 71 | 35.1 73 | 49.6 70 | 31.4 75 | 37.7 77 | 41.8 73 | 31.7 83 | 37.4 84 | 41.5 81 | 55.8 82 | 50.6 79 | 81.3 69 | 72.2 25 | 67.0 31 | 87.4 24 | 69.2 53 | 54.2 28 | 82.7 74 | 29.5 83 | 48.9 83 | 42.6 62 | 37.8 70 | 57.2 66 | 50.9 76 |
TI-DOFE [24] | 67.7 | 42.0 84 | 37.5 81 | 54.8 86 | 35.2 85 | 41.1 87 | 46.8 86 | 31.4 79 | 37.7 85 | 41.6 83 | 56.1 84 | 50.6 79 | 81.6 73 | 72.0 7 | 66.9 18 | 87.2 6 | 69.4 68 | 54.4 33 | 82.6 72 | 29.2 74 | 47.6 72 | 42.6 62 | 38.2 78 | 57.5 68 | 50.8 75 |
SILK [87] | 68.4 | 39.6 79 | 38.1 82 | 51.5 80 | 32.4 80 | 38.5 82 | 43.6 78 | 32.4 84 | 37.2 83 | 41.5 81 | 55.4 80 | 49.7 74 | 83.0 81 | 72.2 25 | 67.0 31 | 87.4 24 | 70.0 77 | 54.7 39 | 83.4 87 | 29.0 70 | 46.5 63 | 42.8 73 | 37.4 64 | 56.7 52 | 50.7 73 |
Bartels [41] | 68.7 | 37.1 61 | 35.0 72 | 49.3 66 | 28.2 49 | 34.8 58 | 40.5 65 | 29.9 56 | 33.1 45 | 40.5 74 | 54.2 75 | 49.7 74 | 83.9 85 | 73.0 83 | 67.6 75 | 88.7 89 | 71.8 88 | 56.1 74 | 85.6 89 | 28.6 47 | 43.9 9 | 43.6 87 | 38.1 76 | 57.0 62 | 53.2 89 |
SLK [47] | 74.8 | 41.6 83 | 38.7 84 | 54.4 84 | 33.0 83 | 38.3 81 | 45.5 83 | 33.3 85 | 38.6 86 | 42.8 85 | 57.8 86 | 51.8 84 | 83.5 84 | 72.1 16 | 67.3 66 | 86.5 1 | 70.1 78 | 55.8 69 | 82.7 74 | 30.0 88 | 51.4 88 | 43.0 79 | 38.2 78 | 57.5 68 | 51.5 81 |
NL-TV-NCC [25] | 74.8 | 37.1 61 | 35.7 76 | 48.0 18 | 27.8 45 | 35.0 61 | 37.6 42 | 31.0 76 | 35.4 74 | 40.0 66 | 56.0 83 | 54.2 87 | 82.6 78 | 73.8 88 | 68.6 84 | 89.1 90 | 70.6 85 | 58.4 88 | 82.5 64 | 30.4 90 | 50.0 85 | 44.0 90 | 39.8 89 | 60.2 87 | 52.4 88 |
GroupFlow [9] | 75.4 | 40.3 81 | 40.1 86 | 51.3 78 | 31.5 76 | 38.9 83 | 42.6 74 | 33.5 87 | 39.5 87 | 43.8 87 | 54.7 79 | 52.3 85 | 81.0 59 | 73.2 85 | 68.6 84 | 87.6 74 | 70.4 84 | 57.3 84 | 83.0 81 | 29.3 77 | 48.1 76 | 42.5 41 | 37.9 71 | 58.2 76 | 50.1 15 |
Learning Flow [11] | 76.2 | 37.7 69 | 37.0 80 | 49.2 63 | 29.9 70 | 37.5 76 | 39.7 60 | 31.5 82 | 36.3 79 | 40.7 75 | 55.4 80 | 51.6 83 | 82.6 78 | 72.8 79 | 67.8 81 | 87.8 82 | 69.6 72 | 55.7 68 | 82.8 78 | 29.3 77 | 48.4 77 | 42.7 71 | 39.2 86 | 59.8 85 | 51.2 78 |
FOLKI [16] | 80.1 | 44.6 88 | 40.4 87 | 58.4 89 | 35.7 86 | 42.3 88 | 47.3 87 | 33.3 85 | 40.7 88 | 44.9 88 | 59.4 89 | 53.6 86 | 86.5 89 | 72.5 70 | 67.6 75 | 87.3 12 | 70.1 78 | 55.8 69 | 83.2 84 | 29.4 79 | 48.4 77 | 43.1 82 | 38.7 83 | 58.5 78 | 52.0 85 |
Pyramid LK [2] | 82.9 | 46.1 89 | 38.9 85 | 61.0 90 | 36.7 88 | 40.4 85 | 50.9 89 | 39.9 89 | 36.6 80 | 49.4 89 | 64.1 90 | 61.2 90 | 87.7 90 | 73.1 84 | 68.6 84 | 87.4 24 | 70.1 78 | 56.1 74 | 83.0 81 | 29.6 85 | 50.7 87 | 43.2 84 | 39.2 86 | 61.2 88 | 51.5 81 |
Adaptive flow [45] | 83.0 | 43.8 86 | 38.2 83 | 56.5 87 | 35.8 87 | 40.5 86 | 50.2 88 | 31.4 79 | 34.5 65 | 42.5 84 | 56.5 85 | 50.9 82 | 83.9 85 | 73.5 86 | 68.7 88 | 88.1 84 | 70.2 82 | 57.4 85 | 82.9 79 | 29.4 79 | 47.5 71 | 43.6 87 | 39.0 85 | 59.1 83 | 52.0 85 |
PGAM+LK [55] | 83.8 | 42.5 85 | 41.4 88 | 54.6 85 | 33.7 84 | 40.1 84 | 45.8 85 | 33.9 88 | 41.1 89 | 43.3 86 | 59.3 88 | 55.2 88 | 85.5 88 | 72.8 79 | 68.1 83 | 87.5 55 | 70.8 86 | 56.9 81 | 83.6 88 | 29.6 85 | 50.0 85 | 43.0 79 | 38.7 83 | 58.6 81 | 52.1 87 |
Periodicity [86] | 88.6 | 44.4 87 | 43.3 89 | 56.9 88 | 42.8 90 | 43.4 89 | 56.2 90 | 40.9 90 | 49.1 90 | 49.5 90 | 58.9 87 | 58.6 89 | 84.9 87 | 74.4 89 | 70.2 89 | 88.0 83 | 73.1 90 | 57.9 87 | 86.2 90 | 30.0 88 | 51.5 89 | 43.5 85 | 41.8 90 | 63.4 90 | 53.7 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |