Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
SD normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SuperFlow [89] | 23.8 | 1.88 37 | 2.97 37 | 0.89 37 | 1.91 33 | 2.39 29 | 1.45 34 | 4.52 9 | 5.09 5 | 4.02 11 | 3.56 70 | 2.61 9 | 2.27 31 | 1.46 2 | 1.59 2 | 1.28 18 | 3.30 20 | 4.70 20 | 2.24 34 | 4.55 17 | 7.03 17 | 2.84 22 | 7.19 38 | 9.09 38 | 0.83 2 |
NN-field [73] | 24.7 | 1.97 42 | 3.14 48 | 0.84 11 | 1.34 2 | 1.70 2 | 0.97 3 | 6.72 33 | 10.3 60 | 8.20 39 | 2.55 35 | 3.41 48 | 2.65 53 | 1.76 7 | 1.96 7 | 1.22 1 | 3.40 24 | 4.85 25 | 1.79 11 | 4.57 18 | 7.07 18 | 3.12 27 | 5.05 18 | 6.38 18 | 1.21 43 |
ComplOF-FED-GPU [35] | 25.2 | 1.49 21 | 2.33 21 | 0.88 29 | 1.78 23 | 2.32 25 | 1.26 22 | 9.54 56 | 4.00 1 | 12.2 58 | 1.86 1 | 2.44 1 | 1.48 4 | 4.22 43 | 4.80 43 | 5.82 54 | 2.62 3 | 3.73 4 | 1.97 18 | 4.52 16 | 6.91 15 | 3.50 39 | 8.01 49 | 10.1 48 | 0.95 10 |
ALD-Flow [68] | 25.8 | 1.35 13 | 2.01 11 | 0.88 29 | 1.79 27 | 2.34 27 | 1.25 20 | 4.95 15 | 5.90 18 | 3.11 3 | 1.97 4 | 2.56 6 | 1.48 4 | 3.77 37 | 4.29 38 | 6.03 59 | 3.99 50 | 5.70 51 | 4.20 82 | 3.92 7 | 6.07 7 | 1.44 1 | 7.78 45 | 9.82 45 | 1.05 21 |
Deep-Matching [85] | 26.5 | 2.09 60 | 3.32 61 | 0.85 18 | 1.95 36 | 2.42 32 | 1.38 29 | 4.46 8 | 5.81 16 | 3.01 2 | 2.81 48 | 2.76 16 | 2.21 29 | 3.34 25 | 3.80 25 | 1.27 13 | 2.84 9 | 4.04 9 | 2.19 28 | 4.78 20 | 7.40 20 | 1.60 5 | 8.40 54 | 10.6 54 | 0.99 18 |
ComplexFlow [81] | 28.6 | 1.08 3 | 1.64 5 | 0.79 1 | 1.30 1 | 1.64 1 | 0.98 5 | 8.95 53 | 13.9 68 | 11.2 52 | 2.52 30 | 3.37 46 | 2.49 42 | 1.45 1 | 1.58 1 | 1.22 1 | 4.26 64 | 6.08 65 | 2.22 32 | 5.38 30 | 8.33 30 | 5.57 76 | 4.99 15 | 6.31 15 | 1.26 49 |
TC-Flow [46] | 28.9 | 1.12 4 | 1.62 3 | 0.85 18 | 1.80 28 | 2.34 27 | 1.25 20 | 3.55 1 | 5.28 8 | 1.46 1 | 2.07 6 | 2.71 15 | 2.05 21 | 4.38 51 | 4.98 50 | 6.27 64 | 4.03 53 | 5.75 56 | 2.60 48 | 4.81 21 | 7.44 21 | 2.55 14 | 8.05 51 | 10.2 51 | 1.44 62 |
IROF++ [58] | 28.9 | 1.07 1 | 1.58 1 | 0.81 4 | 1.67 15 | 2.16 15 | 1.08 13 | 6.49 31 | 7.78 41 | 6.90 33 | 1.93 2 | 2.55 5 | 2.04 20 | 4.40 52 | 5.00 52 | 6.59 80 | 3.77 40 | 5.38 41 | 1.84 15 | 3.98 8 | 6.16 8 | 2.66 17 | 10.5 84 | 13.3 85 | 1.15 31 |
ADF [67] | 29.2 | 1.38 15 | 2.15 16 | 0.81 4 | 1.78 23 | 2.33 26 | 1.41 30 | 4.80 14 | 5.79 14 | 4.37 14 | 2.07 6 | 2.76 16 | 1.50 7 | 4.49 62 | 5.11 62 | 6.56 73 | 2.54 1 | 3.60 1 | 1.66 6 | 7.01 63 | 10.9 63 | 3.77 46 | 6.00 30 | 7.58 30 | 1.81 78 |
CLG-TV [48] | 30.0 | 1.83 35 | 2.89 36 | 0.97 57 | 2.20 52 | 2.74 58 | 1.65 51 | 5.14 18 | 6.68 30 | 5.81 26 | 2.23 14 | 2.69 12 | 2.60 49 | 4.17 42 | 4.74 42 | 1.25 6 | 2.65 7 | 3.77 7 | 1.47 3 | 3.24 3 | 5.01 3 | 1.66 6 | 9.56 76 | 12.1 76 | 0.96 12 |
Second-order prior [8] | 30.5 | 1.12 4 | 1.62 3 | 0.99 61 | 2.11 45 | 2.55 43 | 1.57 45 | 5.29 19 | 8.01 44 | 5.87 27 | 2.15 10 | 2.65 10 | 1.71 14 | 4.23 45 | 4.81 45 | 1.25 6 | 2.88 10 | 4.09 10 | 1.81 12 | 5.02 25 | 7.77 25 | 1.51 2 | 9.26 71 | 11.7 70 | 2.10 86 |
TC/T-Flow [80] | 31.1 | 1.54 24 | 2.36 22 | 1.06 72 | 1.85 29 | 2.41 31 | 1.44 32 | 5.40 22 | 7.43 37 | 5.66 23 | 2.57 36 | 2.47 2 | 1.48 4 | 4.45 57 | 5.06 57 | 6.55 72 | 3.37 23 | 4.80 23 | 1.36 1 | 4.27 10 | 6.49 10 | 4.17 57 | 7.94 47 | 10.0 47 | 0.94 9 |
SIOF [69] | 31.6 | 1.33 10 | 2.02 12 | 0.92 45 | 2.30 65 | 2.84 70 | 1.72 56 | 6.84 36 | 9.18 53 | 6.21 28 | 2.57 36 | 3.17 38 | 2.81 57 | 1.61 5 | 1.78 5 | 1.27 13 | 3.79 41 | 5.40 42 | 1.54 4 | 4.49 15 | 6.94 16 | 3.42 34 | 5.85 28 | 7.39 28 | 1.09 22 |
CBF [12] | 32.2 | 1.34 11 | 2.09 14 | 0.88 29 | 2.14 48 | 2.64 48 | 1.69 53 | 5.42 24 | 7.67 40 | 5.70 24 | 2.25 15 | 2.57 7 | 2.56 47 | 1.49 3 | 1.63 3 | 1.32 27 | 2.58 2 | 3.67 2 | 1.85 16 | 7.15 67 | 11.1 67 | 4.00 52 | 8.03 50 | 10.1 48 | 1.76 75 |
MDP-Flow2 [70] | 32.5 | 1.94 41 | 3.09 42 | 0.79 1 | 1.62 11 | 2.13 13 | 0.95 2 | 9.47 54 | 14.8 71 | 11.9 56 | 2.53 33 | 3.42 50 | 3.00 68 | 1.63 6 | 1.80 6 | 1.95 34 | 4.25 63 | 6.07 64 | 1.81 12 | 5.50 32 | 8.52 32 | 2.71 18 | 5.02 16 | 6.34 16 | 1.19 39 |
p-harmonic [29] | 32.8 | 1.81 34 | 2.87 34 | 0.84 11 | 2.26 62 | 2.86 71 | 2.12 76 | 4.57 10 | 5.80 15 | 3.76 8 | 2.95 54 | 2.80 20 | 2.74 54 | 3.65 34 | 4.15 34 | 1.26 11 | 3.01 12 | 4.28 12 | 2.08 22 | 4.42 14 | 6.84 14 | 4.12 55 | 8.75 59 | 11.1 59 | 0.96 12 |
OFH [38] | 33.0 | 1.41 17 | 2.17 17 | 0.91 43 | 1.96 39 | 2.47 37 | 1.32 24 | 7.12 38 | 9.37 56 | 6.61 30 | 2.03 5 | 2.69 12 | 1.47 1 | 4.26 47 | 4.84 47 | 5.89 55 | 3.02 13 | 4.29 13 | 2.26 35 | 6.29 47 | 9.37 42 | 6.74 82 | 6.88 37 | 8.69 37 | 0.98 17 |
LME [72] | 33.0 | 1.93 39 | 3.07 40 | 0.81 4 | 1.63 12 | 2.14 14 | 1.13 14 | 5.40 22 | 7.66 39 | 5.53 22 | 2.44 22 | 3.25 40 | 2.60 49 | 4.48 59 | 5.10 60 | 6.48 68 | 4.83 78 | 6.89 78 | 1.65 5 | 4.28 11 | 6.62 11 | 3.05 26 | 5.03 17 | 6.35 17 | 1.23 45 |
IROF-TV [53] | 33.3 | 1.93 39 | 3.06 39 | 0.94 50 | 1.75 20 | 2.24 23 | 1.20 16 | 4.66 11 | 6.05 19 | 3.72 7 | 2.13 9 | 2.85 21 | 1.53 9 | 4.41 54 | 5.02 55 | 6.59 80 | 3.61 30 | 5.14 32 | 2.31 38 | 6.73 55 | 10.4 56 | 3.37 33 | 6.77 36 | 8.56 36 | 1.15 31 |
Modified CLG [34] | 34.1 | 1.53 23 | 2.41 26 | 0.86 24 | 2.31 69 | 2.77 61 | 2.09 74 | 8.71 50 | 5.58 12 | 11.3 53 | 2.49 27 | 2.77 18 | 2.86 59 | 2.49 15 | 2.82 15 | 1.25 6 | 3.46 27 | 4.92 27 | 2.05 20 | 3.05 1 | 4.70 1 | 1.76 8 | 11.1 89 | 14.1 89 | 1.11 24 |
OFLADF [82] | 34.1 | 1.97 42 | 3.13 45 | 0.83 8 | 1.37 6 | 1.78 6 | 1.01 8 | 5.30 20 | 6.60 29 | 4.28 12 | 2.27 16 | 3.06 32 | 1.56 10 | 4.60 64 | 5.23 64 | 6.56 73 | 3.41 26 | 4.85 25 | 2.63 50 | 6.96 61 | 10.8 62 | 3.83 49 | 5.52 22 | 6.96 22 | 1.47 66 |
Aniso. Huber-L1 [22] | 34.9 | 1.44 18 | 2.23 19 | 0.90 42 | 2.23 55 | 2.73 55 | 1.50 40 | 5.43 25 | 6.83 32 | 5.46 21 | 2.49 27 | 2.94 25 | 3.01 69 | 4.09 41 | 4.65 41 | 1.25 6 | 4.29 65 | 6.12 66 | 1.38 2 | 4.08 9 | 6.31 9 | 1.72 7 | 10.2 81 | 12.9 82 | 0.82 1 |
MDP-Flow [26] | 35.4 | 1.07 1 | 1.61 2 | 0.85 18 | 1.64 13 | 2.16 15 | 1.07 12 | 8.65 49 | 5.50 11 | 11.0 50 | 2.77 46 | 3.46 51 | 2.60 49 | 4.48 59 | 5.10 60 | 6.56 73 | 4.21 61 | 6.00 62 | 3.35 69 | 6.09 43 | 9.42 45 | 3.48 38 | 3.01 4 | 3.79 4 | 0.97 15 |
FastOF [78] | 36.4 | 1.69 29 | 2.41 26 | 1.05 71 | 2.15 49 | 2.63 47 | 1.73 58 | 4.34 6 | 6.12 21 | 3.54 6 | 2.85 50 | 2.98 28 | 2.25 30 | 4.41 54 | 5.01 53 | 6.57 76 | 2.64 5 | 3.75 6 | 1.81 12 | 5.35 29 | 8.26 29 | 2.21 11 | 9.11 67 | 11.5 65 | 1.23 45 |
COFM [59] | 36.5 | 1.36 14 | 1.97 9 | 0.88 29 | 1.59 10 | 2.08 10 | 1.23 18 | 9.49 55 | 15.4 74 | 12.1 57 | 3.08 63 | 4.19 75 | 1.60 12 | 2.21 13 | 2.50 13 | 2.01 35 | 3.92 47 | 5.58 48 | 2.13 25 | 6.58 54 | 10.2 55 | 5.93 80 | 2.85 2 | 3.60 2 | 1.77 76 |
CostFilter [40] | 36.7 | 1.26 8 | 1.96 8 | 0.89 37 | 1.47 7 | 1.93 7 | 0.94 1 | 12.8 76 | 18.8 84 | 15.4 79 | 2.20 13 | 2.95 26 | 1.51 8 | 3.13 21 | 3.56 22 | 4.90 49 | 3.74 37 | 5.32 36 | 1.69 8 | 7.46 72 | 11.5 70 | 5.27 75 | 6.10 32 | 7.71 32 | 1.65 72 |
TV-L1-MCT [64] | 36.8 | 1.97 42 | 3.12 44 | 0.87 26 | 1.95 36 | 2.39 29 | 1.54 42 | 7.42 43 | 11.1 62 | 8.52 40 | 2.46 25 | 3.14 36 | 2.51 44 | 4.86 74 | 5.52 74 | 6.08 60 | 3.29 19 | 4.69 19 | 2.17 27 | 5.14 27 | 7.95 27 | 2.65 16 | 6.33 33 | 8.00 33 | 0.88 4 |
NL-TV-NCC [25] | 38.0 | 1.44 18 | 2.20 18 | 0.99 61 | 2.05 43 | 2.61 46 | 1.54 42 | 5.02 16 | 6.98 35 | 4.96 17 | 3.01 58 | 4.07 71 | 2.41 38 | 2.62 17 | 2.96 17 | 3.97 45 | 4.71 75 | 6.72 75 | 3.40 71 | 3.62 6 | 5.58 6 | 2.25 12 | 8.25 53 | 10.4 53 | 1.01 19 |
TCOF [71] | 38.6 | 1.34 11 | 2.05 13 | 0.84 11 | 2.47 79 | 3.10 88 | 2.36 85 | 6.61 32 | 8.86 47 | 6.94 34 | 2.52 30 | 3.35 45 | 2.27 31 | 3.95 40 | 4.49 40 | 1.29 21 | 3.12 15 | 4.45 15 | 1.96 17 | 7.32 69 | 11.3 69 | 3.45 35 | 5.79 26 | 7.31 26 | 1.25 48 |
CRTflow [88] | 39.6 | 1.83 35 | 2.87 34 | 1.01 66 | 2.30 65 | 2.90 76 | 2.26 79 | 5.96 27 | 6.95 33 | 5.40 20 | 2.45 24 | 3.05 31 | 2.28 34 | 4.40 52 | 5.01 53 | 6.50 70 | 3.19 17 | 4.55 18 | 1.67 7 | 6.35 50 | 9.83 50 | 2.60 15 | 7.70 44 | 9.73 44 | 0.91 6 |
Classic++ [32] | 39.6 | 1.39 16 | 2.14 15 | 0.88 29 | 2.12 46 | 2.71 52 | 1.76 62 | 4.40 7 | 5.20 6 | 3.44 5 | 3.04 59 | 3.10 33 | 2.94 63 | 3.49 29 | 3.97 29 | 2.88 38 | 4.14 58 | 5.90 59 | 2.33 39 | 6.85 57 | 10.6 58 | 3.78 47 | 8.54 57 | 10.8 56 | 1.15 31 |
nLayers [57] | 39.8 | 1.97 42 | 3.14 48 | 0.84 11 | 1.53 8 | 1.99 8 | 1.13 14 | 15.8 83 | 22.3 87 | 18.5 85 | 2.70 40 | 3.66 59 | 1.96 18 | 4.43 56 | 5.04 56 | 6.34 66 | 3.84 45 | 5.48 46 | 2.21 31 | 5.26 28 | 8.14 28 | 1.78 9 | 2.78 1 | 3.51 1 | 2.09 85 |
PMF [76] | 40.4 | 1.69 29 | 2.67 30 | 0.83 8 | 1.53 8 | 2.00 9 | 0.97 3 | 13.5 77 | 20.0 86 | 16.5 83 | 2.88 51 | 3.78 65 | 2.97 66 | 2.16 12 | 2.44 12 | 1.27 13 | 3.76 39 | 5.36 40 | 1.70 9 | 7.19 68 | 11.1 67 | 4.74 70 | 5.29 21 | 6.68 21 | 1.95 83 |
Ad-TV-NDC [36] | 40.5 | 2.61 79 | 4.13 81 | 1.16 78 | 2.45 76 | 2.78 63 | 2.34 84 | 4.25 3 | 6.07 20 | 3.78 9 | 3.58 72 | 4.45 78 | 2.51 44 | 1.87 8 | 2.10 8 | 1.33 31 | 3.36 22 | 4.79 22 | 2.42 42 | 3.41 4 | 5.27 5 | 1.54 3 | 9.04 63 | 11.4 63 | 0.97 15 |
Bartels [41] | 41.5 | 2.18 64 | 3.46 64 | 1.03 68 | 2.07 44 | 2.71 52 | 1.72 56 | 5.71 26 | 6.16 22 | 5.76 25 | 2.80 47 | 3.33 43 | 2.60 49 | 1.58 4 | 1.72 4 | 1.38 32 | 4.88 80 | 6.96 80 | 2.47 44 | 4.66 19 | 7.21 19 | 3.81 48 | 7.43 42 | 9.39 42 | 1.10 23 |
Levin3 [90] | 41.6 | 2.00 53 | 3.16 52 | 0.83 8 | 1.78 23 | 2.24 23 | 1.48 39 | 7.27 40 | 9.25 54 | 7.13 35 | 2.52 30 | 3.40 47 | 2.81 57 | 3.92 39 | 4.46 39 | 2.81 37 | 3.67 34 | 5.23 35 | 2.67 53 | 6.33 48 | 9.80 48 | 3.65 42 | 8.61 58 | 10.9 58 | 1.24 47 |
Sparse Occlusion [54] | 41.8 | 2.21 66 | 3.52 66 | 0.93 48 | 2.12 46 | 2.73 55 | 1.46 36 | 4.67 12 | 6.57 28 | 4.98 18 | 2.16 12 | 2.85 21 | 1.75 15 | 5.06 81 | 5.76 81 | 6.58 78 | 2.64 5 | 3.74 5 | 2.23 33 | 6.21 46 | 9.61 47 | 3.46 37 | 9.82 78 | 12.4 78 | 0.95 10 |
EP-PM [83] | 42.2 | 1.72 31 | 2.70 32 | 1.27 84 | 1.65 14 | 2.18 18 | 1.30 23 | 14.6 81 | 15.2 73 | 13.1 61 | 2.76 44 | 3.69 61 | 2.07 23 | 1.98 9 | 2.22 9 | 1.28 18 | 3.63 31 | 5.17 33 | 2.42 42 | 8.88 80 | 13.7 80 | 8.97 84 | 5.63 23 | 7.11 23 | 1.17 36 |
LSM [39] | 42.4 | 1.15 6 | 1.70 7 | 0.89 37 | 1.72 18 | 2.11 11 | 1.37 27 | 7.40 42 | 11.1 62 | 8.52 40 | 1.96 3 | 2.60 8 | 1.79 16 | 4.95 77 | 5.63 77 | 6.24 62 | 4.37 66 | 6.23 67 | 2.08 22 | 6.95 60 | 10.7 60 | 5.20 74 | 8.77 60 | 11.1 59 | 1.40 56 |
F-TV-L1 [15] | 42.6 | 2.41 71 | 3.82 72 | 0.97 57 | 2.33 70 | 2.89 74 | 1.91 67 | 4.72 13 | 6.38 25 | 4.58 15 | 2.49 27 | 2.90 24 | 2.98 67 | 2.25 14 | 2.54 14 | 1.30 23 | 2.73 8 | 3.88 8 | 2.40 41 | 6.37 52 | 9.85 52 | 3.69 43 | 11.1 89 | 14.1 89 | 0.92 8 |
ACK-Prior [27] | 42.9 | 1.52 22 | 2.37 23 | 1.10 73 | 1.90 32 | 2.51 40 | 1.04 10 | 12.1 72 | 8.87 48 | 14.9 74 | 2.53 33 | 3.02 29 | 2.32 35 | 4.80 71 | 5.46 71 | 6.63 83 | 4.03 53 | 5.74 55 | 2.68 54 | 5.80 35 | 8.97 35 | 4.01 53 | 3.02 5 | 3.80 5 | 1.01 19 |
Complementary OF [21] | 43.4 | 2.67 82 | 4.25 83 | 0.82 7 | 1.89 30 | 2.49 39 | 1.47 38 | 14.5 80 | 11.4 64 | 15.7 80 | 2.33 18 | 3.13 35 | 1.56 10 | 4.37 50 | 4.98 50 | 6.31 65 | 3.19 17 | 4.54 17 | 2.26 35 | 6.11 44 | 9.40 44 | 5.87 77 | 3.12 8 | 3.94 8 | 1.43 60 |
Epistemic [84] | 43.4 | 1.44 18 | 2.27 20 | 0.80 3 | 1.68 16 | 2.23 22 | 1.00 7 | 11.0 61 | 14.9 72 | 11.7 55 | 2.43 21 | 3.28 42 | 1.47 1 | 3.77 37 | 4.27 37 | 4.63 48 | 4.18 60 | 5.96 61 | 3.42 72 | 10.2 86 | 15.8 86 | 11.7 87 | 6.07 31 | 7.66 31 | 1.51 68 |
LDOF [28] | 43.9 | 2.50 76 | 3.97 76 | 0.94 50 | 3.47 88 | 2.44 36 | 3.90 90 | 6.75 35 | 5.87 17 | 7.37 36 | 2.12 8 | 2.70 14 | 2.27 31 | 2.09 10 | 2.35 10 | 1.30 23 | 3.15 16 | 4.48 16 | 2.14 26 | 11.8 87 | 18.3 87 | 11.2 86 | 5.67 24 | 7.16 24 | 2.25 88 |
DPOF [18] | 44.4 | 2.79 85 | 4.46 85 | 1.92 88 | 1.36 5 | 1.77 5 | 1.01 8 | 10.5 59 | 7.45 38 | 13.5 63 | 3.60 75 | 4.88 83 | 2.92 62 | 3.40 26 | 3.86 26 | 1.23 3 | 3.10 14 | 4.42 14 | 2.06 21 | 5.73 34 | 8.87 34 | 2.76 19 | 10.2 81 | 12.8 81 | 1.40 56 |
Brox et al. [5] | 44.5 | 2.86 86 | 4.57 86 | 0.85 18 | 1.89 30 | 2.48 38 | 1.41 30 | 5.02 16 | 5.06 4 | 5.06 19 | 2.74 42 | 2.48 3 | 2.20 27 | 2.57 16 | 2.91 16 | 1.28 18 | 4.77 77 | 6.81 77 | 4.16 80 | 17.2 90 | 26.6 90 | 21.6 90 | 8.51 56 | 10.8 56 | 0.88 4 |
Layers++ [37] | 45.8 | 1.97 42 | 3.13 45 | 0.84 11 | 1.34 2 | 1.72 3 | 0.98 5 | 10.9 60 | 17.8 80 | 13.8 66 | 2.74 42 | 3.71 62 | 2.06 22 | 6.74 89 | 7.67 89 | 8.88 88 | 5.04 81 | 7.20 81 | 4.08 79 | 5.81 36 | 8.98 36 | 1.54 3 | 5.06 19 | 6.39 19 | 1.19 39 |
Horn & Schunck [3] | 45.9 | 2.06 58 | 3.26 59 | 0.89 37 | 2.63 85 | 2.90 76 | 2.77 87 | 11.3 65 | 6.80 31 | 13.6 64 | 3.18 66 | 3.23 39 | 2.95 64 | 3.59 32 | 4.08 32 | 1.30 23 | 2.91 11 | 4.14 11 | 1.70 9 | 4.91 23 | 7.59 23 | 2.79 21 | 10.1 80 | 12.7 80 | 1.12 26 |
Nguyen [33] | 46.2 | 2.62 80 | 4.16 82 | 0.94 50 | 2.35 72 | 2.74 58 | 1.78 63 | 5.37 21 | 5.59 13 | 4.85 16 | 2.76 44 | 2.97 27 | 2.96 65 | 3.62 33 | 4.12 33 | 1.25 6 | 4.16 59 | 5.94 60 | 3.86 76 | 6.94 59 | 10.7 60 | 3.64 41 | 7.20 39 | 9.10 39 | 0.96 12 |
Sparse-NonSparse [56] | 46.3 | 1.98 49 | 3.14 48 | 0.85 18 | 1.72 18 | 2.11 11 | 1.36 26 | 8.49 47 | 13.4 67 | 10.4 47 | 2.15 10 | 2.87 23 | 1.47 1 | 4.86 74 | 5.52 74 | 6.00 57 | 4.42 69 | 6.31 70 | 2.81 60 | 6.82 56 | 10.5 57 | 4.64 67 | 8.92 62 | 11.3 62 | 1.19 39 |
Local-TV-L1 [65] | 47.0 | 1.56 26 | 2.40 24 | 0.98 60 | 2.43 75 | 2.91 79 | 2.04 72 | 4.29 5 | 5.30 9 | 3.22 4 | 2.27 16 | 2.65 10 | 2.08 24 | 5.34 82 | 6.08 83 | 6.63 83 | 3.66 32 | 5.02 31 | 2.69 55 | 7.43 70 | 11.5 70 | 4.10 54 | 7.36 41 | 9.29 41 | 1.92 82 |
Fusion [6] | 47.3 | 2.25 68 | 3.58 68 | 1.33 85 | 1.95 36 | 2.53 41 | 1.23 18 | 8.48 46 | 5.32 10 | 10.5 48 | 2.89 52 | 3.75 63 | 1.67 13 | 4.65 66 | 5.29 66 | 3.65 43 | 5.17 83 | 7.37 83 | 4.89 85 | 5.87 39 | 9.09 39 | 2.49 13 | 3.09 7 | 3.89 7 | 1.40 56 |
FESL [75] | 48.1 | 1.16 7 | 1.69 6 | 0.87 26 | 1.71 17 | 2.18 18 | 1.21 17 | 6.73 34 | 8.98 49 | 6.68 32 | 2.81 48 | 3.41 48 | 3.29 73 | 5.02 80 | 5.71 80 | 6.58 78 | 4.39 67 | 6.26 68 | 2.29 37 | 6.36 51 | 9.84 51 | 4.42 62 | 9.75 77 | 12.3 77 | 1.31 52 |
TI-DOFE [24] | 48.2 | 2.32 69 | 3.67 69 | 1.10 73 | 2.56 84 | 2.92 80 | 2.11 75 | 4.25 3 | 4.63 3 | 4.31 13 | 3.59 73 | 3.76 64 | 2.86 59 | 3.24 24 | 3.69 24 | 1.32 27 | 4.55 71 | 6.50 72 | 3.36 70 | 4.41 13 | 6.81 13 | 2.76 19 | 9.18 68 | 11.6 68 | 1.11 24 |
Black & Anandan [4] | 48.4 | 2.44 72 | 3.86 73 | 1.02 67 | 2.49 80 | 2.93 81 | 1.98 69 | 13.5 77 | 7.92 42 | 14.3 68 | 3.14 64 | 3.16 37 | 2.55 46 | 3.13 21 | 3.55 21 | 1.27 13 | 3.51 29 | 5.01 30 | 2.20 29 | 5.13 26 | 7.94 26 | 3.20 29 | 7.26 40 | 9.17 40 | 1.89 81 |
Shiralkar [42] | 48.4 | 2.18 64 | 3.46 64 | 0.88 29 | 2.25 59 | 2.71 52 | 1.88 66 | 7.65 44 | 6.40 26 | 9.36 45 | 3.87 79 | 4.79 82 | 2.75 55 | 3.52 30 | 4.00 30 | 3.60 41 | 3.75 38 | 5.34 39 | 2.74 57 | 6.85 57 | 10.6 58 | 2.98 25 | 7.97 48 | 10.1 48 | 1.12 26 |
Ramp [62] | 48.7 | 1.99 51 | 3.16 52 | 0.84 11 | 1.76 21 | 2.17 17 | 1.33 25 | 12.3 73 | 18.7 83 | 15.2 76 | 2.41 20 | 3.25 40 | 2.12 26 | 4.79 70 | 5.45 70 | 6.02 58 | 4.46 70 | 6.36 71 | 2.80 59 | 5.82 37 | 9.00 37 | 3.35 32 | 8.47 55 | 10.7 55 | 1.41 59 |
Occlusion-TV-L1 [63] | 49.0 | 2.12 62 | 3.37 63 | 1.25 83 | 2.30 65 | 2.90 76 | 1.91 67 | 4.07 2 | 5.27 7 | 3.82 10 | 3.60 75 | 4.67 81 | 3.14 71 | 3.03 19 | 3.45 19 | 1.24 4 | 3.73 35 | 5.32 36 | 2.95 62 | 6.99 62 | 9.92 53 | 4.22 58 | 9.25 70 | 11.7 70 | 1.12 26 |
TriangleFlow [30] | 49.1 | 1.80 33 | 2.83 33 | 0.95 54 | 2.18 50 | 2.77 61 | 1.61 48 | 7.36 41 | 9.16 51 | 8.83 43 | 2.70 40 | 3.56 55 | 2.88 61 | 3.17 23 | 3.60 23 | 1.27 13 | 5.17 83 | 7.38 84 | 5.34 86 | 7.58 75 | 11.7 74 | 5.87 77 | 5.12 20 | 6.45 20 | 1.14 30 |
Filter Flow [19] | 49.5 | 2.67 82 | 4.25 83 | 0.94 50 | 2.40 73 | 2.89 74 | 1.70 55 | 7.19 39 | 10.2 59 | 8.54 42 | 3.40 68 | 3.60 56 | 3.38 75 | 2.09 10 | 2.36 11 | 1.32 27 | 3.73 35 | 5.32 36 | 2.69 55 | 5.67 33 | 8.77 33 | 4.39 61 | 7.91 46 | 9.99 46 | 1.19 39 |
2D-CLG [1] | 49.8 | 2.03 57 | 3.22 57 | 0.89 37 | 2.24 56 | 2.67 49 | 1.80 64 | 7.75 45 | 4.01 2 | 9.13 44 | 3.05 60 | 2.78 19 | 3.46 76 | 6.30 88 | 7.17 88 | 9.00 89 | 2.62 3 | 3.71 3 | 2.33 39 | 6.41 53 | 9.92 53 | 3.52 40 | 9.35 72 | 11.8 72 | 1.13 29 |
PGAM+LK [55] | 50.2 | 2.12 62 | 3.32 61 | 1.16 78 | 2.33 70 | 2.79 65 | 2.01 71 | 18.8 87 | 29.3 90 | 23.5 90 | 4.83 85 | 3.93 68 | 6.42 85 | 2.76 18 | 3.13 18 | 1.47 33 | 3.40 24 | 4.83 24 | 2.49 45 | 3.41 4 | 5.25 4 | 2.90 23 | 6.38 34 | 8.05 34 | 1.15 31 |
BlockOverlap [61] | 50.4 | 2.06 58 | 3.26 59 | 1.03 68 | 2.22 53 | 2.67 49 | 1.85 65 | 8.84 52 | 6.32 23 | 11.0 50 | 4.26 82 | 3.93 68 | 5.84 84 | 4.23 45 | 4.81 45 | 1.31 26 | 4.01 52 | 5.71 53 | 3.22 64 | 4.98 24 | 7.64 24 | 4.44 63 | 4.57 14 | 5.77 14 | 1.72 74 |
Adaptive [20] | 51.2 | 2.51 77 | 3.99 77 | 0.93 48 | 2.42 74 | 3.03 84 | 2.24 78 | 6.42 29 | 9.95 57 | 7.88 37 | 2.89 52 | 3.63 57 | 3.26 72 | 4.30 48 | 4.89 48 | 1.26 11 | 4.07 57 | 5.81 58 | 3.25 65 | 6.07 42 | 9.39 43 | 2.94 24 | 7.57 43 | 9.57 43 | 0.91 6 |
Efficient-NL [60] | 51.3 | 1.57 27 | 2.46 28 | 0.84 11 | 1.97 40 | 2.43 34 | 1.46 36 | 11.2 63 | 7.97 43 | 14.4 69 | 2.61 39 | 3.50 53 | 2.08 24 | 4.84 73 | 5.51 73 | 6.23 61 | 4.00 51 | 5.70 51 | 2.09 24 | 7.55 74 | 11.7 74 | 4.15 56 | 10.5 84 | 13.2 84 | 1.43 60 |
SCR [74] | 52.1 | 1.97 42 | 3.11 43 | 0.85 18 | 1.76 21 | 2.21 20 | 1.37 27 | 12.3 73 | 18.9 85 | 15.3 77 | 2.59 38 | 3.50 53 | 2.40 37 | 4.99 78 | 5.68 78 | 6.47 67 | 3.47 28 | 4.95 28 | 2.65 51 | 6.18 45 | 9.56 46 | 4.47 64 | 10.3 83 | 13.1 83 | 1.46 65 |
LocallyOriented [52] | 52.8 | 1.99 51 | 3.14 48 | 0.92 45 | 2.22 53 | 2.68 51 | 1.60 46 | 12.0 71 | 15.6 75 | 14.9 74 | 4.67 83 | 5.61 85 | 2.20 27 | 4.22 43 | 4.80 43 | 2.99 39 | 3.66 32 | 5.22 34 | 2.20 29 | 5.95 41 | 9.21 41 | 3.13 28 | 10.7 87 | 13.5 87 | 1.38 55 |
IAOF2 [51] | 52.9 | 2.09 60 | 3.25 58 | 1.11 75 | 2.25 59 | 2.81 67 | 1.69 53 | 6.45 30 | 8.52 45 | 6.67 31 | 2.44 22 | 3.02 29 | 2.49 42 | 4.62 65 | 5.25 65 | 5.71 52 | 3.94 49 | 5.61 50 | 3.18 63 | 5.86 38 | 9.06 38 | 4.66 68 | 9.21 69 | 11.6 68 | 1.69 73 |
Classic+NL [31] | 53.0 | 1.97 42 | 3.13 45 | 0.88 29 | 1.78 23 | 2.22 21 | 1.44 32 | 11.8 69 | 17.8 80 | 14.5 72 | 2.47 26 | 3.34 44 | 2.43 39 | 4.81 72 | 5.47 72 | 5.90 56 | 4.41 68 | 6.29 69 | 2.58 47 | 7.03 66 | 10.9 63 | 5.12 73 | 9.04 63 | 11.4 63 | 1.18 37 |
SLK [47] | 53.6 | 1.66 28 | 2.59 29 | 0.99 61 | 2.25 59 | 2.58 45 | 1.73 58 | 13.8 79 | 9.17 52 | 15.3 77 | 4.21 81 | 5.03 84 | 4.67 81 | 4.31 49 | 4.90 49 | 4.35 47 | 3.88 46 | 5.52 47 | 2.78 58 | 9.91 85 | 15.3 85 | 3.29 30 | 4.40 13 | 5.55 13 | 1.15 31 |
FC-2Layers-FF [77] | 55.3 | 1.91 38 | 2.98 38 | 0.95 54 | 1.34 2 | 1.73 4 | 1.04 10 | 11.8 69 | 17.6 79 | 14.4 69 | 3.36 67 | 4.58 79 | 1.84 17 | 5.00 79 | 5.69 79 | 6.49 69 | 3.93 48 | 5.60 49 | 2.61 49 | 7.47 73 | 11.6 73 | 4.60 66 | 9.38 73 | 11.9 73 | 1.58 71 |
TV-L1-improved [17] | 55.7 | 1.54 24 | 2.40 24 | 1.00 64 | 2.46 78 | 3.09 87 | 2.33 82 | 11.4 66 | 6.97 34 | 14.4 69 | 2.35 19 | 2.50 4 | 2.44 40 | 4.48 59 | 5.09 58 | 1.32 27 | 4.23 62 | 6.03 63 | 3.29 67 | 7.02 64 | 10.9 63 | 3.93 51 | 9.39 74 | 11.9 73 | 2.01 84 |
Direct ZNCC [66] | 57.5 | 1.30 9 | 2.00 10 | 0.87 26 | 2.24 56 | 2.78 63 | 1.74 61 | 11.2 63 | 16.0 76 | 13.3 62 | 4.73 84 | 5.96 86 | 5.22 83 | 3.41 27 | 3.88 27 | 3.51 40 | 6.38 88 | 9.10 88 | 6.30 88 | 7.43 70 | 11.5 70 | 4.86 71 | 5.80 27 | 7.32 27 | 1.81 78 |
GraphCuts [14] | 58.4 | 2.47 75 | 3.90 74 | 1.03 68 | 1.91 33 | 2.43 34 | 1.56 44 | 11.0 61 | 6.33 24 | 13.7 65 | 2.97 55 | 3.47 52 | 3.11 70 | 5.47 84 | 6.22 84 | 7.89 86 | 3.33 21 | 4.75 21 | 2.03 19 | 8.66 78 | 13.4 78 | 6.07 81 | 9.96 79 | 12.6 79 | 1.18 37 |
Correlation Flow [79] | 59.0 | 2.01 55 | 3.18 54 | 0.91 43 | 2.18 50 | 2.73 55 | 1.60 46 | 8.77 51 | 12.9 66 | 10.3 46 | 3.00 57 | 4.07 71 | 2.00 19 | 3.52 30 | 4.00 30 | 4.02 46 | 6.31 87 | 9.00 87 | 6.21 87 | 7.72 76 | 11.9 76 | 5.07 72 | 8.86 61 | 11.2 61 | 2.61 89 |
Adaptive flow [45] | 59.1 | 2.69 84 | 4.00 79 | 1.20 80 | 2.49 80 | 2.95 83 | 1.99 70 | 8.50 48 | 9.02 50 | 10.8 49 | 3.93 80 | 4.14 74 | 4.77 82 | 5.90 85 | 6.71 85 | 5.77 53 | 4.85 79 | 6.91 79 | 4.19 81 | 4.88 22 | 7.54 22 | 3.70 44 | 2.88 3 | 3.64 3 | 0.86 3 |
SILK [87] | 59.3 | 1.72 31 | 2.69 31 | 1.00 64 | 2.80 87 | 2.87 72 | 3.18 88 | 19.4 88 | 18.6 82 | 18.8 87 | 3.49 69 | 4.07 71 | 3.78 78 | 3.44 28 | 3.90 28 | 2.57 36 | 4.69 74 | 6.68 74 | 2.82 61 | 3.07 2 | 4.72 2 | 3.31 31 | 10.9 88 | 13.8 88 | 1.45 64 |
Rannacher [23] | 60.0 | 2.22 67 | 3.54 67 | 0.92 45 | 2.45 76 | 3.08 86 | 2.39 86 | 11.7 67 | 9.26 55 | 14.6 73 | 2.97 55 | 3.88 67 | 2.44 40 | 3.71 36 | 4.22 36 | 1.29 21 | 4.68 73 | 6.67 73 | 3.29 67 | 7.02 64 | 10.9 63 | 3.72 45 | 8.05 51 | 10.2 51 | 1.78 77 |
FOLKI [16] | 60.3 | 1.98 49 | 3.08 41 | 1.24 82 | 2.52 83 | 2.83 69 | 2.33 82 | 10.1 58 | 8.57 46 | 12.8 60 | 4.91 86 | 4.36 77 | 6.54 86 | 3.10 20 | 3.52 20 | 3.73 44 | 8.35 89 | 11.9 89 | 9.26 90 | 4.40 12 | 6.80 12 | 5.91 79 | 9.08 65 | 11.5 65 | 1.22 44 |
Dynamic MRF [7] | 61.0 | 2.00 53 | 3.18 54 | 0.88 29 | 2.26 62 | 2.87 72 | 2.30 81 | 6.85 37 | 6.45 27 | 7.97 38 | 3.65 77 | 4.22 76 | 4.17 80 | 4.47 58 | 5.09 58 | 6.53 71 | 4.03 53 | 5.73 54 | 3.48 73 | 8.15 77 | 12.6 77 | 4.25 59 | 9.08 65 | 11.5 65 | 1.53 69 |
Learning Flow [11] | 61.1 | 2.38 70 | 3.78 71 | 0.95 54 | 2.24 56 | 2.80 66 | 1.63 50 | 20.4 90 | 24.8 89 | 20.8 88 | 3.05 60 | 3.10 33 | 2.35 36 | 4.76 69 | 5.41 69 | 5.57 51 | 3.79 41 | 5.41 43 | 3.26 66 | 5.92 40 | 9.16 40 | 3.90 50 | 10.6 86 | 13.4 86 | 1.44 62 |
IAOF [50] | 61.6 | 3.34 88 | 5.18 88 | 3.47 90 | 2.75 86 | 3.20 90 | 2.07 73 | 11.7 67 | 16.6 77 | 14.1 67 | 3.56 70 | 3.67 60 | 3.65 77 | 3.65 34 | 4.16 35 | 1.24 4 | 3.82 43 | 5.45 44 | 2.66 52 | 6.34 49 | 9.81 49 | 3.45 35 | 9.42 75 | 11.9 73 | 1.31 52 |
SegOF [10] | 61.6 | 2.46 74 | 3.92 75 | 0.97 57 | 1.93 35 | 2.42 32 | 1.45 34 | 14.8 82 | 12.5 65 | 16.0 81 | 6.84 87 | 9.29 87 | 6.71 87 | 4.69 67 | 5.34 67 | 6.57 76 | 4.06 56 | 5.78 57 | 2.56 46 | 9.69 84 | 15.0 84 | 7.78 83 | 3.03 6 | 3.82 6 | 1.29 51 |
SimpleFlow [49] | 63.0 | 2.01 55 | 3.19 56 | 0.86 24 | 2.04 41 | 2.57 44 | 1.51 41 | 19.8 89 | 24.0 88 | 21.5 89 | 3.07 62 | 3.85 66 | 3.31 74 | 4.93 76 | 5.61 76 | 6.26 63 | 5.48 86 | 7.81 86 | 3.88 77 | 9.39 82 | 14.5 82 | 10.2 85 | 3.62 9 | 4.57 9 | 1.31 52 |
StereoFlow [44] | 65.6 | 2.98 87 | 4.65 87 | 1.15 76 | 2.26 62 | 2.74 58 | 1.61 48 | 6.11 28 | 7.37 36 | 6.48 29 | 3.16 65 | 4.04 70 | 2.76 56 | 6.10 87 | 6.94 87 | 8.09 87 | 5.13 82 | 7.31 82 | 4.06 78 | 9.04 81 | 14.0 81 | 4.66 68 | 6.69 35 | 8.45 35 | 1.56 70 |
HBpMotionGpu [43] | 66.2 | 2.51 77 | 3.99 77 | 1.40 86 | 2.50 82 | 3.10 88 | 2.21 77 | 9.83 57 | 14.5 70 | 11.5 54 | 3.59 73 | 4.62 80 | 2.59 48 | 7.38 90 | 8.39 90 | 11.8 90 | 5.43 85 | 7.75 85 | 4.40 84 | 5.39 31 | 8.33 30 | 2.06 10 | 5.92 29 | 7.48 29 | 1.47 66 |
GroupFlow [9] | 66.5 | 2.44 72 | 3.75 70 | 1.61 87 | 2.04 41 | 2.53 41 | 1.67 52 | 12.3 73 | 10.6 61 | 12.5 59 | 9.06 90 | 10.6 90 | 12.0 90 | 4.69 67 | 5.34 67 | 6.59 80 | 4.72 76 | 6.72 75 | 4.23 83 | 8.80 79 | 13.6 79 | 4.48 65 | 3.88 11 | 4.90 11 | 1.81 78 |
SPSA-learn [13] | 67.1 | 3.49 89 | 5.31 89 | 1.15 76 | 2.30 65 | 2.81 67 | 1.73 58 | 16.0 84 | 14.3 69 | 16.8 84 | 3.70 78 | 3.65 58 | 4.08 79 | 4.54 63 | 5.16 63 | 5.09 50 | 3.82 43 | 5.45 44 | 3.56 75 | 16.4 89 | 25.3 89 | 19.6 89 | 4.18 12 | 5.27 12 | 2.10 86 |
Pyramid LK [2] | 69.0 | 2.62 80 | 4.11 80 | 1.23 81 | 3.77 89 | 2.94 82 | 2.29 80 | 17.2 85 | 10.1 58 | 16.4 82 | 7.25 88 | 9.29 87 | 8.44 88 | 5.34 82 | 6.07 82 | 3.60 41 | 4.58 72 | 4.97 29 | 3.49 74 | 9.56 83 | 14.8 83 | 4.29 60 | 3.73 10 | 4.70 10 | 1.28 50 |
Periodicity [86] | 82.5 | 5.15 90 | 7.86 90 | 3.24 89 | 5.39 90 | 3.06 85 | 3.39 89 | 17.5 86 | 17.3 78 | 18.7 86 | 7.38 89 | 9.91 89 | 8.96 89 | 5.97 86 | 6.80 86 | 6.94 85 | 8.36 90 | 11.9 89 | 8.85 89 | 15.0 88 | 23.2 88 | 14.1 88 | 5.71 25 | 7.19 25 | 4.90 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |