Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
Average endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 2.6 | 0.07 1 | 0.20 2 | 0.05 1 | 0.15 1 | 0.51 3 | 0.12 5 | 0.18 1 | 0.37 1 | 0.14 1 | 0.10 2 | 0.49 3 | 0.06 2 | 0.41 1 | 0.61 1 | 0.21 2 | 0.23 2 | 0.66 2 | 0.19 1 | 0.10 4 | 0.12 8 | 0.17 11 | 0.34 1 | 0.80 4 | 0.23 2 |
OFLADF [82] | 6.6 | 0.08 7 | 0.21 3 | 0.06 5 | 0.16 5 | 0.53 4 | 0.12 5 | 0.19 2 | 0.37 1 | 0.14 1 | 0.14 7 | 0.77 19 | 0.07 4 | 0.51 4 | 0.78 5 | 0.25 3 | 0.31 4 | 0.76 3 | 0.25 7 | 0.11 11 | 0.12 8 | 0.21 29 | 0.42 7 | 0.78 2 | 0.63 13 |
MDP-Flow2 [70] | 7.4 | 0.08 7 | 0.21 3 | 0.07 15 | 0.15 1 | 0.48 1 | 0.11 1 | 0.20 4 | 0.40 4 | 0.14 1 | 0.15 15 | 0.80 24 | 0.08 10 | 0.63 13 | 0.93 14 | 0.43 14 | 0.26 3 | 0.76 3 | 0.23 5 | 0.11 11 | 0.12 8 | 0.17 11 | 0.38 3 | 0.79 3 | 0.44 4 |
NN-field [73] | 8.2 | 0.08 7 | 0.22 12 | 0.05 1 | 0.17 7 | 0.55 6 | 0.13 10 | 0.19 2 | 0.39 3 | 0.15 6 | 0.09 1 | 0.48 2 | 0.05 1 | 0.41 1 | 0.61 1 | 0.20 1 | 0.52 40 | 0.64 1 | 0.26 9 | 0.13 30 | 0.13 25 | 0.20 22 | 0.35 2 | 0.83 5 | 0.21 1 |
Epistemic [84] | 9.3 | 0.07 1 | 0.21 3 | 0.05 1 | 0.16 5 | 0.55 6 | 0.12 5 | 0.20 4 | 0.44 7 | 0.15 6 | 0.11 3 | 0.65 6 | 0.06 2 | 0.71 24 | 1.07 28 | 0.53 25 | 0.32 6 | 1.06 16 | 0.28 11 | 0.11 11 | 0.13 25 | 0.15 7 | 0.41 6 | 0.88 9 | 0.54 6 |
TC/T-Flow [80] | 14.2 | 0.07 1 | 0.21 3 | 0.05 1 | 0.19 13 | 0.68 23 | 0.12 5 | 0.28 17 | 0.66 23 | 0.14 1 | 0.14 7 | 0.86 29 | 0.07 4 | 0.67 21 | 0.98 20 | 0.49 22 | 0.22 1 | 0.82 5 | 0.19 1 | 0.11 11 | 0.11 1 | 0.30 66 | 0.50 25 | 1.02 25 | 0.64 16 |
LME [72] | 15.3 | 0.08 7 | 0.22 12 | 0.06 5 | 0.15 1 | 0.49 2 | 0.11 1 | 0.30 26 | 0.64 17 | 0.31 61 | 0.15 15 | 0.78 21 | 0.09 21 | 0.66 17 | 0.96 17 | 0.53 25 | 0.33 7 | 1.18 26 | 0.28 11 | 0.12 20 | 0.12 8 | 0.18 15 | 0.44 9 | 0.91 12 | 0.61 11 |
ADF [67] | 15.4 | 0.08 7 | 0.22 12 | 0.06 5 | 0.18 9 | 0.62 14 | 0.14 15 | 0.29 22 | 0.71 26 | 0.17 13 | 0.16 26 | 0.91 37 | 0.07 4 | 0.69 23 | 1.03 23 | 0.47 17 | 0.43 18 | 0.91 8 | 0.28 11 | 0.12 20 | 0.12 8 | 0.20 22 | 0.43 8 | 0.88 9 | 0.63 13 |
Layers++ [37] | 15.5 | 0.08 7 | 0.21 3 | 0.07 15 | 0.19 13 | 0.56 8 | 0.17 25 | 0.20 4 | 0.40 4 | 0.18 18 | 0.13 5 | 0.58 5 | 0.07 4 | 0.48 3 | 0.70 3 | 0.33 6 | 0.47 28 | 1.01 12 | 0.33 28 | 0.15 48 | 0.14 42 | 0.24 41 | 0.46 14 | 0.88 9 | 0.72 28 |
IROF++ [58] | 16.2 | 0.08 7 | 0.23 17 | 0.07 15 | 0.21 24 | 0.68 23 | 0.17 25 | 0.28 17 | 0.63 16 | 0.19 27 | 0.15 15 | 0.73 15 | 0.09 21 | 0.60 10 | 0.89 10 | 0.42 13 | 0.43 18 | 1.08 20 | 0.31 21 | 0.10 4 | 0.12 8 | 0.12 4 | 0.47 16 | 0.98 20 | 0.68 24 |
nLayers [57] | 16.4 | 0.07 1 | 0.19 1 | 0.06 5 | 0.22 29 | 0.59 10 | 0.19 40 | 0.25 12 | 0.54 11 | 0.20 36 | 0.15 15 | 0.84 27 | 0.08 10 | 0.53 5 | 0.78 5 | 0.34 8 | 0.44 22 | 0.84 6 | 0.30 18 | 0.13 30 | 0.13 25 | 0.20 22 | 0.47 16 | 0.97 19 | 0.67 21 |
Correlation Flow [79] | 18.0 | 0.09 25 | 0.23 17 | 0.07 15 | 0.17 7 | 0.58 9 | 0.11 1 | 0.43 39 | 0.99 42 | 0.15 6 | 0.11 3 | 0.47 1 | 0.08 10 | 0.75 29 | 1.08 29 | 0.56 29 | 0.41 15 | 0.92 9 | 0.30 18 | 0.14 38 | 0.13 25 | 0.27 52 | 0.40 5 | 0.85 6 | 0.42 3 |
FC-2Layers-FF [77] | 18.3 | 0.08 7 | 0.21 3 | 0.07 15 | 0.21 24 | 0.70 27 | 0.17 25 | 0.20 4 | 0.40 4 | 0.18 18 | 0.15 15 | 0.76 18 | 0.08 10 | 0.53 5 | 0.77 4 | 0.37 9 | 0.49 33 | 1.02 13 | 0.33 28 | 0.16 58 | 0.13 25 | 0.29 61 | 0.44 9 | 0.87 8 | 0.64 16 |
TC-Flow [46] | 20.9 | 0.07 1 | 0.21 3 | 0.06 5 | 0.15 1 | 0.59 10 | 0.11 1 | 0.31 30 | 0.78 33 | 0.14 1 | 0.16 26 | 0.86 29 | 0.08 10 | 0.75 29 | 1.11 31 | 0.54 27 | 0.42 17 | 1.40 41 | 0.25 7 | 0.11 11 | 0.12 8 | 0.29 61 | 0.62 36 | 1.35 36 | 0.93 47 |
ALD-Flow [68] | 21.1 | 0.07 1 | 0.21 3 | 0.06 5 | 0.19 13 | 0.64 19 | 0.13 10 | 0.30 26 | 0.73 28 | 0.15 6 | 0.17 31 | 0.92 41 | 0.07 4 | 0.78 32 | 1.14 32 | 0.59 32 | 0.33 7 | 1.30 33 | 0.21 3 | 0.12 20 | 0.12 8 | 0.28 56 | 0.54 32 | 1.19 34 | 0.73 31 |
FESL [75] | 21.4 | 0.08 7 | 0.21 3 | 0.07 15 | 0.25 47 | 0.75 38 | 0.19 40 | 0.27 13 | 0.61 14 | 0.18 18 | 0.14 7 | 0.68 7 | 0.08 10 | 0.61 12 | 0.89 10 | 0.44 15 | 0.47 28 | 1.03 15 | 0.32 24 | 0.14 38 | 0.15 53 | 0.25 44 | 0.50 25 | 0.96 17 | 0.63 13 |
SCR [74] | 21.5 | 0.08 7 | 0.23 17 | 0.07 15 | 0.22 29 | 0.71 29 | 0.17 25 | 0.27 13 | 0.60 13 | 0.19 27 | 0.14 7 | 0.73 15 | 0.08 10 | 0.63 13 | 0.92 13 | 0.44 15 | 0.51 37 | 1.08 20 | 0.33 28 | 0.15 48 | 0.13 25 | 0.29 61 | 0.47 16 | 0.93 13 | 0.67 21 |
COFM [59] | 21.8 | 0.08 7 | 0.26 34 | 0.06 5 | 0.18 9 | 0.62 14 | 0.14 15 | 0.30 26 | 0.74 30 | 0.19 27 | 0.15 15 | 0.86 29 | 0.07 4 | 0.79 33 | 1.14 32 | 0.74 49 | 0.35 10 | 0.87 7 | 0.28 11 | 0.14 38 | 0.12 8 | 0.28 56 | 0.49 21 | 0.94 15 | 0.71 27 |
Sparse-NonSparse [56] | 22.0 | 0.08 7 | 0.23 17 | 0.07 15 | 0.22 29 | 0.73 33 | 0.18 33 | 0.28 17 | 0.64 17 | 0.19 27 | 0.14 7 | 0.71 12 | 0.08 10 | 0.67 21 | 0.99 22 | 0.48 20 | 0.49 33 | 1.06 16 | 0.32 24 | 0.14 38 | 0.11 1 | 0.28 56 | 0.49 21 | 0.98 20 | 0.73 31 |
Efficient-NL [60] | 22.0 | 0.08 7 | 0.22 12 | 0.06 5 | 0.21 24 | 0.67 21 | 0.17 25 | 0.31 30 | 0.73 28 | 0.18 18 | 0.14 7 | 0.71 12 | 0.08 10 | 0.59 8 | 0.88 9 | 0.39 11 | 1.30 67 | 1.35 36 | 0.67 63 | 0.14 38 | 0.13 25 | 0.26 46 | 0.45 12 | 0.85 6 | 0.55 8 |
Levin3 [90] | 22.9 | 0.08 7 | 0.22 12 | 0.06 5 | 0.22 29 | 0.73 33 | 0.17 25 | 0.28 17 | 0.64 17 | 0.18 18 | 0.15 15 | 0.69 8 | 0.09 21 | 0.59 8 | 0.87 8 | 0.38 10 | 0.51 37 | 1.07 19 | 0.33 28 | 0.17 64 | 0.14 42 | 0.33 73 | 0.47 16 | 0.93 13 | 0.68 24 |
LSM [39] | 23.5 | 0.08 7 | 0.23 17 | 0.07 15 | 0.22 29 | 0.73 33 | 0.18 33 | 0.28 17 | 0.64 17 | 0.19 27 | 0.14 7 | 0.70 10 | 0.09 21 | 0.66 17 | 0.97 18 | 0.48 20 | 0.50 35 | 1.06 16 | 0.33 28 | 0.15 48 | 0.12 8 | 0.29 61 | 0.50 25 | 0.99 23 | 0.73 31 |
Ramp [62] | 24.0 | 0.08 7 | 0.24 24 | 0.07 15 | 0.21 24 | 0.72 31 | 0.18 33 | 0.27 13 | 0.62 15 | 0.19 27 | 0.15 15 | 0.71 12 | 0.09 21 | 0.66 17 | 0.97 18 | 0.49 22 | 0.51 37 | 1.09 22 | 0.34 35 | 0.15 48 | 0.12 8 | 0.30 66 | 0.48 20 | 0.96 17 | 0.72 28 |
Direct ZNCC [66] | 25.5 | 0.09 25 | 0.25 27 | 0.07 15 | 0.19 13 | 0.70 27 | 0.13 10 | 0.43 39 | 1.00 43 | 0.15 6 | 0.13 5 | 0.55 4 | 0.08 10 | 0.86 40 | 1.23 39 | 0.73 45 | 0.53 42 | 1.22 28 | 0.38 44 | 0.14 38 | 0.13 25 | 0.27 52 | 0.44 9 | 0.99 23 | 0.44 4 |
TV-L1-MCT [64] | 25.7 | 0.08 7 | 0.23 17 | 0.07 15 | 0.24 43 | 0.77 40 | 0.19 40 | 0.32 33 | 0.76 32 | 0.19 27 | 0.14 7 | 0.69 8 | 0.09 21 | 0.72 26 | 1.03 23 | 0.60 33 | 0.54 43 | 1.10 23 | 0.35 36 | 0.11 11 | 0.12 8 | 0.20 22 | 0.54 32 | 1.04 29 | 0.84 40 |
Classic+NL [31] | 25.8 | 0.08 7 | 0.23 17 | 0.07 15 | 0.22 29 | 0.74 36 | 0.18 33 | 0.29 22 | 0.65 22 | 0.19 27 | 0.15 15 | 0.73 15 | 0.09 21 | 0.64 16 | 0.93 14 | 0.47 17 | 0.52 40 | 1.12 24 | 0.33 28 | 0.16 58 | 0.13 25 | 0.29 61 | 0.49 21 | 0.98 20 | 0.74 35 |
PMF [76] | 26.2 | 0.09 25 | 0.25 27 | 0.07 15 | 0.19 13 | 0.60 13 | 0.14 15 | 0.23 9 | 0.46 9 | 0.17 13 | 0.17 31 | 0.87 33 | 0.09 21 | 0.58 7 | 0.86 7 | 0.26 4 | 0.82 56 | 1.17 25 | 0.54 54 | 0.21 78 | 0.22 83 | 0.36 75 | 0.39 4 | 0.75 1 | 0.59 10 |
IROF-TV [53] | 27.7 | 0.09 25 | 0.25 27 | 0.08 32 | 0.22 29 | 0.77 40 | 0.19 40 | 0.30 26 | 0.70 25 | 0.19 27 | 0.18 36 | 0.93 44 | 0.11 38 | 0.73 27 | 1.04 25 | 0.56 29 | 0.44 22 | 1.69 56 | 0.31 21 | 0.09 3 | 0.11 1 | 0.12 4 | 0.50 25 | 1.08 31 | 0.73 31 |
MDP-Flow [26] | 28.1 | 0.09 25 | 0.25 27 | 0.08 32 | 0.19 13 | 0.54 5 | 0.18 33 | 0.24 10 | 0.55 12 | 0.20 36 | 0.16 26 | 0.91 37 | 0.09 21 | 0.74 28 | 1.06 27 | 0.61 35 | 0.46 26 | 1.02 13 | 0.35 36 | 0.12 20 | 0.14 42 | 0.17 11 | 0.78 52 | 1.68 56 | 0.97 52 |
OFH [38] | 30.2 | 0.10 36 | 0.25 27 | 0.09 44 | 0.19 13 | 0.69 25 | 0.14 15 | 0.43 39 | 1.02 45 | 0.17 13 | 0.17 31 | 1.08 50 | 0.08 10 | 0.87 42 | 1.25 40 | 0.73 45 | 0.43 18 | 1.69 56 | 0.32 24 | 0.10 4 | 0.13 25 | 0.18 15 | 0.59 35 | 1.40 39 | 0.74 35 |
EP-PM [83] | 30.2 | 0.11 41 | 0.30 49 | 0.08 32 | 0.19 13 | 0.67 21 | 0.13 10 | 0.29 22 | 0.71 26 | 0.17 13 | 0.17 31 | 0.78 21 | 0.11 38 | 0.63 13 | 0.93 14 | 0.33 6 | 0.60 46 | 1.35 36 | 0.40 45 | 0.19 71 | 0.15 53 | 0.45 82 | 0.45 12 | 0.94 15 | 0.64 16 |
Sparse Occlusion [54] | 31.1 | 0.09 25 | 0.24 24 | 0.08 32 | 0.22 29 | 0.63 16 | 0.19 40 | 0.38 37 | 0.91 37 | 0.18 18 | 0.17 31 | 0.85 28 | 0.09 21 | 0.75 29 | 1.09 30 | 0.47 17 | 0.34 9 | 1.00 11 | 0.26 9 | 0.22 80 | 0.22 83 | 0.28 56 | 0.53 31 | 1.13 32 | 0.67 21 |
CostFilter [40] | 32.0 | 0.10 36 | 0.27 39 | 0.08 32 | 0.20 22 | 0.63 16 | 0.15 20 | 0.22 8 | 0.45 8 | 0.18 18 | 0.19 40 | 0.88 35 | 0.12 42 | 0.60 10 | 0.90 12 | 0.28 5 | 0.75 53 | 1.19 27 | 0.50 51 | 0.21 78 | 0.24 87 | 0.40 79 | 0.46 14 | 1.02 25 | 0.62 12 |
NL-TV-NCC [25] | 32.3 | 0.10 36 | 0.26 34 | 0.08 32 | 0.22 29 | 0.72 31 | 0.15 20 | 0.35 35 | 0.85 35 | 0.16 11 | 0.15 15 | 0.70 10 | 0.09 21 | 0.79 33 | 1.16 35 | 0.51 24 | 0.78 54 | 1.38 38 | 0.48 50 | 0.16 58 | 0.15 53 | 0.26 46 | 0.55 34 | 1.16 33 | 0.55 8 |
SimpleFlow [49] | 34.2 | 0.09 25 | 0.24 24 | 0.08 32 | 0.24 43 | 0.78 43 | 0.20 49 | 0.43 39 | 0.96 40 | 0.21 40 | 0.16 26 | 0.77 19 | 0.09 21 | 0.71 24 | 1.04 25 | 0.55 28 | 1.47 72 | 1.59 52 | 0.76 66 | 0.13 30 | 0.12 8 | 0.22 33 | 0.50 25 | 1.04 29 | 0.72 28 |
Occlusion-TV-L1 [63] | 34.7 | 0.09 25 | 0.26 34 | 0.07 15 | 0.22 29 | 0.74 36 | 0.18 33 | 0.51 50 | 1.15 54 | 0.21 40 | 0.18 36 | 0.91 37 | 0.10 35 | 0.87 42 | 1.25 40 | 0.72 42 | 0.47 28 | 1.38 38 | 0.36 39 | 0.10 4 | 0.12 8 | 0.11 2 | 0.83 56 | 1.78 59 | 0.96 51 |
Adaptive [20] | 37.8 | 0.09 25 | 0.26 34 | 0.06 5 | 0.23 41 | 0.78 43 | 0.18 33 | 0.54 54 | 1.19 59 | 0.21 40 | 0.18 36 | 0.91 37 | 0.10 35 | 0.88 45 | 1.25 40 | 0.73 45 | 0.50 35 | 1.28 31 | 0.31 21 | 0.14 38 | 0.16 61 | 0.22 33 | 0.65 40 | 1.37 38 | 0.79 37 |
Complementary OF [21] | 39.2 | 0.11 41 | 0.28 40 | 0.10 54 | 0.18 9 | 0.63 16 | 0.12 5 | 0.31 30 | 0.75 31 | 0.18 18 | 0.19 40 | 0.97 45 | 0.12 42 | 0.97 58 | 1.31 54 | 1.00 62 | 1.78 81 | 1.73 59 | 0.87 74 | 0.11 11 | 0.12 8 | 0.22 33 | 0.68 41 | 1.48 41 | 0.95 48 |
ACK-Prior [27] | 39.3 | 0.11 41 | 0.25 27 | 0.09 44 | 0.18 9 | 0.59 10 | 0.13 10 | 0.27 13 | 0.64 17 | 0.16 11 | 0.15 15 | 0.78 21 | 0.09 21 | 0.82 36 | 1.14 32 | 0.71 41 | 1.90 82 | 1.90 65 | 0.99 78 | 0.23 83 | 0.17 68 | 0.49 84 | 0.77 50 | 1.44 40 | 0.91 45 |
TCOF [71] | 39.3 | 0.11 41 | 0.28 40 | 0.09 44 | 0.24 43 | 0.76 39 | 0.19 40 | 0.53 51 | 1.15 54 | 0.29 57 | 0.24 52 | 0.88 35 | 0.20 62 | 0.88 45 | 1.26 44 | 0.69 39 | 0.38 12 | 0.93 10 | 0.29 16 | 0.16 58 | 0.16 61 | 0.22 33 | 0.49 21 | 1.03 28 | 0.65 19 |
DPOF [18] | 39.4 | 0.12 57 | 0.33 57 | 0.08 32 | 0.26 50 | 0.80 47 | 0.20 49 | 0.24 10 | 0.49 10 | 0.20 36 | 0.19 40 | 0.83 26 | 0.13 46 | 0.66 17 | 0.98 20 | 0.40 12 | 1.11 63 | 1.41 43 | 0.57 58 | 0.25 85 | 0.14 42 | 0.55 85 | 0.51 30 | 1.02 25 | 0.54 6 |
ComplOF-FED-GPU [35] | 41.8 | 0.11 41 | 0.29 45 | 0.10 54 | 0.21 24 | 0.78 43 | 0.14 15 | 0.32 33 | 0.79 34 | 0.17 13 | 0.19 40 | 0.99 46 | 0.11 38 | 0.89 47 | 1.29 48 | 0.73 45 | 1.25 65 | 1.74 60 | 0.64 62 | 0.14 38 | 0.13 25 | 0.30 66 | 0.64 38 | 1.50 43 | 0.83 39 |
Classic++ [32] | 42.3 | 0.09 25 | 0.25 27 | 0.07 15 | 0.23 41 | 0.78 43 | 0.19 40 | 0.43 39 | 1.00 43 | 0.22 44 | 0.20 44 | 1.11 51 | 0.10 35 | 0.87 42 | 1.30 51 | 0.66 38 | 0.47 28 | 1.62 53 | 0.33 28 | 0.17 64 | 0.14 42 | 0.32 71 | 0.79 53 | 1.64 52 | 0.92 46 |
Aniso. Huber-L1 [22] | 42.6 | 0.10 36 | 0.28 40 | 0.08 32 | 0.31 57 | 0.88 53 | 0.28 61 | 0.56 57 | 1.13 50 | 0.29 57 | 0.20 44 | 0.92 41 | 0.13 46 | 0.84 38 | 1.20 36 | 0.70 40 | 0.39 13 | 1.23 29 | 0.28 11 | 0.17 64 | 0.15 53 | 0.27 52 | 0.64 38 | 1.36 37 | 0.79 37 |
CRTflow [88] | 44.3 | 0.11 41 | 0.30 49 | 0.08 32 | 0.24 43 | 0.77 40 | 0.17 25 | 0.50 48 | 1.13 50 | 0.21 40 | 0.23 51 | 1.24 58 | 0.12 42 | 0.86 40 | 1.27 46 | 0.65 37 | 0.60 46 | 1.95 70 | 0.50 51 | 0.12 20 | 0.14 42 | 0.21 29 | 0.79 53 | 1.77 58 | 0.98 53 |
TriangleFlow [30] | 45.5 | 0.11 41 | 0.29 45 | 0.09 44 | 0.26 50 | 0.95 58 | 0.17 25 | 0.47 47 | 1.07 46 | 0.18 18 | 0.16 26 | 0.87 33 | 0.09 21 | 1.07 66 | 1.47 71 | 1.10 66 | 0.87 57 | 1.39 40 | 0.57 58 | 0.15 48 | 0.19 79 | 0.23 40 | 0.63 37 | 1.33 35 | 0.84 40 |
Deep-Matching [85] | 46.5 | 0.13 63 | 0.33 57 | 0.13 66 | 0.34 61 | 0.89 54 | 0.28 61 | 0.50 48 | 1.09 49 | 0.40 62 | 0.30 64 | 1.35 65 | 0.21 63 | 0.81 35 | 1.21 37 | 0.58 31 | 0.37 11 | 1.52 50 | 0.24 6 | 0.10 4 | 0.11 1 | 0.22 33 | 1.02 65 | 1.87 64 | 1.31 67 |
SIOF [69] | 46.9 | 0.11 41 | 0.28 40 | 0.09 44 | 0.27 53 | 0.95 58 | 0.20 49 | 0.60 63 | 1.17 56 | 0.48 63 | 0.25 56 | 1.13 52 | 0.16 54 | 0.97 58 | 1.33 57 | 1.03 63 | 0.43 18 | 1.32 34 | 0.36 39 | 0.13 30 | 0.13 25 | 0.18 15 | 0.76 48 | 1.52 46 | 1.14 63 |
TV-L1-improved [17] | 47.7 | 0.09 25 | 0.26 34 | 0.07 15 | 0.20 22 | 0.71 29 | 0.16 22 | 0.53 51 | 1.18 58 | 0.22 44 | 0.21 48 | 1.24 58 | 0.11 38 | 0.90 48 | 1.31 54 | 0.72 42 | 1.51 74 | 1.93 68 | 0.84 70 | 0.18 69 | 0.17 68 | 0.31 69 | 0.73 45 | 1.62 51 | 0.87 43 |
LocallyOriented [52] | 48.5 | 0.12 57 | 0.35 62 | 0.08 32 | 0.33 60 | 1.01 62 | 0.25 58 | 0.61 65 | 1.30 67 | 0.28 54 | 0.18 36 | 0.80 24 | 0.13 46 | 0.93 53 | 1.29 48 | 0.79 51 | 0.98 60 | 1.48 47 | 0.56 57 | 0.12 20 | 0.14 42 | 0.21 29 | 0.73 45 | 1.48 41 | 0.95 48 |
CBF [12] | 48.6 | 0.10 36 | 0.28 40 | 0.09 44 | 0.34 61 | 0.80 47 | 0.37 65 | 0.43 39 | 0.95 39 | 0.26 50 | 0.21 48 | 1.14 53 | 0.13 46 | 0.90 48 | 1.27 46 | 0.82 53 | 0.41 15 | 1.23 29 | 0.30 18 | 0.23 83 | 0.19 79 | 0.39 78 | 0.76 48 | 1.56 47 | 1.02 54 |
Brox et al. [5] | 50.4 | 0.11 41 | 0.32 55 | 0.11 61 | 0.27 53 | 0.93 56 | 0.22 55 | 0.39 38 | 0.94 38 | 0.24 48 | 0.24 52 | 1.25 60 | 0.13 46 | 1.10 71 | 1.39 66 | 1.43 78 | 0.89 59 | 1.77 62 | 0.55 56 | 0.10 4 | 0.13 25 | 0.11 2 | 0.91 59 | 1.83 63 | 1.13 61 |
Local-TV-L1 [65] | 50.4 | 0.14 65 | 0.34 59 | 0.14 69 | 0.47 68 | 1.05 64 | 0.43 68 | 0.72 69 | 1.25 64 | 0.52 64 | 0.31 66 | 1.39 68 | 0.22 65 | 0.83 37 | 1.21 37 | 0.63 36 | 0.39 13 | 1.29 32 | 0.29 16 | 0.11 11 | 0.11 1 | 0.22 33 | 1.06 67 | 1.87 64 | 1.67 73 |
CLG-TV [48] | 50.9 | 0.11 41 | 0.29 45 | 0.09 44 | 0.32 58 | 0.86 52 | 0.30 63 | 0.55 55 | 1.17 56 | 0.28 54 | 0.25 56 | 1.05 48 | 0.17 57 | 0.92 52 | 1.30 51 | 0.79 51 | 0.47 28 | 1.72 58 | 0.35 36 | 0.17 64 | 0.17 68 | 0.25 44 | 0.74 47 | 1.57 49 | 0.88 44 |
F-TV-L1 [15] | 51.0 | 0.14 65 | 0.35 62 | 0.14 69 | 0.34 61 | 0.98 60 | 0.26 59 | 0.59 62 | 1.19 59 | 0.26 50 | 0.27 60 | 1.36 67 | 0.16 54 | 0.90 48 | 1.30 51 | 0.76 50 | 0.54 43 | 1.62 53 | 0.36 39 | 0.13 30 | 0.15 53 | 0.20 22 | 0.68 41 | 1.56 47 | 0.66 20 |
FastOF [78] | 51.5 | 0.11 41 | 0.31 52 | 0.10 54 | 0.35 65 | 1.05 64 | 0.27 60 | 0.60 63 | 1.14 53 | 0.52 64 | 0.22 50 | 0.92 41 | 0.16 54 | 0.95 55 | 1.29 48 | 1.10 66 | 0.67 50 | 1.92 67 | 0.51 53 | 0.15 48 | 0.12 8 | 0.22 33 | 0.81 55 | 1.50 43 | 0.95 48 |
SuperFlow [89] | 51.8 | 0.11 41 | 0.29 45 | 0.08 32 | 0.34 61 | 0.85 51 | 0.33 64 | 0.53 51 | 1.08 48 | 0.59 67 | 0.28 62 | 1.23 57 | 0.21 63 | 0.99 61 | 1.32 56 | 1.21 70 | 0.46 26 | 1.49 48 | 0.36 39 | 0.15 48 | 0.16 61 | 0.19 18 | 0.90 58 | 1.81 61 | 1.07 56 |
Rannacher [23] | 52.2 | 0.11 41 | 0.31 52 | 0.09 44 | 0.25 47 | 0.84 50 | 0.21 53 | 0.57 59 | 1.27 66 | 0.26 50 | 0.24 52 | 1.32 63 | 0.13 46 | 0.91 51 | 1.33 57 | 0.72 42 | 1.49 73 | 1.95 70 | 0.78 67 | 0.15 48 | 0.14 42 | 0.26 46 | 0.69 43 | 1.58 50 | 0.86 42 |
Fusion [6] | 52.5 | 0.11 41 | 0.34 59 | 0.10 54 | 0.19 13 | 0.69 25 | 0.16 22 | 0.29 22 | 0.66 23 | 0.23 46 | 0.20 44 | 1.19 55 | 0.14 52 | 1.07 66 | 1.42 68 | 1.22 71 | 1.35 68 | 1.49 48 | 0.86 72 | 0.20 72 | 0.20 81 | 0.26 46 | 1.07 69 | 2.07 74 | 1.39 70 |
Second-order prior [8] | 54.0 | 0.11 41 | 0.31 52 | 0.09 44 | 0.26 50 | 0.93 56 | 0.20 49 | 0.57 59 | 1.25 64 | 0.26 50 | 0.20 44 | 1.04 47 | 0.12 42 | 0.94 54 | 1.34 59 | 0.83 55 | 0.61 48 | 1.93 68 | 0.47 49 | 0.20 72 | 0.16 61 | 0.34 74 | 0.77 50 | 1.64 52 | 1.07 56 |
p-harmonic [29] | 54.8 | 0.12 57 | 0.36 67 | 0.11 61 | 0.25 47 | 0.82 49 | 0.21 53 | 0.57 59 | 1.24 61 | 0.28 54 | 0.26 58 | 1.20 56 | 0.19 61 | 1.07 66 | 1.39 66 | 1.31 74 | 0.44 22 | 1.65 55 | 0.37 43 | 0.15 48 | 0.16 61 | 0.21 29 | 0.87 57 | 1.76 57 | 1.06 55 |
Bartels [41] | 55.9 | 0.12 57 | 0.30 49 | 0.11 61 | 0.22 29 | 0.65 20 | 0.19 40 | 0.35 35 | 0.86 36 | 0.23 46 | 0.28 62 | 1.32 63 | 0.18 59 | 0.97 58 | 1.38 63 | 0.98 59 | 1.20 64 | 1.76 61 | 0.78 67 | 0.20 72 | 0.17 68 | 0.48 83 | 0.91 59 | 1.88 66 | 1.22 64 |
Dynamic MRF [7] | 57.0 | 0.12 57 | 0.34 59 | 0.11 61 | 0.22 29 | 0.89 54 | 0.16 22 | 0.44 46 | 1.13 50 | 0.20 36 | 0.24 52 | 1.29 62 | 0.14 52 | 1.11 72 | 1.52 78 | 1.13 68 | 1.54 75 | 2.37 82 | 0.93 75 | 0.13 30 | 0.12 8 | 0.31 69 | 1.27 76 | 2.33 82 | 1.66 72 |
SegOF [10] | 57.3 | 0.15 68 | 0.36 67 | 0.10 54 | 0.57 71 | 1.16 71 | 0.59 76 | 0.68 68 | 1.24 61 | 0.64 69 | 0.32 67 | 0.86 29 | 0.26 67 | 1.18 78 | 1.50 77 | 1.47 80 | 1.63 78 | 2.09 74 | 0.96 76 | 0.08 2 | 0.13 25 | 0.12 4 | 0.70 44 | 1.50 43 | 0.69 26 |
LDOF [28] | 58.8 | 0.12 57 | 0.35 62 | 0.10 54 | 0.32 58 | 1.06 66 | 0.24 57 | 0.43 39 | 0.98 41 | 0.30 60 | 0.45 71 | 2.48 87 | 0.26 67 | 1.01 64 | 1.37 62 | 1.05 64 | 1.10 62 | 2.08 73 | 0.67 63 | 0.12 20 | 0.15 53 | 0.24 41 | 0.94 62 | 2.05 71 | 1.10 58 |
Ad-TV-NDC [36] | 59.2 | 0.23 80 | 0.40 73 | 0.31 83 | 0.92 82 | 1.42 79 | 0.93 81 | 1.05 79 | 1.60 76 | 0.74 74 | 0.48 72 | 1.27 61 | 0.49 74 | 0.85 39 | 1.25 40 | 0.60 33 | 0.44 22 | 1.47 45 | 0.32 24 | 0.12 20 | 0.13 25 | 0.19 18 | 1.59 83 | 2.06 73 | 2.87 86 |
StereoFlow [44] | 62.3 | 0.46 90 | 0.77 89 | 0.47 87 | 1.41 87 | 2.26 89 | 1.16 84 | 1.30 87 | 1.94 85 | 1.02 85 | 1.33 87 | 2.98 88 | 1.16 86 | 1.08 69 | 1.49 74 | 0.99 60 | 0.31 4 | 1.40 41 | 0.22 4 | 0.07 1 | 0.11 1 | 0.08 1 | 0.98 64 | 1.88 66 | 1.31 67 |
Shiralkar [42] | 62.8 | 0.13 63 | 0.39 70 | 0.10 54 | 0.28 55 | 1.08 67 | 0.19 40 | 0.61 65 | 1.33 70 | 0.25 49 | 0.27 60 | 1.35 65 | 0.18 59 | 1.01 64 | 1.47 71 | 0.90 57 | 0.88 58 | 2.04 72 | 0.54 54 | 0.20 72 | 0.16 61 | 0.42 80 | 1.04 66 | 2.13 77 | 1.10 58 |
Learning Flow [11] | 63.5 | 0.11 41 | 0.32 55 | 0.09 44 | 0.29 56 | 0.99 61 | 0.23 56 | 0.55 55 | 1.24 61 | 0.29 57 | 0.36 68 | 1.56 72 | 0.25 66 | 1.25 81 | 1.64 83 | 1.41 76 | 1.55 77 | 2.32 81 | 0.85 71 | 0.14 38 | 0.18 74 | 0.24 41 | 1.09 70 | 2.09 76 | 1.27 65 |
IAOF2 [51] | 65.2 | 0.14 65 | 0.35 62 | 0.12 65 | 0.42 66 | 1.09 69 | 0.38 66 | 0.64 67 | 1.32 69 | 0.55 66 | 0.92 80 | 1.60 74 | 1.04 81 | 1.00 63 | 1.38 63 | 0.94 58 | 0.80 55 | 1.43 44 | 0.58 60 | 0.20 72 | 0.18 74 | 0.32 71 | 0.92 61 | 1.66 54 | 1.13 61 |
Filter Flow [19] | 66.0 | 0.17 70 | 0.39 70 | 0.13 66 | 0.43 67 | 1.09 69 | 0.38 66 | 0.75 70 | 1.34 71 | 0.78 77 | 0.70 78 | 1.54 71 | 0.68 77 | 1.13 75 | 1.38 63 | 1.51 81 | 0.57 45 | 1.32 34 | 0.44 46 | 0.22 80 | 0.23 86 | 0.26 46 | 0.96 63 | 1.66 54 | 1.12 60 |
Modified CLG [34] | 67.5 | 0.19 76 | 0.46 77 | 0.17 73 | 0.49 70 | 1.08 67 | 0.51 72 | 0.93 74 | 1.59 74 | 0.82 79 | 0.49 73 | 1.65 77 | 0.42 72 | 1.14 76 | 1.48 73 | 1.42 77 | 1.06 61 | 2.16 78 | 0.68 65 | 0.12 20 | 0.14 42 | 0.20 22 | 1.12 72 | 2.17 79 | 1.52 71 |
GraphCuts [14] | 67.8 | 0.16 69 | 0.38 69 | 0.14 69 | 0.59 74 | 1.36 78 | 0.46 69 | 0.56 57 | 1.07 46 | 0.64 69 | 0.26 58 | 1.14 53 | 0.17 57 | 0.96 56 | 1.35 60 | 0.84 56 | 2.25 88 | 1.79 63 | 1.22 84 | 0.22 80 | 0.17 68 | 0.43 81 | 1.22 75 | 2.05 71 | 1.78 76 |
GroupFlow [9] | 67.8 | 0.21 77 | 0.51 79 | 0.21 79 | 0.79 80 | 1.69 83 | 0.72 79 | 0.86 73 | 1.64 77 | 0.74 74 | 0.30 64 | 1.07 49 | 0.26 67 | 1.29 84 | 1.81 86 | 0.82 53 | 1.94 84 | 2.30 80 | 1.36 85 | 0.11 11 | 0.14 42 | 0.19 18 | 1.06 67 | 1.96 68 | 1.35 69 |
SPSA-learn [13] | 68.2 | 0.18 74 | 0.45 76 | 0.17 73 | 0.57 71 | 1.32 76 | 0.51 72 | 0.84 72 | 1.50 72 | 0.72 72 | 0.52 75 | 1.64 76 | 0.49 74 | 1.12 74 | 1.42 68 | 1.39 75 | 1.75 80 | 2.14 76 | 1.06 81 | 0.13 30 | 0.13 25 | 0.19 18 | 1.32 78 | 2.08 75 | 1.73 75 |
IAOF [50] | 68.3 | 0.17 70 | 0.39 70 | 0.18 75 | 0.61 75 | 1.23 73 | 0.55 75 | 1.20 83 | 1.87 84 | 0.73 73 | 0.66 77 | 1.46 69 | 0.72 78 | 0.99 61 | 1.36 61 | 0.99 60 | 0.73 52 | 1.83 64 | 0.45 47 | 0.18 69 | 0.15 53 | 0.27 52 | 1.30 77 | 1.81 61 | 2.09 81 |
Black & Anandan [4] | 68.4 | 0.18 74 | 0.42 75 | 0.19 76 | 0.58 73 | 1.31 75 | 0.50 71 | 0.95 76 | 1.58 73 | 0.70 71 | 0.49 73 | 1.59 73 | 0.45 73 | 1.08 69 | 1.42 68 | 1.22 71 | 1.43 70 | 2.28 79 | 0.83 69 | 0.15 48 | 0.17 68 | 0.17 11 | 1.11 71 | 1.98 69 | 1.30 66 |
BlockOverlap [61] | 68.8 | 0.17 70 | 0.35 62 | 0.16 72 | 0.48 69 | 1.02 63 | 0.46 69 | 0.75 70 | 1.31 68 | 0.59 67 | 0.40 70 | 1.47 70 | 0.33 71 | 0.96 56 | 1.26 44 | 1.14 69 | 1.40 69 | 1.47 45 | 0.86 72 | 0.31 88 | 0.22 83 | 0.86 89 | 1.20 74 | 1.78 59 | 2.19 82 |
HBpMotionGpu [43] | 69.4 | 0.17 70 | 0.41 74 | 0.13 66 | 0.61 75 | 1.34 77 | 0.59 76 | 0.95 76 | 1.68 78 | 0.76 76 | 0.38 69 | 1.63 75 | 0.27 70 | 1.11 72 | 1.49 74 | 1.27 73 | 0.66 49 | 1.53 51 | 0.45 47 | 0.20 72 | 0.18 74 | 0.28 56 | 1.12 72 | 2.04 70 | 1.67 73 |
2D-CLG [1] | 70.5 | 0.28 82 | 0.62 84 | 0.21 79 | 0.67 78 | 1.21 72 | 0.70 78 | 1.12 80 | 1.80 81 | 0.99 84 | 1.07 84 | 2.06 82 | 1.12 85 | 1.23 80 | 1.52 78 | 1.62 84 | 1.54 75 | 2.15 77 | 0.96 76 | 0.10 4 | 0.11 1 | 0.16 9 | 1.38 81 | 2.26 81 | 1.83 78 |
Nguyen [33] | 71.4 | 0.22 78 | 0.47 78 | 0.19 76 | 0.87 81 | 1.29 74 | 0.97 82 | 1.17 82 | 1.81 82 | 0.92 82 | 0.99 82 | 1.82 78 | 1.07 82 | 1.17 77 | 1.49 74 | 1.46 79 | 0.72 51 | 2.09 74 | 0.60 61 | 0.14 38 | 0.14 42 | 0.20 22 | 1.37 79 | 2.18 80 | 1.86 79 |
Horn & Schunck [3] | 75.2 | 0.22 78 | 0.55 80 | 0.22 81 | 0.61 75 | 1.53 81 | 0.52 74 | 1.01 78 | 1.73 79 | 0.80 78 | 0.78 79 | 2.02 80 | 0.77 79 | 1.26 82 | 1.58 81 | 1.55 82 | 1.43 70 | 2.59 85 | 1.00 79 | 0.16 58 | 0.18 74 | 0.15 7 | 1.51 82 | 2.50 83 | 1.88 80 |
TI-DOFE [24] | 77.6 | 0.38 88 | 0.64 85 | 0.47 87 | 1.16 85 | 1.72 84 | 1.26 87 | 1.39 88 | 2.06 90 | 1.17 87 | 1.29 86 | 2.21 84 | 1.41 88 | 1.27 83 | 1.61 82 | 1.57 83 | 1.28 66 | 2.57 84 | 1.01 80 | 0.13 30 | 0.15 53 | 0.16 9 | 1.87 85 | 2.71 85 | 2.53 84 |
SILK [87] | 78.0 | 0.25 81 | 0.55 80 | 0.29 82 | 0.77 79 | 1.49 80 | 0.79 80 | 1.14 81 | 1.83 83 | 0.84 80 | 0.59 76 | 1.82 78 | 0.55 76 | 1.36 85 | 1.69 84 | 1.82 86 | 1.92 83 | 2.65 86 | 1.15 83 | 0.16 58 | 0.13 25 | 0.36 75 | 1.69 84 | 2.54 84 | 2.30 83 |
Adaptive flow [45] | 81.5 | 0.36 86 | 0.59 82 | 0.37 86 | 1.21 86 | 1.60 82 | 1.23 86 | 1.21 84 | 1.77 80 | 1.18 88 | 0.94 81 | 2.03 81 | 0.97 80 | 1.20 79 | 1.57 80 | 1.08 65 | 1.73 79 | 1.90 65 | 1.12 82 | 0.59 90 | 0.37 90 | 1.37 90 | 1.37 79 | 2.16 78 | 1.81 77 |
SLK [47] | 82.7 | 0.30 84 | 0.70 86 | 0.36 85 | 1.09 84 | 1.77 85 | 1.21 85 | 1.25 86 | 1.98 87 | 1.03 86 | 1.56 89 | 2.26 85 | 1.71 89 | 1.54 88 | 1.82 87 | 2.14 88 | 2.02 85 | 2.79 88 | 1.36 85 | 0.17 64 | 0.16 61 | 0.26 46 | 2.43 87 | 3.18 87 | 3.31 88 |
Periodicity [86] | 84.0 | 0.31 85 | 0.78 90 | 0.20 78 | 1.54 89 | 2.62 90 | 1.71 88 | 1.86 90 | 2.00 88 | 1.66 90 | 1.15 85 | 3.05 89 | 1.07 82 | 5.17 90 | 6.79 90 | 4.19 90 | 3.79 90 | 5.26 90 | 2.93 90 | 0.12 20 | 0.18 74 | 0.36 75 | 2.67 88 | 5.01 89 | 3.18 87 |
PGAM+LK [55] | 85.1 | 0.37 87 | 0.70 86 | 0.59 89 | 1.08 83 | 1.89 87 | 1.15 83 | 0.94 75 | 1.59 74 | 0.88 81 | 1.40 88 | 3.28 90 | 1.33 87 | 1.37 86 | 1.70 85 | 1.67 85 | 2.10 86 | 2.53 83 | 1.39 87 | 0.36 89 | 0.28 89 | 0.65 86 | 1.89 86 | 2.72 86 | 2.71 85 |
FOLKI [16] | 86.3 | 0.29 83 | 0.73 88 | 0.33 84 | 1.52 88 | 1.96 88 | 1.80 89 | 1.23 85 | 2.04 89 | 0.95 83 | 0.99 82 | 2.20 83 | 1.08 84 | 1.53 87 | 1.85 88 | 2.07 87 | 2.14 87 | 3.23 89 | 1.60 88 | 0.26 86 | 0.21 82 | 0.68 87 | 2.67 88 | 3.27 88 | 4.32 89 |
Pyramid LK [2] | 88.4 | 0.39 89 | 0.61 83 | 0.61 90 | 1.67 90 | 1.78 86 | 2.00 90 | 1.50 89 | 1.97 86 | 1.38 89 | 1.57 90 | 2.39 86 | 1.78 90 | 2.94 89 | 3.72 89 | 2.98 89 | 3.33 89 | 2.74 87 | 2.43 89 | 0.30 87 | 0.24 87 | 0.73 88 | 3.80 90 | 5.08 90 | 4.88 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |