Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
SD endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 4.5 | 0.20 14 | 0.44 12 | 0.10 4 | 0.38 1 | 0.90 1 | 0.17 1 | 0.48 2 | 0.87 3 | 0.14 2 | 0.41 1 | 1.24 3 | 0.09 2 | 0.82 1 | 1.02 1 | 0.34 2 | 0.73 1 | 1.77 3 | 0.54 1 | 0.11 10 | 0.12 31 | 0.13 8 | 0.80 1 | 1.37 1 | 0.45 2 |
NN-field [73] | 10.3 | 0.21 23 | 0.47 31 | 0.11 12 | 0.38 1 | 0.92 3 | 0.17 1 | 0.51 4 | 0.93 5 | 0.15 4 | 0.43 3 | 1.30 5 | 0.08 1 | 0.83 2 | 1.03 2 | 0.32 1 | 1.72 42 | 1.98 8 | 1.12 41 | 0.12 15 | 0.12 31 | 0.13 8 | 0.85 2 | 1.46 2 | 0.43 1 |
MDP-Flow2 [70] | 10.6 | 0.19 6 | 0.44 12 | 0.10 4 | 0.40 4 | 0.97 4 | 0.18 5 | 0.55 9 | 1.01 9 | 0.16 5 | 0.69 26 | 1.78 35 | 0.36 16 | 1.30 17 | 1.58 20 | 1.09 20 | 0.82 3 | 1.86 6 | 0.70 4 | 0.12 15 | 0.10 8 | 0.15 15 | 0.89 3 | 1.55 4 | 0.92 4 |
OFLADF [82] | 11.2 | 0.19 6 | 0.44 12 | 0.10 4 | 0.45 8 | 1.08 17 | 0.19 6 | 0.53 6 | 0.98 8 | 0.13 1 | 0.76 39 | 2.04 59 | 0.40 33 | 1.15 6 | 1.43 7 | 0.63 5 | 0.78 2 | 1.71 1 | 0.66 2 | 0.11 10 | 0.10 8 | 0.13 8 | 1.00 5 | 1.50 3 | 1.44 12 |
Epistemic [84] | 13.2 | 0.19 6 | 0.44 12 | 0.10 4 | 0.47 13 | 1.15 23 | 0.20 10 | 0.58 10 | 1.06 10 | 0.20 8 | 0.51 4 | 1.52 7 | 0.15 3 | 1.50 32 | 1.81 40 | 1.29 28 | 0.95 7 | 2.13 11 | 0.80 9 | 0.13 21 | 0.10 8 | 0.16 21 | 1.05 8 | 1.72 13 | 1.29 8 |
IROF++ [58] | 16.8 | 0.21 23 | 0.47 31 | 0.11 12 | 0.47 13 | 1.05 10 | 0.28 19 | 0.90 21 | 1.54 21 | 0.27 14 | 0.64 13 | 1.59 14 | 0.36 16 | 1.21 10 | 1.48 10 | 0.94 12 | 1.30 16 | 2.41 17 | 0.97 23 | 0.09 5 | 0.11 18 | 0.11 6 | 1.24 22 | 1.93 26 | 1.72 32 |
Correlation Flow [79] | 17.0 | 0.20 14 | 0.44 12 | 0.08 1 | 0.47 13 | 1.07 14 | 0.17 1 | 1.49 53 | 2.29 61 | 0.35 31 | 0.42 2 | 1.12 2 | 0.24 5 | 1.45 28 | 1.72 29 | 1.28 26 | 1.13 8 | 1.79 4 | 0.89 15 | 0.14 27 | 0.11 18 | 0.17 26 | 1.01 6 | 1.64 8 | 1.10 5 |
ADF [67] | 19.5 | 0.19 6 | 0.41 6 | 0.11 12 | 0.48 19 | 1.16 29 | 0.29 23 | 0.95 24 | 1.68 29 | 0.30 21 | 0.78 43 | 1.96 48 | 0.35 10 | 1.46 29 | 1.72 29 | 1.33 32 | 1.18 11 | 1.84 5 | 0.89 15 | 0.12 15 | 0.10 8 | 0.15 15 | 1.09 12 | 1.68 10 | 1.48 17 |
Layers++ [37] | 20.7 | 0.20 14 | 0.44 12 | 0.11 12 | 0.41 6 | 0.98 5 | 0.24 14 | 0.53 6 | 0.96 7 | 0.25 12 | 0.75 37 | 1.82 38 | 0.43 42 | 1.12 3 | 1.37 3 | 0.88 9 | 1.39 21 | 2.27 13 | 1.09 39 | 0.16 38 | 0.13 48 | 0.18 31 | 1.25 25 | 1.87 22 | 1.80 39 |
LME [72] | 20.8 | 0.21 23 | 0.48 44 | 0.11 12 | 0.40 4 | 0.99 7 | 0.17 1 | 0.89 19 | 1.50 18 | 0.68 61 | 0.68 24 | 1.63 19 | 0.50 54 | 1.33 20 | 1.56 17 | 1.29 28 | 1.17 10 | 2.77 32 | 0.83 12 | 0.13 21 | 0.11 18 | 0.17 26 | 1.07 9 | 1.68 10 | 1.39 11 |
NL-TV-NCC [25] | 21.0 | 0.20 14 | 0.44 12 | 0.09 2 | 0.47 13 | 1.07 14 | 0.19 6 | 1.16 38 | 1.95 42 | 0.31 23 | 0.53 6 | 1.42 6 | 0.24 5 | 1.37 24 | 1.61 23 | 1.14 23 | 2.07 53 | 2.39 16 | 1.47 54 | 0.16 38 | 0.09 2 | 0.19 34 | 1.24 22 | 1.93 26 | 1.29 8 |
FESL [75] | 21.9 | 0.20 14 | 0.46 26 | 0.10 4 | 0.54 34 | 1.16 29 | 0.31 30 | 0.82 15 | 1.43 14 | 0.27 14 | 0.64 13 | 1.60 16 | 0.34 9 | 1.23 11 | 1.49 11 | 0.96 14 | 1.38 20 | 2.51 23 | 0.92 19 | 0.16 38 | 0.13 48 | 0.22 40 | 1.33 33 | 1.98 31 | 1.53 19 |
FC-2Layers-FF [77] | 22.2 | 0.20 14 | 0.45 22 | 0.11 12 | 0.51 25 | 1.18 34 | 0.28 19 | 0.53 6 | 0.94 6 | 0.24 11 | 0.79 46 | 2.00 51 | 0.43 42 | 1.18 7 | 1.43 7 | 0.89 10 | 1.44 25 | 2.63 27 | 0.99 27 | 0.16 38 | 0.12 31 | 0.19 34 | 1.09 12 | 1.69 12 | 1.45 14 |
nLayers [57] | 23.2 | 0.20 14 | 0.46 26 | 0.11 12 | 0.43 7 | 0.98 5 | 0.25 15 | 0.67 12 | 1.18 12 | 0.29 19 | 0.90 57 | 2.34 74 | 0.52 57 | 1.25 13 | 1.53 16 | 0.93 11 | 1.33 17 | 2.21 12 | 0.94 22 | 0.14 27 | 0.12 31 | 0.18 31 | 1.22 19 | 1.96 29 | 1.51 18 |
LSM [39] | 23.6 | 0.20 14 | 0.45 22 | 0.12 26 | 0.54 34 | 1.16 29 | 0.32 32 | 0.91 22 | 1.53 20 | 0.34 27 | 0.62 9 | 1.55 10 | 0.36 16 | 1.31 19 | 1.57 18 | 1.07 18 | 1.42 23 | 2.41 17 | 0.99 27 | 0.17 50 | 0.11 18 | 0.22 40 | 1.25 25 | 1.83 19 | 1.72 32 |
Sparse-NonSparse [56] | 24.6 | 0.21 23 | 0.46 26 | 0.12 26 | 0.54 34 | 1.17 33 | 0.32 32 | 0.93 23 | 1.56 22 | 0.34 27 | 0.64 13 | 1.60 16 | 0.36 16 | 1.33 20 | 1.59 21 | 1.07 18 | 1.43 24 | 2.48 21 | 0.99 27 | 0.17 50 | 0.10 8 | 0.22 40 | 1.24 22 | 1.82 18 | 1.70 30 |
EP-PM [83] | 25.5 | 0.22 40 | 0.44 12 | 0.11 12 | 0.46 11 | 1.07 14 | 0.19 6 | 0.81 13 | 1.43 14 | 0.20 8 | 0.66 20 | 1.72 27 | 0.36 16 | 1.18 7 | 1.45 9 | 0.64 6 | 2.02 52 | 2.80 34 | 1.44 52 | 0.28 79 | 0.13 48 | 0.37 73 | 1.19 16 | 1.80 16 | 1.66 27 |
SCR [74] | 25.8 | 0.21 23 | 0.48 44 | 0.11 12 | 0.53 30 | 1.15 23 | 0.28 19 | 0.88 18 | 1.50 18 | 0.35 31 | 0.65 17 | 1.65 21 | 0.35 10 | 1.26 15 | 1.52 13 | 0.99 15 | 1.56 36 | 2.81 35 | 1.02 35 | 0.19 58 | 0.12 31 | 0.28 60 | 1.20 17 | 1.77 15 | 1.60 24 |
Ramp [62] | 25.9 | 0.21 23 | 0.46 26 | 0.12 26 | 0.50 22 | 1.10 18 | 0.31 30 | 0.87 17 | 1.49 17 | 0.34 27 | 0.63 11 | 1.57 11 | 0.35 10 | 1.30 17 | 1.57 18 | 1.09 20 | 1.52 33 | 2.75 30 | 1.02 35 | 0.20 63 | 0.12 31 | 0.33 68 | 1.22 19 | 1.81 17 | 1.72 32 |
PMF [76] | 26.4 | 0.21 23 | 0.47 31 | 0.11 12 | 0.45 8 | 1.03 8 | 0.20 10 | 0.48 2 | 0.85 2 | 0.14 2 | 0.80 49 | 2.12 64 | 0.38 25 | 1.12 3 | 1.38 5 | 0.54 3 | 3.68 62 | 2.46 20 | 2.72 63 | 0.21 67 | 0.21 83 | 0.28 60 | 1.04 7 | 1.55 4 | 1.55 20 |
TC/T-Flow [80] | 26.4 | 0.17 1 | 0.38 1 | 0.11 12 | 0.60 47 | 1.24 45 | 0.33 36 | 1.00 31 | 1.72 32 | 0.20 8 | 0.75 37 | 2.02 55 | 0.36 16 | 1.44 27 | 1.66 25 | 1.38 35 | 0.94 6 | 2.11 10 | 0.81 10 | 0.15 35 | 0.13 48 | 0.24 51 | 1.27 27 | 1.89 24 | 1.45 14 |
IROF-TV [53] | 26.4 | 0.21 23 | 0.46 26 | 0.13 37 | 0.51 25 | 1.13 19 | 0.33 36 | 0.98 29 | 1.60 24 | 0.30 21 | 0.71 29 | 1.77 34 | 0.40 33 | 1.33 20 | 1.60 22 | 1.10 22 | 1.51 32 | 3.56 61 | 0.99 27 | 0.08 3 | 0.10 8 | 0.10 4 | 1.31 31 | 2.07 33 | 1.74 35 |
CostFilter [40] | 26.7 | 0.21 23 | 0.47 31 | 0.11 12 | 0.47 13 | 1.05 10 | 0.22 12 | 0.43 1 | 0.75 1 | 0.18 6 | 0.76 39 | 1.95 47 | 0.38 25 | 1.12 3 | 1.37 3 | 0.56 4 | 3.23 58 | 2.45 19 | 2.50 60 | 0.22 68 | 0.20 82 | 0.31 66 | 1.20 17 | 1.85 21 | 1.55 20 |
Classic+NL [31] | 27.0 | 0.21 23 | 0.47 31 | 0.12 26 | 0.53 30 | 1.15 23 | 0.32 32 | 0.96 27 | 1.62 25 | 0.35 31 | 0.65 17 | 1.63 19 | 0.36 16 | 1.27 16 | 1.52 13 | 1.03 16 | 1.53 34 | 2.77 32 | 0.98 25 | 0.17 50 | 0.12 31 | 0.23 45 | 1.27 27 | 1.87 22 | 1.78 38 |
Levin3 [90] | 27.2 | 0.21 23 | 0.47 31 | 0.11 12 | 0.54 34 | 1.16 29 | 0.28 19 | 0.97 28 | 1.63 26 | 0.34 27 | 0.64 13 | 1.58 13 | 0.35 10 | 1.23 11 | 1.50 12 | 0.85 8 | 1.47 29 | 2.53 24 | 0.98 25 | 0.25 76 | 0.14 59 | 0.40 76 | 1.23 21 | 1.83 19 | 1.69 29 |
Efficient-NL [60] | 27.3 | 0.21 23 | 0.47 31 | 0.11 12 | 0.47 13 | 1.06 13 | 0.27 17 | 1.07 34 | 1.79 35 | 0.31 23 | 0.66 20 | 1.66 23 | 0.37 23 | 1.25 13 | 1.52 13 | 0.94 12 | 4.42 66 | 3.42 53 | 2.99 66 | 0.18 55 | 0.12 31 | 0.26 56 | 1.07 9 | 1.60 7 | 1.19 7 |
Sparse Occlusion [54] | 27.6 | 0.20 14 | 0.44 12 | 0.13 37 | 0.45 8 | 1.03 8 | 0.26 16 | 1.26 40 | 2.12 50 | 0.35 31 | 0.71 29 | 1.80 36 | 0.37 23 | 1.41 25 | 1.69 26 | 1.05 17 | 0.90 5 | 2.03 9 | 0.67 3 | 0.19 58 | 0.22 86 | 0.23 45 | 1.31 31 | 2.07 33 | 1.55 20 |
MDP-Flow [26] | 27.8 | 0.18 3 | 0.38 1 | 0.12 26 | 0.39 3 | 0.90 1 | 0.29 23 | 0.62 11 | 1.11 11 | 0.33 26 | 0.63 11 | 1.73 29 | 0.31 8 | 1.63 53 | 1.72 29 | 1.99 75 | 1.73 43 | 1.86 6 | 1.40 51 | 0.13 21 | 0.13 48 | 0.15 15 | 2.01 55 | 2.98 59 | 2.17 60 |
TV-L1-MCT [64] | 28.8 | 0.21 23 | 0.48 44 | 0.12 26 | 0.56 41 | 1.19 36 | 0.30 26 | 1.05 33 | 1.79 35 | 0.35 31 | 0.62 9 | 1.54 8 | 0.35 10 | 1.35 23 | 1.61 23 | 1.14 23 | 1.46 28 | 2.50 22 | 1.00 33 | 0.15 35 | 0.10 8 | 0.36 71 | 1.33 33 | 1.94 28 | 1.83 41 |
Direct ZNCC [66] | 29.8 | 0.21 23 | 0.48 44 | 0.09 2 | 0.52 27 | 1.19 36 | 0.32 32 | 1.53 56 | 2.30 66 | 0.37 36 | 0.52 5 | 1.26 4 | 0.30 7 | 1.59 42 | 1.84 47 | 1.51 44 | 1.76 44 | 2.63 27 | 1.36 50 | 0.14 27 | 0.11 18 | 0.18 31 | 1.15 15 | 1.91 25 | 1.13 6 |
COFM [59] | 30.2 | 0.23 46 | 0.52 61 | 0.13 37 | 0.52 27 | 1.14 20 | 0.30 26 | 0.89 19 | 1.56 22 | 0.31 23 | 0.84 55 | 2.18 68 | 0.42 40 | 1.50 32 | 1.75 33 | 1.51 44 | 0.86 4 | 1.73 2 | 0.75 6 | 0.19 58 | 0.11 18 | 0.25 54 | 1.07 9 | 1.65 9 | 1.44 12 |
DPOF [18] | 32.9 | 0.23 46 | 0.47 31 | 0.14 47 | 0.60 47 | 1.21 41 | 0.41 53 | 0.52 5 | 0.92 4 | 0.19 7 | 0.71 29 | 1.73 29 | 0.44 47 | 1.18 7 | 1.42 6 | 0.73 7 | 3.53 61 | 2.98 39 | 2.25 58 | 0.38 84 | 0.13 48 | 0.47 80 | 0.95 4 | 1.58 6 | 0.78 3 |
ALD-Flow [68] | 33.1 | 0.18 3 | 0.39 4 | 0.10 4 | 0.63 52 | 1.30 48 | 0.36 40 | 0.98 29 | 1.71 31 | 0.28 17 | 0.82 52 | 2.00 51 | 0.39 28 | 1.59 42 | 1.84 47 | 1.57 53 | 1.63 40 | 3.34 49 | 0.93 20 | 0.14 27 | 0.12 31 | 0.22 40 | 1.29 29 | 1.98 31 | 1.65 26 |
TCOF [71] | 33.4 | 0.21 23 | 0.44 12 | 0.13 37 | 0.52 27 | 1.15 23 | 0.30 26 | 1.59 60 | 2.33 70 | 0.58 54 | 0.68 24 | 1.72 27 | 0.39 28 | 1.58 40 | 1.82 43 | 1.55 50 | 1.24 14 | 2.33 14 | 0.86 13 | 0.22 68 | 0.12 31 | 0.39 75 | 1.13 14 | 1.75 14 | 1.45 14 |
ACK-Prior [27] | 33.4 | 0.18 3 | 0.39 4 | 0.10 4 | 0.46 11 | 1.05 10 | 0.19 6 | 0.82 15 | 1.46 16 | 0.25 12 | 0.59 8 | 1.65 21 | 0.22 4 | 1.50 32 | 1.74 32 | 1.42 38 | 6.47 87 | 4.94 84 | 4.41 87 | 0.28 79 | 0.17 72 | 0.37 73 | 1.67 40 | 2.35 39 | 1.62 25 |
TC-Flow [46] | 34.4 | 0.17 1 | 0.38 1 | 0.10 4 | 0.50 22 | 1.15 23 | 0.27 17 | 1.09 35 | 1.88 38 | 0.29 19 | 0.77 42 | 2.01 53 | 0.39 28 | 1.54 36 | 1.80 37 | 1.43 40 | 2.11 55 | 3.56 61 | 1.17 43 | 0.15 35 | 0.12 31 | 0.25 54 | 1.69 41 | 2.50 43 | 2.24 66 |
OFH [38] | 36.2 | 0.19 6 | 0.41 6 | 0.12 26 | 0.56 41 | 1.23 43 | 0.34 38 | 1.39 47 | 2.10 47 | 0.37 36 | 0.82 52 | 2.24 70 | 0.40 33 | 1.60 49 | 1.84 47 | 1.61 56 | 1.85 48 | 3.78 64 | 1.46 53 | 0.09 5 | 0.09 2 | 0.11 6 | 1.35 35 | 2.15 35 | 1.58 23 |
Complementary OF [21] | 36.4 | 0.19 6 | 0.41 6 | 0.12 26 | 0.49 20 | 1.14 20 | 0.22 12 | 0.95 24 | 1.67 28 | 0.27 14 | 0.76 39 | 2.03 56 | 0.38 25 | 1.73 68 | 1.91 64 | 1.91 71 | 6.38 86 | 4.41 80 | 4.34 86 | 0.10 8 | 0.09 2 | 0.16 21 | 1.42 36 | 2.15 35 | 1.81 40 |
ComplOF-FED-GPU [35] | 36.5 | 0.19 6 | 0.41 6 | 0.12 26 | 0.59 44 | 1.24 45 | 0.36 40 | 0.95 24 | 1.66 27 | 0.28 17 | 0.79 46 | 2.03 56 | 0.40 33 | 1.57 38 | 1.80 37 | 1.58 55 | 4.00 65 | 3.34 49 | 2.67 62 | 0.14 27 | 0.11 18 | 0.23 45 | 1.46 37 | 2.27 37 | 1.74 35 |
SimpleFlow [49] | 37.3 | 0.21 23 | 0.47 31 | 0.12 26 | 0.55 39 | 1.20 38 | 0.34 38 | 1.45 48 | 2.19 54 | 0.41 42 | 0.66 20 | 1.68 24 | 0.35 10 | 1.41 25 | 1.69 26 | 1.16 25 | 5.06 75 | 4.23 76 | 3.40 72 | 0.16 38 | 0.12 31 | 0.23 45 | 1.29 29 | 1.97 30 | 1.70 30 |
Occlusion-TV-L1 [63] | 39.5 | 0.22 40 | 0.47 31 | 0.13 37 | 0.53 30 | 1.18 34 | 0.38 45 | 1.58 57 | 2.36 76 | 0.54 51 | 0.74 33 | 1.76 33 | 0.42 40 | 1.55 37 | 1.81 40 | 1.35 33 | 1.60 37 | 2.98 39 | 1.22 44 | 0.09 5 | 0.11 18 | 0.09 2 | 2.10 60 | 3.06 67 | 2.16 59 |
SegOF [10] | 42.5 | 0.24 57 | 0.48 44 | 0.18 68 | 0.71 62 | 1.35 57 | 0.58 65 | 1.31 43 | 1.92 40 | 0.73 62 | 0.54 7 | 1.09 1 | 0.41 37 | 1.62 52 | 1.79 36 | 1.64 58 | 5.27 77 | 4.17 75 | 3.63 77 | 0.07 1 | 0.10 8 | 0.10 4 | 1.49 38 | 2.48 42 | 1.35 10 |
Aniso. Huber-L1 [22] | 42.8 | 0.23 46 | 0.48 44 | 0.15 54 | 0.60 47 | 1.26 47 | 0.39 47 | 1.66 66 | 2.29 61 | 0.50 48 | 0.69 26 | 1.59 14 | 0.39 28 | 1.59 42 | 1.82 43 | 1.55 50 | 1.21 13 | 2.86 36 | 0.72 5 | 0.19 58 | 0.14 59 | 0.29 64 | 1.72 42 | 2.64 45 | 1.84 42 |
CBF [12] | 43.7 | 0.19 6 | 0.41 6 | 0.12 26 | 0.55 39 | 1.14 20 | 0.45 56 | 1.36 46 | 2.04 46 | 0.47 45 | 0.81 51 | 2.01 53 | 0.44 47 | 1.65 56 | 1.91 64 | 1.68 59 | 1.13 8 | 2.54 26 | 0.76 7 | 0.29 82 | 0.17 72 | 0.42 77 | 1.91 48 | 2.85 52 | 2.10 56 |
Adaptive [20] | 44.8 | 0.23 46 | 0.50 57 | 0.14 47 | 0.57 43 | 1.30 48 | 0.39 47 | 1.72 71 | 2.49 83 | 0.56 53 | 0.74 33 | 1.71 26 | 0.43 42 | 1.49 31 | 1.76 34 | 1.30 30 | 1.45 26 | 2.53 24 | 0.99 27 | 0.17 50 | 0.17 72 | 0.20 38 | 1.91 48 | 2.83 50 | 2.00 50 |
SIOF [69] | 45.5 | 0.24 57 | 0.52 61 | 0.13 37 | 0.68 58 | 1.40 59 | 0.48 59 | 1.50 55 | 2.15 52 | 0.83 64 | 0.82 52 | 1.94 46 | 0.49 53 | 1.66 59 | 1.88 57 | 1.80 63 | 1.35 18 | 2.87 37 | 0.97 23 | 0.12 15 | 0.11 18 | 0.15 15 | 1.72 42 | 2.55 44 | 1.99 49 |
CRTflow [88] | 46.1 | 0.21 23 | 0.42 11 | 0.14 47 | 0.67 56 | 1.40 59 | 0.37 42 | 1.59 60 | 2.32 69 | 0.55 52 | 0.97 62 | 2.37 77 | 0.53 59 | 1.63 53 | 1.91 64 | 1.54 49 | 1.60 37 | 3.74 63 | 0.89 15 | 0.11 10 | 0.11 18 | 0.16 21 | 1.93 51 | 2.97 57 | 2.01 51 |
LocallyOriented [52] | 46.5 | 0.29 70 | 0.60 74 | 0.15 54 | 0.77 65 | 1.42 62 | 0.57 64 | 1.63 64 | 2.29 61 | 0.49 47 | 0.66 20 | 1.57 11 | 0.41 37 | 1.59 42 | 1.80 37 | 1.55 50 | 3.32 59 | 3.50 57 | 2.32 59 | 0.11 10 | 0.11 18 | 0.16 21 | 1.72 42 | 2.45 40 | 2.03 52 |
Brox et al. [5] | 48.3 | 0.22 40 | 0.45 22 | 0.15 54 | 0.68 58 | 1.58 71 | 0.40 49 | 1.11 36 | 1.89 39 | 0.40 41 | 0.93 60 | 2.16 66 | 0.51 55 | 1.78 73 | 1.95 74 | 2.00 77 | 2.88 57 | 3.52 59 | 2.02 57 | 0.08 3 | 0.11 18 | 0.09 2 | 1.97 54 | 2.81 49 | 1.94 46 |
SuperFlow [89] | 49.0 | 0.25 61 | 0.48 44 | 0.15 54 | 0.63 52 | 1.21 41 | 0.50 60 | 1.30 41 | 1.97 43 | 0.88 67 | 0.80 49 | 1.88 42 | 0.46 50 | 1.69 61 | 1.92 69 | 1.79 62 | 1.61 39 | 3.20 45 | 1.09 39 | 0.13 21 | 0.15 64 | 0.14 12 | 2.09 59 | 2.93 55 | 1.93 45 |
Deep-Matching [85] | 49.2 | 0.26 63 | 0.49 54 | 0.16 62 | 0.86 69 | 1.37 58 | 0.69 70 | 1.30 41 | 1.99 45 | 0.81 63 | 1.04 68 | 2.43 79 | 0.68 67 | 1.53 35 | 1.81 40 | 1.37 34 | 1.47 29 | 3.46 56 | 0.89 15 | 0.11 10 | 0.09 2 | 0.17 26 | 2.23 65 | 3.06 67 | 2.20 63 |
Classic++ [32] | 49.7 | 0.22 40 | 0.48 44 | 0.15 54 | 0.60 47 | 1.34 55 | 0.38 45 | 1.35 45 | 2.10 47 | 0.44 43 | 0.84 55 | 2.08 62 | 0.44 47 | 1.59 42 | 1.88 57 | 1.39 36 | 1.47 29 | 3.17 43 | 1.04 38 | 0.20 63 | 0.14 59 | 0.27 58 | 2.11 61 | 3.01 63 | 2.17 60 |
p-harmonic [29] | 50.2 | 0.23 46 | 0.48 44 | 0.15 54 | 0.54 34 | 1.20 38 | 0.40 49 | 1.62 63 | 2.29 61 | 0.61 56 | 0.78 43 | 1.75 31 | 0.53 59 | 1.75 71 | 1.92 69 | 1.99 75 | 1.45 26 | 3.28 48 | 0.99 27 | 0.16 38 | 0.15 64 | 0.16 21 | 2.17 63 | 3.06 67 | 2.12 57 |
CLG-TV [48] | 50.6 | 0.23 46 | 0.49 54 | 0.14 47 | 0.59 44 | 1.30 48 | 0.37 42 | 1.67 67 | 2.39 77 | 0.48 46 | 0.74 33 | 1.70 25 | 0.41 37 | 1.64 55 | 1.90 62 | 1.52 47 | 1.55 35 | 3.54 60 | 0.93 20 | 0.23 71 | 0.19 80 | 0.36 71 | 1.89 47 | 2.88 54 | 1.95 47 |
FastOF [78] | 53.4 | 0.26 63 | 0.54 66 | 0.16 62 | 0.92 71 | 1.54 70 | 0.68 69 | 1.58 57 | 2.11 49 | 0.96 70 | 0.78 43 | 1.87 40 | 0.51 55 | 1.69 61 | 1.91 64 | 1.84 68 | 2.08 54 | 3.89 68 | 1.32 47 | 0.16 38 | 0.11 18 | 0.19 34 | 1.87 46 | 2.47 41 | 1.66 27 |
TriangleFlow [30] | 53.8 | 0.25 61 | 0.55 69 | 0.13 37 | 0.69 60 | 1.53 69 | 0.40 49 | 1.47 52 | 2.19 54 | 0.38 38 | 0.74 33 | 1.87 40 | 0.43 42 | 1.81 77 | 2.00 80 | 1.98 73 | 2.41 56 | 2.89 38 | 1.74 56 | 0.19 58 | 0.18 78 | 0.24 51 | 1.52 39 | 2.29 38 | 1.86 43 |
Local-TV-L1 [65] | 53.9 | 0.28 68 | 0.53 64 | 0.17 65 | 1.04 74 | 1.49 66 | 0.91 80 | 1.80 74 | 2.24 59 | 1.00 72 | 0.92 59 | 2.16 66 | 0.54 62 | 1.94 85 | 1.87 54 | 1.41 37 | 1.18 11 | 2.67 29 | 0.81 10 | 0.12 15 | 0.10 8 | 0.14 12 | 2.34 71 | 3.52 85 | 2.36 68 |
Filter Flow [19] | 54.0 | 0.28 68 | 0.54 66 | 0.19 69 | 0.69 60 | 1.31 52 | 0.51 61 | 1.45 48 | 1.98 44 | 1.02 73 | 1.13 72 | 1.82 38 | 1.04 75 | 1.71 64 | 1.83 45 | 2.04 79 | 1.28 15 | 2.37 15 | 1.01 34 | 0.16 38 | 0.16 70 | 0.17 26 | 2.29 68 | 2.98 59 | 2.12 57 |
StereoFlow [44] | 54.2 | 0.52 86 | 0.77 87 | 0.38 86 | 1.21 84 | 1.73 83 | 0.91 80 | 1.49 53 | 1.92 40 | 0.99 71 | 1.41 83 | 2.88 87 | 1.03 74 | 1.59 42 | 1.84 47 | 1.52 47 | 1.36 19 | 3.16 42 | 0.78 8 | 0.07 1 | 0.09 2 | 0.08 1 | 2.06 57 | 3.00 61 | 2.17 60 |
F-TV-L1 [15] | 54.5 | 0.26 63 | 0.54 66 | 0.15 54 | 0.86 69 | 1.50 67 | 0.61 67 | 1.73 72 | 2.31 68 | 0.65 59 | 1.00 66 | 2.46 81 | 0.52 57 | 1.57 38 | 1.84 47 | 1.42 38 | 1.66 41 | 3.42 53 | 1.15 42 | 0.14 27 | 0.18 78 | 0.13 8 | 1.95 52 | 2.97 57 | 1.76 37 |
Second-order prior [8] | 54.8 | 0.22 40 | 0.47 31 | 0.14 47 | 0.65 55 | 1.33 53 | 0.46 57 | 1.64 65 | 2.30 66 | 0.52 50 | 0.79 46 | 1.89 43 | 0.48 52 | 1.66 59 | 1.89 61 | 1.70 60 | 1.78 46 | 3.44 55 | 1.47 54 | 0.23 71 | 0.14 59 | 0.32 67 | 2.04 56 | 2.83 50 | 2.44 72 |
Fusion [6] | 55.1 | 0.23 46 | 0.48 44 | 0.16 62 | 0.50 22 | 1.23 43 | 0.30 26 | 0.81 13 | 1.32 13 | 0.38 38 | 0.72 32 | 1.92 44 | 0.47 51 | 1.83 81 | 2.04 84 | 2.00 77 | 5.51 79 | 3.26 46 | 3.93 80 | 0.20 63 | 0.19 80 | 0.26 56 | 2.56 79 | 3.51 84 | 2.80 80 |
TV-L1-improved [17] | 55.2 | 0.22 40 | 0.47 31 | 0.14 47 | 0.53 30 | 1.20 38 | 0.37 42 | 1.71 70 | 2.48 82 | 0.60 55 | 0.98 65 | 2.45 80 | 0.54 62 | 1.61 50 | 1.87 54 | 1.50 43 | 4.77 71 | 3.84 66 | 3.21 68 | 0.18 55 | 0.17 72 | 0.22 40 | 1.96 53 | 2.94 56 | 2.08 55 |
Shiralkar [42] | 55.2 | 0.23 46 | 0.45 22 | 0.13 37 | 0.72 63 | 1.43 63 | 0.46 57 | 1.70 68 | 2.33 70 | 0.61 56 | 0.91 58 | 2.03 56 | 0.57 64 | 1.61 50 | 1.83 45 | 1.57 53 | 1.89 49 | 3.02 41 | 1.26 45 | 0.24 73 | 0.13 48 | 0.33 68 | 2.28 66 | 3.05 65 | 2.20 63 |
GraphCuts [14] | 55.6 | 0.24 57 | 0.47 31 | 0.17 65 | 1.17 82 | 1.72 81 | 0.90 79 | 1.12 37 | 1.70 30 | 0.83 64 | 0.69 26 | 1.60 16 | 0.39 28 | 1.46 29 | 1.69 26 | 1.31 31 | 6.11 85 | 3.97 70 | 4.27 84 | 0.24 73 | 0.13 48 | 0.34 70 | 2.36 73 | 3.16 74 | 2.54 76 |
Rannacher [23] | 57.0 | 0.23 46 | 0.50 57 | 0.15 54 | 0.59 44 | 1.33 53 | 0.41 53 | 1.76 73 | 2.51 86 | 0.64 58 | 0.97 62 | 2.38 78 | 0.53 59 | 1.59 42 | 1.86 53 | 1.43 40 | 4.79 72 | 3.91 69 | 3.22 69 | 0.17 50 | 0.13 48 | 0.24 51 | 1.83 45 | 2.86 53 | 2.06 54 |
Bartels [41] | 57.9 | 0.23 46 | 0.50 57 | 0.13 37 | 0.49 20 | 1.15 23 | 0.29 23 | 1.01 32 | 1.78 33 | 0.38 38 | 1.07 71 | 2.60 84 | 0.63 66 | 1.71 64 | 1.97 76 | 1.82 64 | 4.54 68 | 3.85 67 | 3.40 72 | 0.28 79 | 0.14 59 | 0.51 83 | 2.36 73 | 3.22 77 | 2.66 78 |
Dynamic MRF [7] | 60.1 | 0.24 57 | 0.52 61 | 0.14 47 | 0.62 51 | 1.43 63 | 0.40 49 | 1.33 44 | 2.16 53 | 0.45 44 | 0.94 61 | 2.23 69 | 0.58 65 | 1.81 77 | 2.01 82 | 1.91 71 | 4.83 73 | 4.05 74 | 3.55 76 | 0.14 27 | 0.09 2 | 0.23 45 | 2.75 83 | 3.57 86 | 2.97 82 |
IAOF2 [51] | 60.3 | 0.26 63 | 0.53 64 | 0.20 71 | 0.80 66 | 1.59 74 | 0.56 63 | 1.58 57 | 2.33 70 | 0.86 66 | 1.18 76 | 1.81 37 | 1.13 79 | 1.65 56 | 1.90 62 | 1.62 57 | 1.83 47 | 2.75 30 | 1.34 49 | 0.24 73 | 0.15 64 | 0.47 80 | 1.92 50 | 2.66 46 | 1.98 48 |
Ad-TV-NDC [36] | 60.5 | 0.38 80 | 0.62 78 | 0.32 82 | 1.53 86 | 1.77 84 | 1.42 86 | 2.25 87 | 2.56 88 | 1.17 82 | 0.97 62 | 1.75 31 | 0.85 72 | 1.58 40 | 1.88 57 | 1.28 26 | 1.39 21 | 3.26 46 | 0.86 13 | 0.14 27 | 0.13 48 | 0.15 15 | 2.80 84 | 3.12 72 | 3.41 85 |
2D-CLG [1] | 63.0 | 0.47 84 | 0.75 86 | 0.32 82 | 0.74 64 | 1.30 48 | 0.62 68 | 1.89 77 | 2.29 61 | 1.15 81 | 1.26 79 | 1.97 49 | 1.16 80 | 1.80 76 | 1.92 69 | 2.04 79 | 4.75 70 | 3.83 65 | 3.27 70 | 0.10 8 | 0.08 1 | 0.14 12 | 2.34 71 | 3.00 61 | 2.44 72 |
IAOF [50] | 64.4 | 0.27 67 | 0.51 60 | 0.20 71 | 1.10 79 | 1.70 79 | 0.82 74 | 2.57 89 | 2.92 90 | 1.22 85 | 1.15 73 | 1.93 45 | 1.09 77 | 1.65 56 | 1.88 57 | 1.74 61 | 1.77 45 | 3.35 51 | 1.02 35 | 0.18 55 | 0.12 31 | 0.28 60 | 2.44 76 | 2.78 48 | 2.86 81 |
GroupFlow [9] | 64.8 | 0.33 75 | 0.60 74 | 0.22 78 | 1.08 76 | 1.71 80 | 0.85 75 | 1.61 62 | 2.13 51 | 0.94 68 | 0.65 17 | 1.54 8 | 0.43 42 | 2.01 86 | 2.22 87 | 1.45 42 | 5.60 80 | 4.02 72 | 3.86 79 | 0.26 77 | 0.16 70 | 0.46 79 | 2.08 58 | 2.72 47 | 2.41 71 |
Nguyen [33] | 65.0 | 0.33 75 | 0.59 73 | 0.21 74 | 1.00 73 | 1.60 76 | 0.81 73 | 2.10 82 | 2.46 80 | 1.13 79 | 1.32 80 | 2.07 61 | 1.22 81 | 1.73 68 | 1.92 69 | 1.89 70 | 2.00 50 | 3.97 70 | 1.33 48 | 0.13 21 | 0.12 31 | 0.17 26 | 2.31 69 | 3.02 64 | 2.34 67 |
Learning Flow [11] | 65.4 | 0.23 46 | 0.49 54 | 0.13 37 | 0.64 54 | 1.44 65 | 0.41 53 | 1.46 50 | 2.20 56 | 0.50 48 | 1.15 73 | 2.26 71 | 0.86 73 | 2.05 87 | 2.32 88 | 2.04 79 | 5.24 76 | 5.18 88 | 3.43 74 | 0.16 38 | 0.17 72 | 0.28 60 | 2.47 77 | 3.29 81 | 2.39 70 |
Modified CLG [34] | 67.5 | 0.31 73 | 0.57 72 | 0.21 74 | 0.67 56 | 1.34 55 | 0.53 62 | 1.89 77 | 2.34 74 | 1.11 78 | 1.06 69 | 2.28 72 | 0.75 70 | 1.82 80 | 1.99 78 | 2.06 82 | 3.91 63 | 4.32 78 | 2.86 65 | 0.16 38 | 0.13 48 | 0.27 58 | 2.14 62 | 3.09 70 | 2.21 65 |
Horn & Schunck [3] | 67.9 | 0.36 78 | 0.62 78 | 0.23 79 | 0.98 72 | 1.58 71 | 0.77 72 | 1.88 76 | 2.26 60 | 1.13 79 | 1.36 82 | 2.15 65 | 1.22 81 | 1.69 61 | 1.84 47 | 1.83 66 | 3.92 64 | 4.34 79 | 2.78 64 | 0.16 38 | 0.15 64 | 0.23 45 | 2.40 75 | 3.05 65 | 2.38 69 |
SPSA-learn [13] | 68.2 | 0.33 75 | 0.61 76 | 0.21 74 | 1.09 78 | 1.83 85 | 0.85 75 | 1.82 75 | 2.33 70 | 1.05 74 | 1.23 77 | 2.31 73 | 1.06 76 | 1.79 75 | 1.96 75 | 1.98 73 | 5.61 81 | 4.52 82 | 3.84 78 | 0.12 15 | 0.10 8 | 0.15 15 | 2.48 78 | 3.21 76 | 2.45 74 |
TI-DOFE [24] | 69.2 | 0.46 83 | 0.69 82 | 0.35 84 | 1.16 81 | 1.59 74 | 1.03 83 | 2.17 85 | 2.39 77 | 1.27 86 | 1.43 84 | 2.04 59 | 1.34 84 | 1.71 64 | 1.87 54 | 1.83 66 | 3.36 60 | 4.03 73 | 2.58 61 | 0.13 21 | 0.12 31 | 0.20 38 | 2.67 81 | 3.12 72 | 2.76 79 |
Black & Anandan [4] | 69.5 | 0.31 73 | 0.55 69 | 0.20 71 | 1.08 76 | 1.68 78 | 0.85 75 | 2.00 80 | 2.41 79 | 1.07 76 | 1.03 67 | 1.99 50 | 0.83 71 | 1.71 64 | 1.91 64 | 1.82 64 | 4.64 69 | 5.05 85 | 3.01 67 | 0.20 63 | 0.17 72 | 0.30 65 | 2.28 66 | 3.09 70 | 2.04 53 |
LDOF [28] | 69.8 | 0.29 70 | 0.61 76 | 0.17 65 | 0.81 67 | 1.58 71 | 0.59 66 | 1.17 39 | 1.78 33 | 0.67 60 | 2.17 87 | 5.16 90 | 1.57 85 | 1.78 73 | 2.01 82 | 1.86 69 | 4.52 67 | 4.42 81 | 3.33 71 | 0.22 68 | 0.22 86 | 0.47 80 | 2.21 64 | 3.27 80 | 1.92 44 |
HBpMotionGpu [43] | 70.3 | 0.36 78 | 0.67 80 | 0.21 74 | 1.07 75 | 1.85 86 | 0.88 78 | 2.00 80 | 2.49 83 | 1.08 77 | 1.16 75 | 2.81 86 | 0.68 67 | 1.89 84 | 2.10 85 | 2.08 83 | 2.01 51 | 3.19 44 | 1.27 46 | 0.16 38 | 0.15 64 | 0.19 34 | 2.32 70 | 3.18 75 | 2.48 75 |
BlockOverlap [61] | 74.3 | 0.29 70 | 0.56 71 | 0.19 69 | 0.82 68 | 1.41 61 | 0.69 70 | 1.70 68 | 2.22 57 | 0.94 68 | 1.06 69 | 2.54 83 | 0.70 69 | 1.81 77 | 1.99 78 | 2.18 85 | 5.46 78 | 3.35 51 | 3.96 81 | 0.67 89 | 0.32 89 | 1.47 90 | 2.67 81 | 3.22 77 | 3.31 84 |
Adaptive flow [45] | 77.2 | 0.44 82 | 0.69 82 | 0.26 80 | 1.43 85 | 1.72 81 | 1.31 85 | 1.91 79 | 2.22 57 | 1.33 87 | 1.35 81 | 2.10 63 | 1.28 83 | 1.74 70 | 2.00 80 | 1.51 44 | 4.85 74 | 3.50 57 | 3.49 75 | 0.70 90 | 0.36 90 | 0.97 88 | 2.62 80 | 3.33 82 | 2.57 77 |
PGAM+LK [55] | 78.9 | 0.66 89 | 0.72 84 | 1.02 90 | 1.64 87 | 2.08 88 | 1.67 87 | 1.46 50 | 1.79 35 | 1.05 74 | 2.59 90 | 3.23 88 | 2.39 90 | 1.75 71 | 1.76 34 | 2.09 84 | 6.62 88 | 4.24 77 | 5.02 88 | 0.40 85 | 0.21 83 | 0.57 84 | 2.95 85 | 3.22 77 | 3.48 86 |
SLK [47] | 79.7 | 0.47 84 | 0.73 85 | 0.44 88 | 1.13 80 | 1.51 68 | 1.02 82 | 2.12 83 | 2.34 74 | 1.19 83 | 1.72 85 | 2.35 75 | 1.60 86 | 1.86 83 | 1.92 69 | 2.20 87 | 5.75 82 | 4.91 83 | 4.02 82 | 0.32 83 | 0.12 31 | 0.44 78 | 3.61 87 | 4.02 87 | 3.71 87 |
SILK [87] | 80.0 | 0.39 81 | 0.68 81 | 0.30 81 | 1.19 83 | 1.60 76 | 1.10 84 | 2.19 86 | 2.47 81 | 1.19 83 | 1.25 78 | 2.36 76 | 1.10 78 | 1.84 82 | 1.98 77 | 2.18 85 | 5.84 83 | 5.17 87 | 4.03 83 | 0.45 86 | 0.12 31 | 0.96 87 | 3.03 86 | 3.47 83 | 3.24 83 |
FOLKI [16] | 86.8 | 0.55 87 | 0.95 89 | 0.41 87 | 2.45 89 | 2.14 89 | 2.44 89 | 2.12 83 | 2.50 85 | 1.33 87 | 1.75 86 | 2.61 85 | 1.67 87 | 2.10 88 | 2.15 86 | 2.52 88 | 5.86 84 | 5.06 86 | 4.32 85 | 0.52 87 | 0.21 83 | 0.95 86 | 5.03 90 | 4.59 88 | 8.32 90 |
Periodicity [86] | 87.4 | 0.59 88 | 1.02 90 | 0.35 84 | 2.90 90 | 3.18 90 | 3.12 90 | 2.61 90 | 2.53 87 | 2.05 90 | 2.19 88 | 3.28 89 | 2.08 88 | 7.58 90 | 8.15 90 | 6.70 90 | 7.02 89 | 6.03 90 | 5.54 90 | 0.27 78 | 0.15 64 | 0.92 85 | 4.68 89 | 6.02 90 | 4.37 89 |
Pyramid LK [2] | 88.3 | 0.68 90 | 0.87 88 | 0.77 89 | 1.94 88 | 1.95 87 | 1.92 88 | 2.43 88 | 2.59 89 | 1.60 89 | 2.36 89 | 2.46 81 | 2.27 89 | 4.19 89 | 4.59 89 | 3.80 89 | 7.35 90 | 5.52 89 | 5.19 89 | 0.57 88 | 0.26 88 | 1.19 89 | 4.63 88 | 5.72 89 | 4.02 88 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |