Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
Average interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 10.0 | 2.89 5 | 5.38 5 | 1.19 1 | 3.47 7 | 5.07 7 | 1.26 1 | 3.66 9 | 6.10 28 | 2.48 47 | 5.20 2 | 7.48 9 | 3.14 8 | 10.2 3 | 12.8 5 | 3.61 18 | 6.13 15 | 11.8 12 | 2.31 15 | 7.36 4 | 16.8 2 | 1.49 1 | 7.75 16 | 12.1 16 | 1.69 5 |
CBF [12] | 17.2 | 2.83 1 | 5.20 1 | 1.23 39 | 3.97 38 | 5.79 33 | 1.56 39 | 3.62 5 | 5.47 2 | 1.60 14 | 5.21 3 | 7.12 2 | 3.29 33 | 10.1 1 | 12.6 1 | 3.62 22 | 5.97 7 | 11.5 7 | 2.31 15 | 7.76 25 | 17.8 26 | 1.61 26 | 7.60 7 | 11.9 7 | 1.76 59 |
Deep-Matching [85] | 18.5 | 3.02 18 | 5.68 17 | 1.23 39 | 3.92 37 | 5.80 34 | 1.56 39 | 3.61 4 | 5.91 22 | 1.41 4 | 5.49 25 | 7.41 6 | 3.36 53 | 11.1 29 | 13.9 26 | 3.63 26 | 5.91 4 | 11.3 2 | 2.31 15 | 7.20 1 | 16.5 1 | 1.50 2 | 7.78 18 | 12.2 18 | 1.69 5 |
SuperFlow [89] | 19.0 | 2.94 8 | 5.56 12 | 1.24 45 | 3.99 39 | 5.78 31 | 1.67 55 | 4.06 28 | 5.55 4 | 1.83 25 | 5.52 26 | 7.07 1 | 3.20 17 | 10.2 3 | 12.7 3 | 3.68 33 | 6.13 15 | 11.8 12 | 2.24 1 | 7.68 19 | 17.5 18 | 1.77 52 | 7.44 3 | 11.6 2 | 1.69 5 |
Aniso. Huber-L1 [22] | 20.2 | 2.95 10 | 5.44 7 | 1.24 45 | 4.42 59 | 6.27 58 | 1.67 55 | 3.79 19 | 5.70 9 | 1.50 7 | 5.31 8 | 7.42 8 | 3.24 26 | 11.1 29 | 14.0 36 | 3.61 18 | 5.91 4 | 11.4 5 | 2.24 1 | 7.60 14 | 17.3 10 | 1.51 4 | 7.62 10 | 11.9 7 | 1.73 36 |
CLG-TV [48] | 20.8 | 2.94 8 | 5.45 8 | 1.25 53 | 4.26 50 | 6.17 49 | 1.60 45 | 3.68 12 | 5.73 11 | 1.73 21 | 5.36 12 | 7.41 6 | 3.32 45 | 11.1 29 | 14.0 36 | 3.57 5 | 5.88 2 | 11.3 2 | 2.26 3 | 7.58 12 | 17.0 7 | 1.57 22 | 7.75 16 | 12.1 16 | 1.72 28 |
ComplexFlow [81] | 21.5 | 2.92 7 | 5.51 11 | 1.19 1 | 3.30 2 | 4.71 2 | 1.26 1 | 3.65 8 | 5.91 22 | 2.29 44 | 5.76 46 | 8.70 62 | 3.55 66 | 10.3 6 | 12.9 8 | 3.60 15 | 6.42 36 | 12.4 35 | 2.34 25 | 7.57 11 | 17.4 15 | 1.74 49 | 7.61 8 | 11.9 7 | 1.72 28 |
NN-field [73] | 21.5 | 2.98 13 | 5.70 18 | 1.20 5 | 3.31 3 | 4.73 3 | 1.26 1 | 4.69 57 | 5.91 22 | 2.03 34 | 5.99 62 | 9.13 71 | 3.57 67 | 10.3 6 | 12.8 5 | 3.60 15 | 6.24 21 | 12.0 20 | 2.31 15 | 7.39 5 | 16.9 5 | 1.54 13 | 7.69 14 | 12.0 13 | 1.72 28 |
IROF-TV [53] | 22.0 | 3.07 27 | 5.91 34 | 1.23 39 | 3.71 22 | 5.47 19 | 1.40 22 | 3.70 14 | 6.27 31 | 1.58 13 | 5.25 4 | 7.60 13 | 3.17 12 | 11.0 23 | 13.9 26 | 4.47 71 | 6.37 33 | 12.4 35 | 2.30 12 | 7.79 28 | 17.9 28 | 1.50 2 | 7.63 11 | 11.9 7 | 1.66 1 |
LME [72] | 22.2 | 2.95 10 | 5.59 14 | 1.19 1 | 3.68 19 | 5.50 22 | 1.38 19 | 4.06 28 | 7.00 54 | 1.71 20 | 5.38 16 | 7.92 30 | 3.18 13 | 11.2 39 | 14.1 42 | 4.51 82 | 6.29 25 | 12.2 25 | 2.31 15 | 7.33 2 | 16.8 2 | 1.51 4 | 7.83 19 | 12.3 19 | 1.70 12 |
IROF++ [58] | 22.2 | 3.03 19 | 5.77 24 | 1.20 5 | 3.59 11 | 5.31 11 | 1.33 13 | 4.32 43 | 6.61 42 | 2.25 42 | 5.06 1 | 7.14 3 | 3.16 11 | 11.0 23 | 13.9 26 | 4.44 68 | 6.34 29 | 12.3 30 | 2.27 5 | 7.54 10 | 17.3 10 | 1.64 34 | 8.09 34 | 12.7 35 | 1.69 5 |
ALD-Flow [68] | 24.3 | 3.28 60 | 6.45 62 | 1.24 45 | 3.81 27 | 5.73 30 | 1.41 25 | 3.62 5 | 6.28 32 | 1.35 2 | 5.58 33 | 8.39 49 | 3.04 3 | 10.8 13 | 13.5 13 | 4.15 56 | 5.96 6 | 11.4 5 | 2.29 9 | 7.34 3 | 16.8 2 | 1.51 4 | 8.25 45 | 12.9 42 | 1.70 12 |
Second-order prior [8] | 24.9 | 2.91 6 | 5.39 6 | 1.24 45 | 4.26 50 | 6.21 52 | 1.56 39 | 3.82 21 | 6.34 34 | 1.62 15 | 5.39 17 | 7.68 17 | 3.04 3 | 11.1 29 | 13.9 26 | 3.59 9 | 6.14 17 | 11.9 18 | 2.31 15 | 7.61 15 | 17.4 15 | 1.63 32 | 7.90 25 | 12.4 27 | 1.78 65 |
p-harmonic [29] | 26.1 | 3.00 15 | 5.72 20 | 1.21 15 | 4.33 53 | 6.24 56 | 1.69 60 | 3.60 3 | 6.07 27 | 1.39 3 | 5.70 41 | 7.87 24 | 3.29 33 | 11.0 23 | 13.8 23 | 3.63 26 | 6.02 9 | 11.6 9 | 2.34 25 | 7.67 17 | 17.5 18 | 1.70 43 | 7.92 28 | 12.4 27 | 1.72 28 |
ADF [67] | 26.1 | 2.88 4 | 5.29 2 | 1.20 5 | 3.70 21 | 5.56 24 | 1.46 36 | 3.76 18 | 5.74 12 | 1.55 12 | 5.25 4 | 7.62 14 | 3.03 1 | 11.3 45 | 14.2 45 | 4.49 77 | 6.10 12 | 11.8 12 | 2.27 5 | 8.07 34 | 18.5 35 | 1.67 38 | 8.36 56 | 13.1 56 | 1.76 59 |
Brox et al. [5] | 26.4 | 3.08 29 | 5.94 37 | 1.21 15 | 3.83 29 | 5.67 28 | 1.45 31 | 3.93 24 | 5.76 13 | 1.67 17 | 5.32 9 | 7.19 4 | 3.22 22 | 10.6 10 | 13.4 11 | 3.56 3 | 6.60 54 | 12.7 44 | 2.42 50 | 8.61 53 | 19.7 56 | 3.04 88 | 7.43 2 | 11.6 2 | 1.68 3 |
SIOF [69] | 27.6 | 3.06 26 | 5.74 22 | 1.24 45 | 4.40 57 | 6.40 64 | 1.63 49 | 4.17 37 | 7.43 65 | 1.93 28 | 5.40 19 | 7.75 21 | 3.44 58 | 10.1 1 | 12.6 1 | 3.58 7 | 6.10 12 | 11.8 12 | 2.29 9 | 7.52 8 | 17.2 9 | 1.53 10 | 7.96 32 | 12.5 34 | 1.73 36 |
Local-TV-L1 [65] | 28.7 | 3.00 15 | 5.47 9 | 1.30 72 | 4.43 61 | 6.23 55 | 1.75 67 | 3.50 1 | 5.35 1 | 1.45 5 | 5.39 17 | 7.56 11 | 3.29 33 | 11.2 39 | 14.1 42 | 3.91 48 | 6.16 18 | 11.8 12 | 2.47 59 | 7.67 17 | 17.6 21 | 1.55 16 | 7.57 5 | 11.8 5 | 1.76 59 |
MDP-Flow [26] | 30.1 | 2.86 2 | 5.34 4 | 1.20 5 | 3.49 9 | 5.15 9 | 1.34 16 | 4.01 27 | 5.51 3 | 2.28 43 | 5.58 33 | 7.91 28 | 3.33 48 | 11.2 39 | 14.0 36 | 4.49 77 | 6.72 62 | 13.1 63 | 2.54 74 | 7.71 22 | 17.7 23 | 1.74 49 | 7.83 19 | 12.3 19 | 1.70 12 |
FastOF [78] | 31.4 | 3.38 69 | 6.59 67 | 1.25 53 | 4.23 48 | 6.14 48 | 1.61 46 | 3.92 23 | 6.63 43 | 1.48 6 | 5.97 58 | 8.66 60 | 3.06 5 | 10.8 13 | 13.6 16 | 4.45 70 | 5.88 2 | 11.3 2 | 2.27 5 | 7.76 25 | 17.7 23 | 1.53 10 | 7.86 22 | 12.3 19 | 1.71 21 |
Modified CLG [34] | 32.2 | 2.87 3 | 5.32 3 | 1.24 45 | 4.51 65 | 6.21 52 | 1.96 80 | 4.15 35 | 6.45 38 | 2.67 50 | 5.56 30 | 7.69 18 | 3.64 72 | 10.8 13 | 13.5 13 | 3.63 26 | 6.36 32 | 12.3 30 | 2.39 38 | 7.46 7 | 17.1 8 | 1.56 20 | 7.86 22 | 12.3 19 | 1.75 53 |
F-TV-L1 [15] | 32.3 | 3.30 62 | 6.36 57 | 1.29 70 | 4.39 56 | 6.32 61 | 1.62 48 | 3.80 20 | 5.90 21 | 1.76 22 | 5.61 38 | 7.97 31 | 3.31 44 | 10.9 20 | 13.6 16 | 3.59 9 | 5.84 1 | 11.2 1 | 2.33 24 | 7.70 20 | 17.6 21 | 1.79 54 | 7.61 8 | 11.9 7 | 1.78 65 |
Ad-TV-NDC [36] | 32.6 | 3.23 54 | 5.70 18 | 1.44 84 | 4.78 78 | 6.46 67 | 1.92 75 | 3.67 10 | 5.86 20 | 1.50 7 | 5.97 58 | 8.14 38 | 3.51 63 | 10.8 13 | 13.5 13 | 3.63 26 | 6.24 21 | 12.0 20 | 2.40 39 | 7.70 20 | 17.3 10 | 1.51 4 | 7.48 4 | 11.7 4 | 1.73 36 |
TC/T-Flow [80] | 34.2 | 3.21 52 | 6.24 53 | 1.22 27 | 3.90 34 | 5.86 37 | 1.43 29 | 3.69 13 | 5.83 16 | 1.50 7 | 5.88 54 | 8.93 66 | 3.15 9 | 11.1 29 | 13.9 26 | 4.50 79 | 6.23 20 | 12.0 20 | 2.26 3 | 8.61 53 | 19.0 44 | 1.93 61 | 8.16 37 | 12.8 39 | 1.70 12 |
LDOF [28] | 34.3 | 3.03 19 | 5.66 16 | 1.28 66 | 4.06 41 | 5.53 23 | 2.40 88 | 4.32 43 | 6.43 37 | 2.00 31 | 5.45 23 | 7.56 11 | 3.60 70 | 10.2 3 | 12.7 3 | 3.59 9 | 6.39 34 | 12.4 35 | 2.29 9 | 8.36 45 | 19.4 51 | 2.21 75 | 7.57 5 | 11.8 5 | 1.86 82 |
COFM [59] | 34.4 | 3.03 19 | 5.76 23 | 1.22 27 | 3.55 10 | 5.21 10 | 1.32 12 | 3.82 21 | 6.98 52 | 2.81 53 | 5.41 20 | 7.97 31 | 3.30 39 | 10.8 13 | 13.6 16 | 3.62 22 | 7.01 81 | 13.7 78 | 2.40 39 | 8.00 32 | 18.5 35 | 1.98 64 | 7.91 26 | 12.4 27 | 1.80 76 |
ComplOF-FED-GPU [35] | 35.1 | 3.23 54 | 6.40 58 | 1.22 27 | 3.73 24 | 5.62 27 | 1.44 30 | 5.23 64 | 6.06 25 | 3.23 64 | 5.53 27 | 8.25 40 | 3.29 33 | 11.1 29 | 13.9 26 | 4.21 57 | 6.11 14 | 11.8 12 | 2.32 22 | 8.16 37 | 18.5 35 | 1.61 26 | 8.29 49 | 12.9 42 | 1.71 21 |
TV-L1-MCT [64] | 35.5 | 3.17 47 | 6.05 44 | 1.22 27 | 3.87 31 | 5.82 35 | 1.40 22 | 4.48 51 | 7.75 73 | 2.24 41 | 5.37 14 | 7.76 22 | 3.24 26 | 11.6 72 | 14.7 77 | 4.31 61 | 6.08 10 | 11.7 10 | 2.31 15 | 8.07 34 | 18.6 38 | 2.15 74 | 7.68 13 | 12.0 13 | 1.68 3 |
Levin3 [90] | 35.7 | 3.08 29 | 5.82 26 | 1.21 15 | 3.67 18 | 5.42 16 | 1.45 31 | 4.53 54 | 7.14 58 | 2.17 38 | 5.30 7 | 7.64 15 | 3.28 31 | 11.3 45 | 14.2 45 | 3.67 32 | 6.62 56 | 12.8 52 | 2.40 39 | 8.76 64 | 20.3 65 | 1.63 32 | 8.16 37 | 12.8 39 | 1.70 12 |
Layers++ [37] | 35.8 | 2.96 12 | 5.56 12 | 1.22 27 | 3.29 1 | 4.64 1 | 1.26 1 | 4.07 30 | 7.24 59 | 3.08 56 | 5.48 24 | 8.10 35 | 3.25 28 | 12.0 85 | 15.2 85 | 4.62 86 | 7.29 83 | 14.3 83 | 2.44 53 | 7.63 16 | 17.5 18 | 1.54 13 | 7.84 21 | 12.3 19 | 1.70 12 |
nLayers [57] | 36.5 | 3.03 19 | 5.72 20 | 1.21 15 | 3.48 8 | 5.09 8 | 1.31 11 | 5.60 68 | 7.52 67 | 4.26 77 | 5.61 38 | 8.33 45 | 3.29 33 | 11.6 72 | 14.6 72 | 4.31 61 | 6.66 58 | 12.9 59 | 2.40 39 | 7.58 12 | 17.3 10 | 1.59 23 | 7.94 29 | 12.4 27 | 1.69 5 |
CRTflow [88] | 36.5 | 3.09 31 | 5.91 34 | 1.27 62 | 4.35 54 | 6.31 60 | 1.68 58 | 4.15 35 | 7.26 60 | 1.84 26 | 5.33 10 | 7.51 10 | 3.38 54 | 11.0 23 | 13.8 23 | 4.48 73 | 6.09 11 | 11.7 10 | 2.30 12 | 8.55 51 | 19.8 57 | 1.55 16 | 8.19 39 | 12.8 39 | 1.72 28 |
DPOF [18] | 37.4 | 3.34 66 | 6.82 72 | 1.29 70 | 3.40 5 | 4.93 5 | 1.29 9 | 5.00 61 | 6.36 35 | 3.40 65 | 5.86 51 | 8.94 67 | 3.51 63 | 11.0 23 | 13.8 23 | 3.59 9 | 6.56 45 | 12.7 44 | 2.28 8 | 7.99 31 | 18.2 32 | 1.55 16 | 8.24 43 | 12.9 42 | 1.70 12 |
Classic++ [32] | 37.6 | 3.05 24 | 5.85 28 | 1.24 45 | 4.08 42 | 6.08 42 | 1.52 38 | 3.74 16 | 5.58 7 | 1.53 11 | 5.72 44 | 8.12 37 | 3.21 19 | 11.4 50 | 14.3 50 | 3.74 40 | 6.68 60 | 13.0 61 | 2.42 50 | 8.35 44 | 19.2 46 | 1.62 30 | 8.21 41 | 12.9 42 | 1.73 36 |
TC-Flow [46] | 37.7 | 3.31 64 | 6.70 69 | 1.22 27 | 3.91 36 | 5.95 39 | 1.45 31 | 3.64 7 | 5.84 17 | 1.28 1 | 5.70 41 | 8.50 54 | 3.22 22 | 11.2 39 | 14.1 42 | 4.44 68 | 6.34 29 | 12.3 30 | 2.41 48 | 7.79 28 | 17.9 28 | 1.55 16 | 8.42 59 | 13.2 61 | 1.74 48 |
BlockOverlap [61] | 38.4 | 2.98 13 | 5.47 9 | 1.33 77 | 4.38 55 | 6.09 43 | 1.88 73 | 4.26 41 | 5.57 6 | 3.14 60 | 5.56 30 | 7.32 5 | 4.14 81 | 11.1 29 | 13.9 26 | 3.77 42 | 6.41 35 | 12.3 30 | 2.54 74 | 7.75 23 | 17.4 15 | 3.02 87 | 7.32 1 | 11.4 1 | 1.78 65 |
Sparse-NonSparse [56] | 38.5 | 3.07 27 | 5.88 31 | 1.21 15 | 3.61 12 | 5.33 12 | 1.33 13 | 4.29 42 | 7.47 66 | 2.19 40 | 5.37 14 | 7.74 19 | 3.21 19 | 11.5 59 | 14.5 64 | 4.36 64 | 6.66 58 | 12.9 59 | 2.41 48 | 8.69 57 | 20.1 59 | 1.67 38 | 8.27 47 | 13.0 49 | 1.70 12 |
Sparse Occlusion [54] | 39.5 | 3.16 44 | 6.18 51 | 1.23 39 | 4.14 45 | 6.24 56 | 1.45 31 | 3.67 10 | 5.84 17 | 1.52 10 | 5.61 38 | 8.26 41 | 3.15 9 | 11.5 59 | 14.4 54 | 4.48 73 | 6.26 23 | 12.1 23 | 2.46 57 | 8.52 50 | 19.6 55 | 1.54 13 | 8.28 48 | 13.0 49 | 1.75 53 |
PMF [76] | 39.6 | 3.14 41 | 6.13 48 | 1.20 5 | 3.73 24 | 5.60 25 | 1.27 6 | 5.24 65 | 8.98 82 | 3.76 69 | 5.75 45 | 8.56 58 | 3.28 31 | 10.8 13 | 13.6 16 | 3.62 22 | 6.55 42 | 12.7 44 | 2.35 28 | 8.41 49 | 19.5 53 | 1.64 34 | 8.57 70 | 13.4 69 | 1.70 12 |
OFLADF [82] | 41.1 | 3.10 34 | 5.98 41 | 1.20 5 | 3.44 6 | 5.03 6 | 1.26 1 | 3.73 15 | 5.82 15 | 1.66 16 | 5.33 10 | 7.74 19 | 3.10 7 | 11.6 72 | 14.7 77 | 4.50 79 | 6.58 50 | 12.8 52 | 2.48 61 | 9.33 76 | 21.6 75 | 2.06 69 | 8.45 63 | 13.2 61 | 1.80 76 |
Filter Flow [19] | 41.3 | 3.13 40 | 5.90 32 | 1.28 66 | 4.56 69 | 6.38 63 | 1.85 72 | 4.22 40 | 6.28 32 | 2.10 36 | 5.91 55 | 7.97 31 | 3.44 58 | 10.4 9 | 13.1 9 | 3.69 34 | 6.43 38 | 12.5 39 | 2.40 39 | 8.17 38 | 18.8 41 | 1.62 30 | 7.94 29 | 12.4 27 | 1.78 65 |
SCR [74] | 42.1 | 3.09 31 | 5.90 32 | 1.21 15 | 3.63 14 | 5.36 14 | 1.42 26 | 4.85 59 | 8.19 76 | 3.21 63 | 5.44 22 | 7.91 28 | 3.27 30 | 11.5 59 | 14.5 64 | 4.47 71 | 6.58 50 | 12.8 52 | 2.38 37 | 8.86 67 | 20.5 66 | 1.71 45 | 8.24 43 | 12.9 42 | 1.69 5 |
Black & Anandan [4] | 42.5 | 3.22 53 | 5.87 30 | 1.30 72 | 4.82 80 | 6.55 72 | 1.78 70 | 7.16 78 | 7.10 57 | 3.93 71 | 6.25 68 | 8.49 53 | 3.35 51 | 10.9 20 | 13.7 21 | 3.56 3 | 6.33 27 | 12.2 25 | 2.37 33 | 8.23 39 | 18.6 38 | 1.64 34 | 7.67 12 | 11.9 7 | 1.69 5 |
LSM [39] | 43.3 | 3.12 38 | 6.05 44 | 1.21 15 | 3.68 19 | 5.47 19 | 1.33 13 | 4.38 47 | 7.66 72 | 2.01 32 | 5.55 29 | 8.19 39 | 3.19 15 | 11.5 59 | 14.5 64 | 4.43 66 | 6.83 69 | 13.3 70 | 2.37 33 | 8.70 58 | 20.1 59 | 1.72 48 | 8.34 55 | 13.1 56 | 1.71 21 |
Ramp [62] | 43.8 | 3.11 37 | 5.96 39 | 1.22 27 | 3.61 12 | 5.34 13 | 1.40 22 | 4.91 60 | 8.45 79 | 3.20 62 | 5.29 6 | 7.66 16 | 3.21 19 | 11.5 59 | 14.5 64 | 4.31 61 | 6.88 75 | 13.4 73 | 2.48 61 | 8.73 62 | 20.2 62 | 1.52 9 | 8.29 49 | 13.0 49 | 1.73 36 |
Fusion [6] | 43.9 | 3.04 23 | 5.86 29 | 1.22 27 | 3.75 26 | 5.47 19 | 1.42 26 | 4.08 31 | 5.55 4 | 3.08 56 | 5.80 48 | 8.10 35 | 3.19 15 | 11.4 50 | 14.3 50 | 3.73 38 | 6.99 78 | 13.7 78 | 2.60 79 | 8.40 48 | 19.4 51 | 1.65 37 | 8.50 65 | 13.3 65 | 1.80 76 |
TCOF [71] | 44.0 | 3.12 38 | 5.94 37 | 1.21 15 | 4.60 72 | 6.64 77 | 1.76 68 | 4.13 33 | 7.30 61 | 1.81 23 | 5.42 21 | 7.88 25 | 3.25 28 | 11.3 45 | 14.2 45 | 3.63 26 | 6.42 36 | 12.4 35 | 2.36 30 | 9.08 73 | 21.0 73 | 1.59 23 | 8.37 57 | 13.1 56 | 1.76 59 |
Classic+NL [31] | 44.1 | 3.10 34 | 5.92 36 | 1.23 39 | 3.66 17 | 5.40 15 | 1.39 21 | 4.78 58 | 8.42 78 | 3.01 54 | 5.36 12 | 7.78 23 | 3.30 39 | 11.5 59 | 14.5 64 | 4.24 58 | 6.73 63 | 13.1 63 | 2.40 39 | 8.74 63 | 20.2 62 | 1.70 43 | 8.29 49 | 13.0 49 | 1.71 21 |
2D-CLG [1] | 45.7 | 3.01 17 | 5.65 15 | 1.28 66 | 4.59 71 | 6.17 49 | 1.95 79 | 5.18 62 | 6.06 25 | 3.15 61 | 6.01 63 | 7.88 25 | 3.97 80 | 11.4 50 | 14.4 54 | 4.69 87 | 5.98 8 | 11.5 7 | 2.45 55 | 8.89 69 | 20.5 66 | 1.67 38 | 7.74 15 | 12.0 13 | 1.71 21 |
Epistemic [84] | 45.7 | 3.41 70 | 7.08 77 | 1.20 5 | 3.63 14 | 5.44 18 | 1.27 6 | 4.20 39 | 6.49 39 | 2.43 46 | 5.59 36 | 8.38 48 | 3.32 45 | 11.4 50 | 14.4 54 | 4.11 55 | 6.26 23 | 12.1 23 | 2.35 28 | 9.30 75 | 21.6 75 | 2.80 85 | 8.68 74 | 13.6 75 | 1.73 36 |
Occlusion-TV-L1 [63] | 45.7 | 3.14 41 | 6.13 48 | 1.25 53 | 4.47 64 | 6.61 75 | 1.66 53 | 3.51 2 | 5.71 10 | 1.70 19 | 6.33 70 | 9.58 77 | 3.51 63 | 11.0 23 | 13.9 26 | 3.57 5 | 6.48 39 | 12.6 40 | 2.52 72 | 8.36 45 | 18.1 30 | 2.00 67 | 8.32 54 | 13.0 49 | 1.79 72 |
Efficient-NL [60] | 46.2 | 3.05 24 | 5.77 24 | 1.21 15 | 3.90 34 | 5.84 36 | 1.38 19 | 5.90 73 | 6.94 49 | 4.19 75 | 5.59 36 | 8.09 34 | 3.20 17 | 11.5 59 | 14.4 54 | 4.40 65 | 6.87 72 | 13.4 73 | 2.40 39 | 8.85 65 | 20.5 66 | 1.68 41 | 8.57 70 | 13.4 69 | 1.66 1 |
Bartels [41] | 46.5 | 3.48 75 | 7.24 80 | 1.30 72 | 4.02 40 | 6.12 47 | 1.68 58 | 3.74 16 | 5.80 14 | 1.95 29 | 5.87 53 | 8.44 51 | 3.78 78 | 10.3 6 | 12.8 5 | 3.75 41 | 6.77 67 | 13.0 61 | 2.73 88 | 7.53 9 | 17.3 10 | 2.72 83 | 8.13 35 | 12.7 35 | 1.77 64 |
Horn & Schunck [3] | 46.6 | 3.16 44 | 5.83 27 | 1.26 59 | 4.91 81 | 6.65 78 | 1.92 75 | 6.13 74 | 6.85 45 | 3.53 66 | 6.80 78 | 9.10 70 | 3.57 67 | 10.9 20 | 13.7 21 | 3.59 9 | 6.16 18 | 11.9 18 | 2.32 22 | 8.63 56 | 19.5 53 | 1.84 56 | 7.91 26 | 12.3 19 | 1.73 36 |
FC-2Layers-FF [77] | 47.9 | 3.18 48 | 6.16 50 | 1.22 27 | 3.33 4 | 4.73 3 | 1.35 17 | 4.34 46 | 7.09 56 | 3.11 58 | 5.56 30 | 8.29 42 | 3.29 33 | 11.5 59 | 14.5 64 | 4.48 73 | 7.00 79 | 13.7 78 | 2.48 61 | 8.92 70 | 20.6 70 | 1.71 45 | 8.30 52 | 13.0 49 | 1.73 36 |
OFH [38] | 48.4 | 3.18 48 | 6.29 54 | 1.23 39 | 4.11 43 | 5.96 40 | 1.61 46 | 4.68 56 | 8.40 77 | 1.68 18 | 5.84 50 | 8.99 69 | 3.03 1 | 11.3 45 | 14.2 45 | 4.25 60 | 6.30 26 | 12.2 25 | 2.40 39 | 8.59 52 | 19.3 48 | 1.89 59 | 8.55 67 | 13.4 69 | 1.97 86 |
FESL [75] | 48.5 | 3.16 44 | 6.02 42 | 1.21 15 | 3.65 16 | 5.42 16 | 1.35 17 | 4.39 48 | 7.61 71 | 2.18 39 | 5.71 43 | 8.35 47 | 3.30 39 | 11.6 72 | 14.7 77 | 4.51 82 | 6.73 63 | 13.1 63 | 2.47 59 | 8.70 58 | 20.1 59 | 1.56 20 | 8.42 59 | 13.2 61 | 1.75 53 |
Nguyen [33] | 50.0 | 3.26 58 | 6.11 47 | 1.33 77 | 4.94 82 | 6.51 69 | 1.91 74 | 4.09 32 | 7.32 62 | 1.96 30 | 6.19 67 | 8.53 55 | 3.60 70 | 11.1 29 | 13.9 26 | 3.58 7 | 6.55 42 | 12.7 44 | 2.36 30 | 9.44 78 | 21.8 78 | 1.80 55 | 7.86 22 | 12.3 19 | 1.74 48 |
CostFilter [40] | 50.2 | 3.46 74 | 7.24 80 | 1.19 1 | 3.71 22 | 5.60 25 | 1.27 6 | 5.63 70 | 9.41 84 | 3.86 70 | 6.37 72 | 10.1 81 | 3.23 25 | 11.2 39 | 14.0 36 | 3.78 43 | 6.35 31 | 12.2 25 | 2.40 39 | 8.86 67 | 20.6 70 | 1.69 42 | 8.80 78 | 13.8 78 | 1.74 48 |
Adaptive [20] | 51.4 | 3.24 56 | 6.44 60 | 1.25 53 | 4.57 70 | 6.61 75 | 1.72 63 | 3.94 25 | 6.12 30 | 1.81 23 | 5.86 51 | 8.66 60 | 3.47 61 | 11.6 72 | 14.6 72 | 3.59 9 | 6.55 42 | 12.7 44 | 2.51 69 | 9.03 71 | 20.6 70 | 1.59 23 | 8.13 35 | 12.7 35 | 1.78 65 |
IAOF [50] | 51.6 | 3.53 79 | 6.60 68 | 1.32 75 | 5.39 88 | 7.19 88 | 1.96 80 | 5.81 71 | 7.32 62 | 3.63 67 | 6.15 65 | 8.34 46 | 3.72 76 | 11.1 29 | 14.0 36 | 3.60 15 | 6.50 40 | 12.6 40 | 2.34 25 | 8.28 43 | 19.0 44 | 1.53 10 | 7.94 29 | 12.4 27 | 1.73 36 |
Complementary OF [21] | 51.7 | 3.48 75 | 7.32 84 | 1.20 5 | 3.89 32 | 5.96 40 | 1.45 31 | 8.94 83 | 6.94 49 | 5.45 83 | 6.33 70 | 10.0 80 | 3.09 6 | 11.3 45 | 14.2 45 | 4.24 58 | 6.33 27 | 12.3 30 | 2.42 50 | 8.62 55 | 19.3 48 | 1.75 51 | 9.07 83 | 14.3 83 | 1.72 28 |
TV-L1-improved [17] | 52.3 | 3.09 31 | 6.03 43 | 1.25 53 | 4.55 68 | 6.59 74 | 1.70 61 | 5.88 72 | 5.66 8 | 4.09 74 | 5.53 27 | 7.88 25 | 3.22 22 | 11.4 50 | 14.4 54 | 3.61 18 | 6.73 63 | 13.1 63 | 2.51 69 | 9.48 79 | 22.1 80 | 1.94 62 | 8.25 45 | 12.9 42 | 1.79 72 |
TI-DOFE [24] | 53.5 | 3.41 70 | 6.44 60 | 1.44 84 | 5.20 86 | 6.82 86 | 2.01 83 | 4.19 38 | 6.41 36 | 1.88 27 | 6.98 81 | 9.50 75 | 3.70 74 | 10.8 13 | 13.6 16 | 3.61 18 | 6.59 52 | 12.8 52 | 2.36 30 | 8.13 36 | 18.2 32 | 1.77 52 | 8.53 66 | 12.4 27 | 2.33 89 |
EP-PM [83] | 53.6 | 3.35 67 | 6.86 74 | 1.21 15 | 3.85 30 | 5.88 38 | 1.29 9 | 7.03 76 | 9.47 86 | 3.97 73 | 6.15 65 | 9.51 76 | 3.38 54 | 10.6 10 | 13.3 10 | 3.62 22 | 7.00 79 | 13.7 78 | 2.37 33 | 8.85 65 | 20.5 66 | 2.62 82 | 8.42 59 | 13.2 61 | 1.76 59 |
GraphCuts [14] | 54.3 | 3.65 84 | 7.01 76 | 1.27 62 | 3.89 32 | 5.71 29 | 1.59 43 | 7.54 79 | 5.84 17 | 4.31 78 | 5.98 61 | 8.42 50 | 3.45 60 | 11.4 50 | 14.4 54 | 4.09 53 | 6.56 45 | 12.8 52 | 2.30 12 | 8.70 58 | 20.2 62 | 1.98 64 | 8.59 73 | 13.5 74 | 1.73 36 |
NL-TV-NCC [25] | 55.5 | 3.37 68 | 6.58 66 | 1.24 45 | 4.23 48 | 6.41 65 | 1.49 37 | 4.39 48 | 6.68 44 | 2.07 35 | 7.19 82 | 11.2 85 | 3.35 51 | 10.7 12 | 13.4 11 | 4.00 51 | 6.95 76 | 13.4 73 | 2.44 53 | 9.06 72 | 20.0 58 | 2.13 73 | 8.42 59 | 13.1 56 | 1.78 65 |
TriangleFlow [30] | 56.5 | 3.24 56 | 6.31 56 | 1.26 59 | 4.29 52 | 6.29 59 | 1.66 53 | 4.67 55 | 6.85 45 | 2.48 47 | 5.78 47 | 8.47 52 | 3.30 39 | 11.4 50 | 14.4 54 | 3.47 1 | 6.63 57 | 12.8 52 | 2.37 33 | 9.67 81 | 22.5 81 | 2.08 70 | 9.69 87 | 15.2 87 | 1.90 84 |
LocallyOriented [52] | 57.0 | 3.29 61 | 6.53 64 | 1.26 59 | 4.64 75 | 6.69 80 | 1.74 65 | 5.61 69 | 7.56 68 | 3.67 68 | 6.73 76 | 9.84 79 | 3.18 13 | 11.5 59 | 14.4 54 | 3.71 36 | 6.57 48 | 12.7 44 | 2.45 55 | 8.71 61 | 19.3 48 | 1.71 45 | 8.40 58 | 13.1 56 | 1.72 28 |
IAOF2 [51] | 57.4 | 3.43 72 | 6.70 69 | 1.28 66 | 4.62 74 | 6.77 84 | 1.74 65 | 4.41 50 | 6.89 47 | 2.12 37 | 5.97 58 | 8.53 55 | 3.33 48 | 11.6 72 | 14.7 77 | 4.06 52 | 6.87 72 | 13.4 73 | 2.51 69 | 8.26 40 | 18.7 40 | 1.61 26 | 8.22 42 | 12.9 42 | 1.74 48 |
Correlation Flow [79] | 59.8 | 3.27 59 | 6.50 63 | 1.20 5 | 4.42 59 | 6.56 73 | 1.65 51 | 3.98 26 | 6.10 28 | 2.30 45 | 5.93 57 | 8.94 67 | 3.32 45 | 11.6 72 | 14.6 72 | 3.84 45 | 7.63 87 | 14.8 86 | 2.65 84 | 9.95 84 | 23.0 84 | 2.01 68 | 8.73 77 | 13.7 76 | 1.71 21 |
HBpMotionGpu [43] | 59.9 | 3.63 82 | 7.28 82 | 1.35 79 | 4.78 78 | 6.69 80 | 1.92 75 | 4.33 45 | 7.01 55 | 2.56 49 | 6.46 73 | 9.81 78 | 3.40 56 | 11.5 59 | 14.4 54 | 5.69 90 | 6.83 69 | 13.3 70 | 2.55 76 | 7.40 6 | 16.9 5 | 1.51 4 | 8.30 52 | 13.0 49 | 1.79 72 |
ACK-Prior [27] | 60.0 | 3.30 62 | 6.56 65 | 1.21 15 | 3.81 27 | 5.78 31 | 1.42 26 | 7.13 77 | 6.90 48 | 5.04 80 | 6.02 64 | 8.78 63 | 3.70 74 | 11.7 81 | 14.7 77 | 4.57 85 | 6.95 76 | 13.5 77 | 2.50 66 | 8.36 45 | 19.2 46 | 2.53 80 | 8.56 69 | 13.4 69 | 1.73 36 |
Dynamic MRF [7] | 61.9 | 3.19 51 | 6.41 59 | 1.22 27 | 4.11 43 | 6.21 52 | 1.56 39 | 5.37 66 | 7.35 64 | 2.70 51 | 6.74 77 | 9.18 72 | 4.19 82 | 11.1 29 | 13.9 26 | 4.48 73 | 7.02 82 | 13.7 78 | 2.62 80 | 9.26 74 | 21.4 74 | 2.23 76 | 8.57 70 | 13.3 65 | 1.80 76 |
Shiralkar [42] | 62.6 | 3.57 80 | 7.31 83 | 1.22 27 | 4.46 63 | 6.33 62 | 1.65 51 | 5.49 67 | 6.98 52 | 2.73 52 | 7.42 83 | 10.9 82 | 3.43 57 | 11.5 59 | 14.4 54 | 3.73 38 | 6.57 48 | 12.7 44 | 2.48 61 | 9.58 80 | 21.9 79 | 1.88 58 | 9.18 85 | 14.4 84 | 1.75 53 |
FOLKI [16] | 62.9 | 3.64 83 | 7.12 78 | 1.65 87 | 5.22 87 | 6.72 83 | 2.36 87 | 5.20 63 | 8.08 75 | 3.96 72 | 7.93 84 | 9.33 73 | 5.52 87 | 11.2 39 | 14.0 36 | 3.70 35 | 6.56 45 | 12.6 40 | 2.74 89 | 8.00 32 | 18.2 32 | 2.88 86 | 7.96 32 | 12.3 19 | 1.78 65 |
SILK [87] | 63.5 | 3.45 73 | 6.85 73 | 1.36 80 | 5.11 84 | 6.70 82 | 2.21 85 | 11.1 87 | 9.96 87 | 6.24 86 | 6.49 74 | 8.82 64 | 3.59 69 | 11.4 50 | 14.3 50 | 3.54 2 | 6.87 72 | 13.3 70 | 2.63 81 | 7.76 25 | 17.7 23 | 1.87 57 | 8.20 40 | 12.7 35 | 1.80 76 |
Learning Flow [11] | 64.0 | 3.14 41 | 6.09 46 | 1.27 62 | 4.51 65 | 6.53 71 | 1.67 55 | 11.5 90 | 12.9 90 | 7.17 90 | 6.31 69 | 8.30 44 | 3.66 73 | 11.7 81 | 14.8 82 | 3.89 46 | 6.59 52 | 12.8 52 | 2.48 61 | 8.27 42 | 18.9 42 | 1.96 63 | 8.68 74 | 13.4 69 | 1.80 76 |
SimpleFlow [49] | 64.0 | 3.10 34 | 5.97 40 | 1.22 27 | 4.19 47 | 6.11 46 | 1.64 50 | 9.91 86 | 9.43 85 | 6.53 87 | 5.58 33 | 8.29 42 | 3.30 39 | 11.6 72 | 14.6 72 | 4.43 66 | 7.42 84 | 14.6 85 | 2.56 78 | 10.7 88 | 25.2 88 | 2.73 84 | 9.16 84 | 14.4 84 | 1.73 36 |
Rannacher [23] | 64.4 | 3.31 64 | 6.72 71 | 1.25 53 | 4.60 72 | 6.66 79 | 1.72 63 | 6.36 75 | 6.54 40 | 4.25 76 | 5.91 55 | 8.87 65 | 3.49 62 | 11.5 59 | 14.5 64 | 3.63 26 | 6.73 63 | 13.1 63 | 2.53 73 | 9.35 77 | 21.7 77 | 1.98 64 | 8.70 76 | 13.7 76 | 1.75 53 |
Adaptive flow [45] | 66.6 | 3.60 81 | 6.30 55 | 1.54 86 | 5.14 85 | 6.79 85 | 2.14 84 | 4.52 53 | 6.60 41 | 3.01 54 | 6.54 75 | 8.64 59 | 4.23 83 | 12.1 86 | 15.2 85 | 4.09 53 | 7.57 86 | 14.9 87 | 2.64 83 | 7.75 23 | 17.8 26 | 2.28 78 | 8.47 64 | 13.3 65 | 1.71 21 |
Direct ZNCC [66] | 67.1 | 3.18 48 | 6.20 52 | 1.20 5 | 4.41 58 | 6.51 69 | 1.70 61 | 4.49 52 | 7.60 70 | 3.12 59 | 6.97 80 | 11.2 85 | 3.87 79 | 11.6 72 | 14.6 72 | 3.80 44 | 7.46 85 | 14.5 84 | 2.71 87 | 10.1 85 | 23.3 85 | 2.10 72 | 8.82 80 | 13.8 78 | 1.74 48 |
StereoFlow [44] | 67.4 | 5.35 90 | 10.3 89 | 1.42 83 | 5.03 83 | 7.21 89 | 1.76 68 | 4.14 34 | 6.94 49 | 2.01 32 | 5.83 49 | 8.55 57 | 3.33 48 | 13.7 88 | 17.3 88 | 4.70 88 | 8.71 89 | 17.2 89 | 2.70 86 | 7.88 30 | 18.1 30 | 1.61 26 | 8.82 80 | 13.9 81 | 1.79 72 |
SPSA-learn [13] | 70.8 | 3.89 85 | 7.79 85 | 1.27 62 | 4.43 61 | 6.17 49 | 1.81 71 | 9.03 84 | 8.47 80 | 5.47 84 | 6.80 78 | 9.40 74 | 3.72 76 | 11.5 59 | 14.5 64 | 3.91 48 | 6.51 41 | 12.6 40 | 2.46 57 | 11.9 89 | 27.9 90 | 4.54 90 | 10.5 89 | 16.5 89 | 1.75 53 |
PGAM+LK [55] | 72.2 | 4.08 86 | 8.41 86 | 1.65 87 | 4.74 77 | 6.45 66 | 2.27 86 | 8.87 82 | 12.2 88 | 6.88 88 | 8.06 86 | 10.9 82 | 4.83 85 | 11.4 50 | 14.3 50 | 3.90 47 | 6.83 69 | 13.2 68 | 2.55 76 | 8.26 40 | 18.9 42 | 2.27 77 | 8.55 67 | 13.3 65 | 1.90 84 |
SegOF [10] | 72.4 | 3.51 77 | 7.12 78 | 1.32 75 | 4.17 46 | 6.10 44 | 1.59 43 | 8.69 81 | 7.75 73 | 5.15 81 | 8.58 87 | 14.3 88 | 4.29 84 | 11.7 81 | 14.8 82 | 4.50 79 | 6.79 68 | 13.2 68 | 2.50 66 | 10.1 85 | 23.5 86 | 2.55 81 | 8.80 78 | 13.8 78 | 1.72 28 |
SLK [47] | 74.3 | 3.51 77 | 6.96 75 | 1.41 82 | 4.72 76 | 6.10 44 | 1.98 82 | 9.84 85 | 7.59 69 | 5.20 82 | 7.98 85 | 11.0 84 | 6.14 88 | 11.8 84 | 14.9 84 | 3.71 36 | 6.60 54 | 12.7 44 | 2.50 66 | 9.87 83 | 22.8 83 | 2.08 70 | 8.94 82 | 14.0 82 | 2.03 87 |
GroupFlow [9] | 81.8 | 4.94 88 | 10.2 88 | 1.36 80 | 4.51 65 | 6.50 68 | 1.92 75 | 8.67 80 | 9.13 83 | 4.38 79 | 8.83 88 | 13.0 87 | 5.40 86 | 12.9 87 | 16.3 87 | 4.53 84 | 7.89 88 | 15.5 88 | 2.65 84 | 9.85 82 | 22.6 82 | 1.91 60 | 9.52 86 | 14.9 86 | 1.88 83 |
Pyramid LK [2] | 82.0 | 4.16 87 | 8.44 87 | 1.74 89 | 5.83 89 | 6.82 86 | 2.76 89 | 11.4 88 | 8.60 81 | 5.89 85 | 12.4 90 | 16.7 89 | 7.03 90 | 14.3 89 | 18.1 89 | 3.92 50 | 6.69 61 | 12.2 25 | 2.63 81 | 10.3 87 | 24.0 87 | 2.45 79 | 11.1 90 | 17.4 90 | 2.55 90 |
Periodicity [86] | 89.2 | 5.27 89 | 11.1 90 | 1.83 90 | 7.09 90 | 7.33 90 | 2.86 90 | 11.4 88 | 12.2 88 | 7.13 89 | 10.5 89 | 17.1 90 | 6.14 88 | 14.9 90 | 19.0 90 | 4.71 89 | 9.13 90 | 17.9 90 | 3.16 90 | 11.9 89 | 27.8 89 | 3.76 89 | 10.4 88 | 15.8 88 | 2.29 88 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |