Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A75 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 6.4 | 0.06 2 | 0.15 2 | 0.05 2 | 0.13 2 | 0.55 11 | 0.13 6 | 0.16 1 | 0.28 6 | 0.16 1 | 0.07 9 | 0.33 11 | 0.07 12 | 0.36 5 | 0.61 4 | 0.22 5 | 0.16 12 | 0.47 3 | 0.14 16 | 0.13 9 | 0.15 1 | 0.23 16 | 0.23 1 | 0.69 15 | 0.20 2 |
MDP-Flow2 [70] | 8.2 | 0.08 28 | 0.17 10 | 0.07 14 | 0.13 2 | 0.42 1 | 0.12 2 | 0.17 4 | 0.22 2 | 0.17 7 | 0.08 14 | 0.35 12 | 0.07 12 | 0.42 7 | 0.84 10 | 0.24 7 | 0.16 12 | 0.43 2 | 0.13 8 | 0.13 9 | 0.16 9 | 0.22 15 | 0.27 3 | 0.53 2 | 0.29 4 |
NN-field [73] | 8.7 | 0.06 2 | 0.17 10 | 0.05 2 | 0.15 11 | 0.62 20 | 0.15 15 | 0.17 4 | 0.27 5 | 0.17 7 | 0.07 9 | 0.29 5 | 0.07 12 | 0.35 4 | 0.61 4 | 0.21 4 | 0.13 4 | 0.39 1 | 0.11 4 | 0.16 31 | 0.16 9 | 0.27 32 | 0.24 2 | 0.67 11 | 0.19 1 |
Epistemic [84] | 11.0 | 0.06 2 | 0.16 4 | 0.05 2 | 0.14 7 | 0.45 3 | 0.14 12 | 0.16 1 | 0.30 7 | 0.16 1 | 0.06 1 | 0.37 14 | 0.05 1 | 0.47 11 | 0.99 20 | 0.33 20 | 0.21 38 | 1.08 30 | 0.16 32 | 0.14 14 | 0.17 18 | 0.20 13 | 0.27 3 | 0.64 7 | 0.29 4 |
OFLADF [82] | 11.3 | 0.07 10 | 0.15 2 | 0.07 14 | 0.15 11 | 0.46 4 | 0.14 12 | 0.16 1 | 0.21 1 | 0.16 1 | 0.07 9 | 0.20 3 | 0.06 5 | 0.31 1 | 0.59 3 | 0.19 2 | 0.22 43 | 0.59 7 | 0.17 37 | 0.14 14 | 0.16 9 | 0.29 39 | 0.29 19 | 0.53 2 | 0.33 23 |
TC/T-Flow [80] | 12.0 | 0.05 1 | 0.19 17 | 0.04 1 | 0.13 2 | 0.61 18 | 0.12 2 | 0.17 4 | 0.34 10 | 0.16 1 | 0.06 1 | 0.43 24 | 0.05 1 | 0.47 11 | 0.92 14 | 0.24 7 | 0.11 2 | 0.53 4 | 0.10 2 | 0.14 14 | 0.15 1 | 0.42 73 | 0.31 29 | 0.82 25 | 0.33 23 |
ADF [67] | 12.7 | 0.07 10 | 0.20 21 | 0.06 6 | 0.15 11 | 0.51 7 | 0.15 15 | 0.17 4 | 0.36 18 | 0.17 7 | 0.06 1 | 0.46 30 | 0.05 1 | 0.46 10 | 0.97 19 | 0.22 5 | 0.16 12 | 0.93 21 | 0.12 6 | 0.15 23 | 0.17 18 | 0.29 39 | 0.28 10 | 0.59 4 | 0.30 7 |
LME [72] | 13.0 | 0.07 10 | 0.16 4 | 0.06 6 | 0.14 7 | 0.43 2 | 0.13 6 | 0.18 14 | 0.30 7 | 0.18 13 | 0.08 14 | 0.44 27 | 0.07 12 | 0.49 17 | 0.96 17 | 0.31 17 | 0.15 9 | 0.74 10 | 0.14 16 | 0.15 23 | 0.17 18 | 0.25 25 | 0.28 10 | 0.68 14 | 0.31 13 |
TC-Flow [46] | 14.3 | 0.06 2 | 0.17 10 | 0.07 14 | 0.11 1 | 0.46 4 | 0.10 1 | 0.17 4 | 0.34 10 | 0.16 1 | 0.06 1 | 0.41 18 | 0.06 5 | 0.53 22 | 1.21 30 | 0.25 10 | 0.13 4 | 1.04 29 | 0.13 8 | 0.13 9 | 0.15 1 | 0.36 56 | 0.32 32 | 1.07 34 | 0.41 38 |
Layers++ [37] | 14.5 | 0.07 10 | 0.17 10 | 0.08 29 | 0.19 32 | 0.56 14 | 0.19 34 | 0.17 4 | 0.25 3 | 0.18 13 | 0.06 1 | 0.15 2 | 0.06 5 | 0.31 1 | 0.51 1 | 0.18 1 | 0.17 17 | 0.77 11 | 0.13 8 | 0.18 42 | 0.18 35 | 0.31 45 | 0.27 3 | 0.66 9 | 0.32 18 |
ALD-Flow [68] | 14.6 | 0.06 2 | 0.16 4 | 0.06 6 | 0.13 2 | 0.49 6 | 0.12 2 | 0.17 4 | 0.35 13 | 0.17 7 | 0.06 1 | 0.42 21 | 0.06 5 | 0.54 24 | 1.24 33 | 0.25 10 | 0.11 2 | 0.98 25 | 0.10 2 | 0.15 23 | 0.15 1 | 0.36 56 | 0.32 32 | 1.10 37 | 0.37 33 |
nLayers [57] | 15.4 | 0.06 2 | 0.12 1 | 0.06 6 | 0.23 53 | 0.63 22 | 0.23 58 | 0.17 4 | 0.32 9 | 0.20 37 | 0.06 1 | 0.14 1 | 0.06 5 | 0.32 3 | 0.53 2 | 0.19 2 | 0.16 12 | 0.53 4 | 0.13 8 | 0.15 23 | 0.17 18 | 0.26 28 | 0.29 19 | 0.70 16 | 0.39 36 |
IROF++ [58] | 18.2 | 0.07 10 | 0.18 14 | 0.07 14 | 0.19 32 | 0.78 37 | 0.19 34 | 0.18 14 | 0.40 26 | 0.19 21 | 0.08 14 | 0.42 21 | 0.08 20 | 0.47 11 | 0.88 11 | 0.33 20 | 0.17 17 | 1.00 27 | 0.13 8 | 0.12 5 | 0.18 35 | 0.15 5 | 0.28 10 | 0.73 18 | 0.31 13 |
FC-2Layers-FF [77] | 20.0 | 0.07 10 | 0.16 4 | 0.07 14 | 0.18 26 | 0.71 29 | 0.18 30 | 0.18 14 | 0.26 4 | 0.19 21 | 0.08 14 | 0.29 5 | 0.08 20 | 0.38 6 | 0.64 6 | 0.29 15 | 0.19 32 | 0.73 9 | 0.15 25 | 0.20 62 | 0.18 35 | 0.39 67 | 0.27 3 | 0.67 11 | 0.32 18 |
Efficient-NL [60] | 20.2 | 0.06 2 | 0.16 4 | 0.06 6 | 0.20 42 | 0.74 32 | 0.19 34 | 0.18 14 | 0.36 18 | 0.18 13 | 0.08 14 | 0.30 7 | 0.07 12 | 0.42 7 | 0.77 7 | 0.28 13 | 0.19 32 | 0.91 18 | 0.15 25 | 0.18 42 | 0.18 35 | 0.34 53 | 0.30 25 | 0.61 6 | 0.33 23 |
SCR [74] | 20.5 | 0.07 10 | 0.18 14 | 0.07 14 | 0.19 32 | 0.81 43 | 0.19 34 | 0.18 14 | 0.34 10 | 0.20 37 | 0.08 14 | 0.40 17 | 0.08 20 | 0.48 14 | 0.91 13 | 0.34 23 | 0.17 17 | 0.87 16 | 0.14 16 | 0.18 42 | 0.17 18 | 0.36 56 | 0.27 3 | 0.64 7 | 0.30 7 |
Sparse-NonSparse [56] | 21.1 | 0.07 10 | 0.21 23 | 0.07 14 | 0.19 32 | 0.76 34 | 0.19 34 | 0.17 4 | 0.37 20 | 0.19 21 | 0.08 14 | 0.44 27 | 0.07 12 | 0.54 24 | 1.03 23 | 0.37 31 | 0.17 17 | 0.93 21 | 0.13 8 | 0.18 42 | 0.15 1 | 0.37 59 | 0.27 3 | 0.75 20 | 0.31 13 |
Levin3 [90] | 21.8 | 0.07 10 | 0.18 14 | 0.06 6 | 0.19 32 | 0.80 41 | 0.19 34 | 0.18 14 | 0.35 13 | 0.19 21 | 0.09 27 | 0.42 21 | 0.08 20 | 0.44 9 | 0.82 8 | 0.30 16 | 0.18 26 | 0.83 13 | 0.14 16 | 0.19 52 | 0.18 35 | 0.41 69 | 0.28 10 | 0.66 9 | 0.30 7 |
Correlation Flow [79] | 22.0 | 0.08 28 | 0.21 23 | 0.08 29 | 0.15 11 | 0.51 7 | 0.13 6 | 0.18 14 | 0.35 13 | 0.17 7 | 0.09 27 | 0.32 9 | 0.08 20 | 0.51 18 | 1.08 26 | 0.28 13 | 0.25 54 | 0.80 12 | 0.20 52 | 0.19 52 | 0.17 18 | 0.38 62 | 0.29 19 | 0.60 5 | 0.29 4 |
Ramp [62] | 22.9 | 0.07 10 | 0.21 23 | 0.07 14 | 0.18 26 | 0.78 37 | 0.19 34 | 0.18 14 | 0.35 13 | 0.19 21 | 0.09 27 | 0.41 18 | 0.08 20 | 0.52 21 | 0.96 17 | 0.36 28 | 0.18 26 | 0.88 17 | 0.14 16 | 0.18 42 | 0.16 9 | 0.41 69 | 0.28 10 | 0.75 20 | 0.32 18 |
LSM [39] | 23.4 | 0.07 10 | 0.21 23 | 0.07 14 | 0.18 26 | 0.78 37 | 0.18 30 | 0.18 14 | 0.38 24 | 0.19 21 | 0.08 14 | 0.45 29 | 0.08 20 | 0.53 22 | 1.02 22 | 0.35 26 | 0.18 26 | 0.98 25 | 0.14 16 | 0.19 52 | 0.16 9 | 0.38 62 | 0.27 3 | 0.79 23 | 0.31 13 |
COFM [59] | 23.5 | 0.06 2 | 0.19 17 | 0.05 2 | 0.15 11 | 0.60 15 | 0.15 15 | 0.17 4 | 0.45 32 | 0.19 21 | 0.06 1 | 0.32 9 | 0.05 1 | 0.69 40 | 1.39 38 | 0.51 47 | 0.24 51 | 0.84 15 | 0.17 37 | 0.16 31 | 0.15 1 | 0.38 62 | 0.37 43 | 0.81 24 | 0.45 44 |
FESL [75] | 23.8 | 0.07 10 | 0.16 4 | 0.08 29 | 0.22 49 | 0.84 45 | 0.20 46 | 0.18 14 | 0.37 20 | 0.19 21 | 0.08 14 | 0.28 4 | 0.07 12 | 0.48 14 | 0.82 8 | 0.39 33 | 0.17 17 | 0.71 8 | 0.15 25 | 0.18 42 | 0.20 53 | 0.29 39 | 0.31 29 | 0.67 11 | 0.33 23 |
Direct ZNCC [66] | 25.0 | 0.08 28 | 0.23 29 | 0.08 29 | 0.15 11 | 0.55 11 | 0.13 6 | 0.18 14 | 0.37 20 | 0.17 7 | 0.08 14 | 0.35 12 | 0.08 20 | 0.62 31 | 1.44 40 | 0.34 23 | 0.26 57 | 0.91 18 | 0.21 56 | 0.19 52 | 0.17 18 | 0.38 62 | 0.29 19 | 0.71 17 | 0.30 7 |
Classic+NL [31] | 25.1 | 0.07 10 | 0.20 21 | 0.07 14 | 0.19 32 | 0.79 40 | 0.19 34 | 0.18 14 | 0.37 20 | 0.19 21 | 0.09 27 | 0.43 24 | 0.08 20 | 0.51 18 | 0.94 16 | 0.36 28 | 0.19 32 | 0.92 20 | 0.15 25 | 0.19 52 | 0.17 18 | 0.39 67 | 0.28 10 | 0.78 22 | 0.32 18 |
SimpleFlow [49] | 27.6 | 0.07 10 | 0.23 29 | 0.07 14 | 0.21 45 | 0.85 47 | 0.21 48 | 0.19 30 | 0.53 36 | 0.20 37 | 0.09 27 | 0.51 31 | 0.09 40 | 0.56 27 | 1.07 25 | 0.41 34 | 0.18 26 | 0.83 13 | 0.14 16 | 0.16 31 | 0.15 1 | 0.28 36 | 0.28 10 | 0.85 27 | 0.33 23 |
MDP-Flow [26] | 27.8 | 0.08 28 | 0.27 40 | 0.08 29 | 0.18 26 | 0.54 10 | 0.19 34 | 0.18 14 | 0.42 29 | 0.18 13 | 0.08 14 | 0.70 45 | 0.08 20 | 0.63 32 | 1.21 30 | 0.46 43 | 0.17 17 | 1.13 31 | 0.15 25 | 0.14 14 | 0.17 18 | 0.23 16 | 0.35 40 | 1.58 49 | 0.54 49 |
TV-L1-MCT [64] | 27.8 | 0.07 10 | 0.19 17 | 0.07 14 | 0.22 49 | 0.87 51 | 0.21 48 | 0.18 14 | 0.40 26 | 0.20 37 | 0.09 27 | 0.37 14 | 0.08 20 | 0.61 30 | 1.14 27 | 0.52 50 | 0.22 43 | 1.00 27 | 0.16 32 | 0.13 9 | 0.17 18 | 0.20 13 | 0.29 19 | 0.86 29 | 0.43 42 |
PMF [76] | 28.5 | 0.08 28 | 0.19 17 | 0.07 14 | 0.17 21 | 0.65 25 | 0.15 15 | 0.19 30 | 0.42 29 | 0.20 37 | 0.09 27 | 0.30 7 | 0.09 40 | 0.48 14 | 0.90 12 | 0.24 7 | 0.21 38 | 1.14 32 | 0.16 32 | 0.27 80 | 0.30 87 | 0.50 77 | 0.28 10 | 0.51 1 | 0.27 3 |
IROF-TV [53] | 29.2 | 0.08 28 | 0.22 28 | 0.08 29 | 0.20 42 | 0.85 47 | 0.19 34 | 0.18 14 | 0.40 26 | 0.20 37 | 0.09 27 | 0.79 49 | 0.09 40 | 0.59 29 | 1.06 24 | 0.45 41 | 0.22 43 | 1.74 61 | 0.17 37 | 0.11 3 | 0.16 9 | 0.14 2 | 0.28 10 | 0.85 27 | 0.31 13 |
OFH [38] | 29.5 | 0.09 36 | 0.27 40 | 0.10 50 | 0.13 2 | 0.60 15 | 0.13 6 | 0.18 14 | 0.63 41 | 0.16 1 | 0.07 9 | 0.61 38 | 0.06 5 | 0.74 48 | 1.54 47 | 0.43 37 | 0.18 26 | 1.47 50 | 0.18 43 | 0.14 14 | 0.18 35 | 0.26 28 | 0.34 39 | 1.60 50 | 0.38 35 |
Adaptive [20] | 30.0 | 0.07 10 | 0.23 29 | 0.06 6 | 0.19 32 | 0.75 33 | 0.17 25 | 0.20 42 | 0.67 46 | 0.19 21 | 0.09 27 | 0.74 46 | 0.08 20 | 0.71 44 | 1.34 36 | 0.56 52 | 0.15 9 | 1.22 37 | 0.11 4 | 0.18 42 | 0.20 53 | 0.28 36 | 0.29 19 | 0.86 29 | 0.33 23 |
Occlusion-TV-L1 [63] | 30.3 | 0.08 28 | 0.24 34 | 0.07 14 | 0.17 21 | 0.70 27 | 0.17 25 | 0.19 30 | 0.66 45 | 0.19 21 | 0.09 27 | 0.62 41 | 0.08 20 | 0.75 49 | 1.54 47 | 0.56 52 | 0.14 8 | 1.27 40 | 0.16 32 | 0.12 5 | 0.17 18 | 0.14 2 | 0.37 43 | 1.80 60 | 0.41 38 |
Sparse Occlusion [54] | 35.7 | 0.09 36 | 0.21 23 | 0.08 29 | 0.22 49 | 0.62 20 | 0.22 53 | 0.19 30 | 0.44 31 | 0.19 21 | 0.09 27 | 0.43 24 | 0.08 20 | 0.56 27 | 1.14 27 | 0.31 17 | 0.22 43 | 0.96 23 | 0.17 37 | 0.28 85 | 0.29 84 | 0.38 62 | 0.32 32 | 0.84 26 | 0.35 31 |
Classic++ [32] | 35.8 | 0.07 10 | 0.24 34 | 0.07 14 | 0.18 26 | 0.70 27 | 0.19 34 | 0.19 30 | 0.64 42 | 0.19 21 | 0.09 27 | 0.85 51 | 0.08 20 | 0.73 46 | 1.68 58 | 0.43 37 | 0.20 36 | 1.75 62 | 0.15 25 | 0.20 62 | 0.18 35 | 0.41 69 | 0.30 25 | 1.53 46 | 0.33 23 |
EP-PM [83] | 38.5 | 0.10 47 | 0.35 54 | 0.09 41 | 0.17 21 | 0.68 26 | 0.15 15 | 0.20 42 | 0.53 36 | 0.20 37 | 0.11 47 | 0.56 34 | 0.10 44 | 0.55 26 | 0.93 15 | 0.31 17 | 0.32 66 | 1.30 43 | 0.25 61 | 0.21 66 | 0.19 48 | 0.64 83 | 0.31 29 | 0.74 19 | 0.30 7 |
CostFilter [40] | 39.0 | 0.09 36 | 0.24 34 | 0.09 41 | 0.18 26 | 0.64 23 | 0.17 25 | 0.20 42 | 0.48 33 | 0.21 48 | 0.12 51 | 0.54 32 | 0.12 52 | 0.51 18 | 1.00 21 | 0.25 10 | 0.24 51 | 1.19 36 | 0.19 48 | 0.27 80 | 0.34 88 | 0.54 79 | 0.30 25 | 0.89 31 | 0.30 7 |
TV-L1-improved [17] | 39.4 | 0.07 10 | 0.25 37 | 0.06 6 | 0.16 17 | 0.64 23 | 0.15 15 | 0.19 30 | 0.64 42 | 0.19 21 | 0.08 14 | 0.61 38 | 0.08 20 | 0.73 46 | 1.58 50 | 0.44 39 | 0.33 69 | 1.76 64 | 0.32 72 | 0.24 72 | 0.25 76 | 0.44 74 | 0.32 32 | 1.49 45 | 0.37 33 |
Complementary OF [21] | 39.7 | 0.11 57 | 0.31 49 | 0.12 59 | 0.14 7 | 0.55 11 | 0.13 6 | 0.19 30 | 0.48 33 | 0.20 37 | 0.12 51 | 0.55 33 | 0.12 52 | 0.84 55 | 1.58 50 | 0.69 57 | 0.21 38 | 1.24 39 | 0.18 43 | 0.14 14 | 0.17 18 | 0.31 45 | 0.48 57 | 1.70 56 | 0.68 56 |
NL-TV-NCC [25] | 40.0 | 0.10 47 | 0.23 29 | 0.09 41 | 0.21 45 | 0.72 30 | 0.18 30 | 0.19 30 | 0.39 25 | 0.18 13 | 0.11 47 | 0.41 18 | 0.10 44 | 0.67 37 | 1.29 34 | 0.34 23 | 0.33 69 | 1.50 52 | 0.25 61 | 0.21 66 | 0.20 53 | 0.32 48 | 0.39 48 | 1.07 34 | 0.39 36 |
ComplOF-FED-GPU [35] | 41.5 | 0.10 47 | 0.32 52 | 0.11 54 | 0.14 7 | 0.80 41 | 0.12 2 | 0.19 30 | 0.57 39 | 0.18 13 | 0.10 42 | 0.68 44 | 0.10 44 | 0.80 52 | 1.60 53 | 0.47 44 | 0.24 51 | 1.75 62 | 0.20 52 | 0.17 39 | 0.17 18 | 0.41 69 | 0.37 43 | 1.73 57 | 0.43 42 |
ACK-Prior [27] | 41.8 | 0.11 57 | 0.26 38 | 0.10 50 | 0.16 17 | 0.52 9 | 0.15 15 | 0.19 30 | 0.35 13 | 0.18 13 | 0.11 47 | 0.38 16 | 0.10 44 | 0.68 38 | 1.23 32 | 0.47 44 | 0.32 66 | 1.30 43 | 0.24 58 | 0.28 85 | 0.21 60 | 0.66 85 | 0.40 50 | 1.43 43 | 0.55 50 |
TCOF [71] | 42.0 | 0.10 47 | 0.30 44 | 0.11 54 | 0.23 53 | 0.84 45 | 0.22 53 | 0.24 57 | 0.85 54 | 0.25 57 | 0.21 67 | 0.64 42 | 0.25 68 | 0.80 52 | 1.46 44 | 0.44 39 | 0.13 4 | 0.56 6 | 0.13 8 | 0.19 52 | 0.21 60 | 0.23 16 | 0.32 32 | 0.91 32 | 0.33 23 |
CRTflow [88] | 43.8 | 0.09 36 | 0.37 56 | 0.08 29 | 0.19 32 | 0.72 30 | 0.17 25 | 0.20 42 | 0.76 49 | 0.19 21 | 0.10 42 | 0.76 48 | 0.09 40 | 0.68 38 | 1.44 40 | 0.37 31 | 0.49 76 | 1.87 65 | 0.52 81 | 0.15 23 | 0.20 53 | 0.27 32 | 0.46 56 | 1.63 53 | 0.59 53 |
F-TV-L1 [15] | 45.7 | 0.14 67 | 0.35 54 | 0.17 72 | 0.23 53 | 0.99 56 | 0.22 53 | 0.22 50 | 0.88 56 | 0.21 48 | 0.13 56 | 0.99 55 | 0.13 58 | 0.70 43 | 1.54 47 | 0.51 47 | 0.17 17 | 1.56 54 | 0.14 16 | 0.17 39 | 0.19 48 | 0.25 25 | 0.30 25 | 1.27 40 | 0.32 18 |
Aniso. Huber-L1 [22] | 45.7 | 0.08 28 | 0.29 42 | 0.08 29 | 0.31 62 | 1.02 58 | 0.32 62 | 0.24 57 | 0.75 48 | 0.28 60 | 0.13 56 | 0.75 47 | 0.12 52 | 0.66 36 | 1.31 35 | 0.42 35 | 0.20 36 | 1.16 34 | 0.17 37 | 0.21 66 | 0.21 60 | 0.32 48 | 0.33 38 | 0.94 33 | 0.41 38 |
TriangleFlow [30] | 45.8 | 0.10 47 | 0.29 42 | 0.11 54 | 0.19 32 | 0.81 43 | 0.16 23 | 0.20 42 | 0.70 47 | 0.18 13 | 0.08 14 | 0.61 38 | 0.07 12 | 1.03 67 | 1.80 69 | 0.93 65 | 0.42 75 | 1.36 47 | 0.33 75 | 0.19 52 | 0.24 74 | 0.31 45 | 0.37 43 | 1.19 38 | 0.42 41 |
SIOF [69] | 46.2 | 0.10 47 | 0.23 29 | 0.10 50 | 0.17 21 | 1.08 59 | 0.16 23 | 0.23 54 | 1.12 62 | 0.27 59 | 0.12 51 | 1.29 65 | 0.12 52 | 0.86 58 | 1.70 59 | 0.87 63 | 0.21 38 | 1.34 45 | 0.19 48 | 0.15 23 | 0.17 18 | 0.24 22 | 0.40 50 | 1.66 54 | 0.88 60 |
LocallyOriented [52] | 46.4 | 0.09 36 | 0.37 56 | 0.08 29 | 0.25 60 | 1.14 62 | 0.22 53 | 0.25 60 | 1.23 67 | 0.26 58 | 0.12 51 | 0.66 43 | 0.11 51 | 0.87 59 | 1.60 53 | 0.52 50 | 0.16 12 | 0.96 23 | 0.16 32 | 0.15 23 | 0.20 53 | 0.30 43 | 0.41 52 | 1.34 42 | 0.46 46 |
Deep-Matching [85] | 46.6 | 0.13 64 | 0.37 56 | 0.15 68 | 0.24 57 | 0.94 53 | 0.24 60 | 0.25 60 | 1.02 59 | 0.32 62 | 0.14 59 | 1.05 56 | 0.14 60 | 0.64 33 | 1.42 39 | 0.33 20 | 0.13 4 | 1.35 46 | 0.12 6 | 0.14 14 | 0.16 9 | 0.28 36 | 0.65 69 | 1.82 61 | 1.14 68 |
LDOF [28] | 46.9 | 0.09 36 | 0.38 62 | 0.09 41 | 0.20 42 | 1.19 65 | 0.19 34 | 0.25 60 | 1.01 58 | 0.22 52 | 0.10 42 | 1.96 75 | 0.08 20 | 0.90 60 | 1.76 64 | 0.82 59 | 0.15 9 | 2.20 72 | 0.13 8 | 0.14 14 | 0.18 35 | 0.23 16 | 0.63 66 | 2.20 72 | 0.93 64 |
Rannacher [23] | 47.2 | 0.09 36 | 0.31 49 | 0.09 41 | 0.21 45 | 0.85 47 | 0.20 46 | 0.21 48 | 0.79 51 | 0.21 48 | 0.10 42 | 0.83 50 | 0.10 44 | 0.75 49 | 1.67 57 | 0.45 41 | 0.25 54 | 1.97 67 | 0.19 48 | 0.19 52 | 0.20 53 | 0.37 59 | 0.32 32 | 1.44 44 | 0.35 31 |
Brox et al. [5] | 48.0 | 0.10 47 | 0.37 56 | 0.12 59 | 0.23 53 | 0.97 55 | 0.23 58 | 0.22 50 | 0.84 53 | 0.20 37 | 0.09 27 | 1.09 57 | 0.08 20 | 1.07 72 | 1.79 67 | 1.90 76 | 0.17 17 | 1.92 66 | 0.17 37 | 0.13 9 | 0.18 35 | 0.15 5 | 0.64 67 | 2.09 67 | 0.90 63 |
Second-order prior [8] | 49.0 | 0.09 36 | 0.37 56 | 0.08 29 | 0.19 32 | 1.12 61 | 0.17 25 | 0.22 50 | 1.11 61 | 0.21 48 | 0.07 9 | 1.15 61 | 0.06 5 | 0.85 57 | 1.62 55 | 0.61 54 | 0.31 65 | 2.31 76 | 0.19 48 | 0.24 72 | 0.22 66 | 0.45 75 | 0.35 40 | 1.56 48 | 0.47 47 |
Fusion [6] | 49.1 | 0.09 36 | 0.40 66 | 0.11 54 | 0.17 21 | 0.60 15 | 0.18 30 | 0.19 30 | 0.51 35 | 0.20 37 | 0.09 27 | 1.20 63 | 0.08 20 | 0.93 61 | 1.74 63 | 1.09 68 | 0.29 60 | 1.22 37 | 0.29 68 | 0.25 76 | 0.26 81 | 0.33 52 | 0.50 58 | 1.99 66 | 0.60 54 |
DPOF [18] | 50.4 | 0.12 60 | 0.44 69 | 0.09 41 | 0.24 57 | 0.85 47 | 0.21 48 | 0.22 50 | 0.56 38 | 0.23 53 | 0.15 60 | 0.58 36 | 0.13 58 | 0.69 40 | 1.17 29 | 0.42 35 | 0.23 49 | 1.15 33 | 0.18 43 | 0.29 88 | 0.19 48 | 0.73 87 | 0.45 55 | 1.07 34 | 0.58 52 |
CBF [12] | 51.0 | 0.10 47 | 0.30 44 | 0.10 50 | 0.39 66 | 0.88 52 | 0.46 69 | 0.20 42 | 0.64 42 | 0.24 54 | 0.09 27 | 0.96 54 | 0.08 20 | 0.72 45 | 1.44 40 | 0.48 46 | 0.23 49 | 1.27 40 | 0.20 52 | 0.28 85 | 0.26 81 | 0.52 78 | 0.41 52 | 1.26 39 | 0.56 51 |
CLG-TV [48] | 52.0 | 0.09 36 | 0.30 44 | 0.09 41 | 0.34 64 | 0.94 53 | 0.36 63 | 0.25 60 | 0.77 50 | 0.32 62 | 0.19 64 | 0.89 52 | 0.18 64 | 0.77 51 | 1.59 52 | 0.51 47 | 0.22 43 | 1.65 58 | 0.20 52 | 0.20 62 | 0.22 66 | 0.26 28 | 0.38 47 | 1.27 40 | 0.53 48 |
Local-TV-L1 [65] | 52.1 | 0.13 64 | 0.38 62 | 0.15 68 | 0.38 65 | 1.16 64 | 0.39 65 | 0.33 67 | 1.12 62 | 0.46 66 | 0.19 64 | 1.65 68 | 0.20 66 | 0.64 33 | 1.37 37 | 0.35 26 | 0.18 26 | 1.27 40 | 0.14 16 | 0.16 31 | 0.16 9 | 0.29 39 | 0.78 72 | 1.90 63 | 2.32 77 |
Dynamic MRF [7] | 52.2 | 0.12 60 | 0.37 56 | 0.13 63 | 0.16 17 | 0.77 35 | 0.14 12 | 0.19 30 | 0.81 52 | 0.19 21 | 0.10 42 | 0.90 53 | 0.10 44 | 1.06 71 | 2.10 78 | 0.99 67 | 0.33 69 | 2.77 81 | 0.30 70 | 0.16 31 | 0.17 18 | 0.45 75 | 0.50 58 | 2.78 82 | 1.10 67 |
FastOF [78] | 52.2 | 0.10 47 | 0.26 38 | 0.11 54 | 0.24 57 | 1.15 63 | 0.22 53 | 0.23 54 | 0.96 57 | 0.32 62 | 0.11 47 | 0.58 36 | 0.10 44 | 0.83 54 | 1.48 46 | 1.10 69 | 0.35 73 | 2.05 69 | 0.28 66 | 0.18 42 | 0.17 18 | 0.27 32 | 0.56 61 | 1.62 51 | 0.88 60 |
Bartels [41] | 54.2 | 0.11 57 | 0.30 44 | 0.13 63 | 0.21 45 | 0.61 18 | 0.21 48 | 0.21 48 | 0.59 40 | 0.24 54 | 0.16 62 | 0.56 34 | 0.16 62 | 0.84 55 | 1.78 66 | 0.65 55 | 0.25 54 | 1.70 60 | 0.30 70 | 0.22 70 | 0.23 69 | 0.61 81 | 0.35 40 | 1.85 62 | 0.45 44 |
SuperFlow [89] | 55.2 | 0.09 36 | 0.31 49 | 0.09 41 | 0.33 63 | 0.99 56 | 0.36 63 | 0.26 65 | 1.13 64 | 0.62 68 | 0.18 63 | 1.33 67 | 0.18 64 | 0.97 65 | 1.65 56 | 1.33 72 | 0.17 17 | 1.57 55 | 0.15 25 | 0.19 52 | 0.23 69 | 0.25 25 | 0.62 65 | 1.96 65 | 0.88 60 |
p-harmonic [29] | 56.0 | 0.12 60 | 0.40 66 | 0.12 59 | 0.22 49 | 0.77 35 | 0.21 48 | 0.24 57 | 0.87 55 | 0.24 54 | 0.13 56 | 1.29 65 | 0.12 52 | 0.98 66 | 1.70 59 | 1.56 74 | 0.26 57 | 1.58 56 | 0.24 58 | 0.20 62 | 0.21 60 | 0.27 32 | 0.39 48 | 1.78 58 | 0.76 59 |
Ad-TV-NDC [36] | 60.8 | 0.23 78 | 0.41 68 | 0.33 82 | 0.82 79 | 2.22 79 | 0.89 79 | 0.64 76 | 1.71 72 | 0.84 72 | 0.38 73 | 1.67 70 | 0.47 76 | 0.65 35 | 1.46 44 | 0.36 28 | 0.21 38 | 1.38 49 | 0.18 43 | 0.16 31 | 0.17 18 | 0.26 28 | 1.26 80 | 2.20 72 | 5.65 88 |
Shiralkar [42] | 60.9 | 0.12 60 | 0.48 71 | 0.12 59 | 0.16 17 | 1.38 68 | 0.15 15 | 0.23 54 | 1.06 60 | 0.20 37 | 0.12 51 | 1.66 69 | 0.12 52 | 1.05 69 | 2.01 76 | 0.84 61 | 0.57 80 | 2.44 78 | 0.37 78 | 0.24 72 | 0.21 60 | 0.58 80 | 0.56 61 | 2.58 79 | 0.67 55 |
SegOF [10] | 61.0 | 0.15 68 | 0.50 74 | 0.08 29 | 0.67 77 | 1.75 74 | 0.70 77 | 0.54 72 | 1.51 70 | 0.92 75 | 0.32 71 | 1.10 58 | 0.28 69 | 1.56 82 | 2.23 82 | 2.37 80 | 0.30 63 | 2.13 71 | 0.26 64 | 0.10 2 | 0.18 35 | 0.14 2 | 0.64 67 | 1.53 46 | 0.70 57 |
Learning Flow [11] | 61.3 | 0.10 47 | 0.33 53 | 0.09 41 | 0.25 60 | 1.09 60 | 0.25 61 | 0.25 60 | 1.18 66 | 0.28 60 | 0.15 60 | 1.97 76 | 0.14 60 | 1.43 80 | 2.32 83 | 2.38 82 | 0.22 43 | 2.47 80 | 0.21 56 | 0.18 42 | 0.23 69 | 0.30 43 | 0.43 54 | 2.42 77 | 0.72 58 |
StereoFlow [44] | 61.9 | 0.55 90 | 0.93 85 | 0.67 89 | 1.85 88 | 3.09 89 | 1.58 85 | 1.78 89 | 2.38 88 | 1.80 86 | 1.81 87 | 3.31 81 | 1.74 87 | 1.05 69 | 1.72 62 | 0.87 63 | 0.09 1 | 1.18 35 | 0.08 1 | 0.08 1 | 0.15 1 | 0.09 1 | 0.74 71 | 2.10 68 | 1.44 69 |
BlockOverlap [61] | 64.2 | 0.18 74 | 0.30 44 | 0.16 70 | 0.48 69 | 1.24 66 | 0.51 71 | 0.39 68 | 1.42 69 | 0.58 67 | 0.28 69 | 1.12 60 | 0.30 70 | 0.69 40 | 1.45 43 | 0.68 56 | 0.30 63 | 1.37 48 | 0.24 58 | 0.27 80 | 0.25 76 | 0.69 86 | 0.56 61 | 1.62 51 | 3.07 82 |
Modified CLG [34] | 65.7 | 0.19 75 | 0.65 78 | 0.20 73 | 0.60 76 | 1.43 69 | 0.66 76 | 0.65 77 | 1.85 74 | 1.15 79 | 0.40 75 | 1.70 71 | 0.43 73 | 1.19 75 | 2.00 75 | 2.00 78 | 0.19 32 | 2.26 75 | 0.18 43 | 0.14 14 | 0.19 48 | 0.23 16 | 0.99 75 | 2.47 78 | 1.77 72 |
SPSA-learn [13] | 66.3 | 0.17 70 | 0.50 74 | 0.20 73 | 0.50 72 | 1.62 72 | 0.52 72 | 0.50 71 | 1.67 71 | 0.90 73 | 0.34 72 | 1.83 73 | 0.40 72 | 1.07 72 | 1.79 67 | 1.70 75 | 0.29 60 | 1.99 68 | 0.33 75 | 0.16 31 | 0.18 35 | 0.23 16 | 1.03 78 | 2.32 76 | 1.78 73 |
IAOF2 [51] | 67.7 | 0.13 64 | 0.38 62 | 0.13 63 | 0.39 66 | 1.26 67 | 0.41 66 | 0.31 66 | 1.17 65 | 0.40 65 | 1.38 84 | 3.05 79 | 1.52 84 | 0.96 64 | 1.77 65 | 0.94 66 | 0.53 77 | 1.52 53 | 0.35 77 | 0.25 76 | 0.25 76 | 0.35 55 | 0.56 61 | 1.78 58 | 1.06 66 |
Black & Anandan [4] | 69.2 | 0.19 75 | 0.50 74 | 0.23 79 | 0.49 70 | 1.82 77 | 0.49 70 | 0.58 74 | 1.73 73 | 0.79 70 | 0.39 74 | 1.88 74 | 0.44 75 | 1.09 74 | 1.92 72 | 1.51 73 | 0.33 69 | 2.22 74 | 0.32 72 | 0.19 52 | 0.23 69 | 0.17 10 | 0.82 73 | 2.19 70 | 1.44 69 |
GroupFlow [9] | 69.2 | 0.24 80 | 0.71 81 | 0.28 81 | 0.93 82 | 2.46 83 | 0.89 79 | 0.78 78 | 1.98 78 | 0.91 74 | 0.28 69 | 1.16 62 | 0.30 70 | 1.54 81 | 2.43 84 | 0.83 60 | 0.79 83 | 2.82 82 | 1.03 87 | 0.11 3 | 0.18 35 | 0.16 8 | 1.01 77 | 2.26 74 | 1.45 71 |
HBpMotionGpu [43] | 69.5 | 0.16 69 | 0.39 65 | 0.13 63 | 0.59 74 | 1.84 78 | 0.62 75 | 0.59 75 | 2.13 81 | 1.05 77 | 0.23 68 | 1.11 59 | 0.24 67 | 0.93 61 | 2.01 76 | 1.25 71 | 0.29 60 | 1.49 51 | 0.26 64 | 0.26 79 | 0.25 76 | 0.37 59 | 0.70 70 | 2.30 75 | 2.03 75 |
IAOF [50] | 69.6 | 0.17 70 | 0.48 71 | 0.21 76 | 0.57 73 | 1.44 70 | 0.61 74 | 0.56 73 | 1.87 75 | 0.67 69 | 0.62 77 | 1.78 72 | 0.77 78 | 0.93 61 | 1.70 59 | 0.85 62 | 0.55 78 | 2.21 73 | 0.29 68 | 0.23 71 | 0.20 53 | 0.32 48 | 0.99 75 | 1.91 64 | 2.88 81 |
GraphCuts [14] | 69.8 | 0.17 70 | 0.49 73 | 0.16 70 | 0.49 70 | 1.80 75 | 0.44 68 | 0.39 68 | 1.36 68 | 0.82 71 | 0.19 64 | 1.23 64 | 0.16 62 | 1.03 67 | 1.89 71 | 0.78 58 | 0.91 84 | 1.64 57 | 0.32 72 | 0.25 76 | 0.22 66 | 0.64 83 | 0.94 74 | 2.19 70 | 1.81 74 |
Filter Flow [19] | 69.8 | 0.17 70 | 0.47 70 | 0.13 63 | 0.42 68 | 1.49 71 | 0.42 67 | 0.41 70 | 1.91 76 | 1.24 80 | 0.66 78 | 3.00 78 | 0.71 77 | 1.27 76 | 1.86 70 | 2.34 79 | 0.32 66 | 1.66 59 | 0.25 61 | 0.27 80 | 0.29 84 | 0.34 53 | 0.55 60 | 1.68 55 | 1.02 65 |
2D-CLG [1] | 70.5 | 0.25 81 | 0.96 87 | 0.21 76 | 0.87 80 | 1.80 75 | 0.93 81 | 1.14 83 | 2.15 82 | 1.69 84 | 1.49 86 | 3.45 83 | 1.68 86 | 1.42 79 | 2.11 79 | 2.71 85 | 0.27 59 | 2.44 78 | 0.28 66 | 0.12 5 | 0.16 9 | 0.17 10 | 1.33 81 | 2.76 81 | 2.16 76 |
Nguyen [33] | 73.9 | 0.23 78 | 0.61 77 | 0.22 78 | 1.17 83 | 1.72 73 | 1.26 83 | 0.96 81 | 2.15 82 | 1.37 83 | 1.32 83 | 3.25 80 | 1.54 85 | 1.28 77 | 1.96 73 | 1.90 76 | 0.38 74 | 2.38 77 | 0.40 79 | 0.18 42 | 0.19 48 | 0.24 22 | 1.42 82 | 2.67 80 | 2.35 78 |
SILK [87] | 75.2 | 0.29 82 | 0.73 83 | 0.38 83 | 0.76 78 | 2.24 80 | 0.80 78 | 0.88 80 | 2.12 80 | 1.09 78 | 0.41 76 | 2.08 77 | 0.43 73 | 1.76 85 | 2.45 85 | 3.06 86 | 0.57 80 | 3.06 86 | 0.46 80 | 0.15 23 | 0.18 35 | 0.32 48 | 1.53 83 | 3.07 83 | 3.18 83 |
Horn & Schunck [3] | 76.5 | 0.22 77 | 0.67 79 | 0.26 80 | 0.59 74 | 2.41 82 | 0.55 73 | 0.87 79 | 1.97 77 | 1.01 76 | 0.75 79 | 3.59 85 | 0.83 79 | 1.61 83 | 2.22 81 | 2.62 84 | 0.56 79 | 3.11 87 | 0.55 82 | 0.21 66 | 0.25 76 | 0.17 10 | 1.74 84 | 3.29 84 | 2.65 80 |
TI-DOFE [24] | 79.0 | 0.44 89 | 0.82 84 | 0.62 88 | 1.53 87 | 2.70 85 | 1.64 88 | 1.50 87 | 2.33 87 | 1.81 87 | 1.88 88 | 3.69 86 | 2.14 88 | 1.63 84 | 2.20 80 | 2.37 80 | 0.77 82 | 3.02 85 | 0.81 85 | 0.16 31 | 0.21 60 | 0.16 8 | 2.20 86 | 3.62 86 | 3.53 84 |
Periodicity [86] | 79.3 | 0.31 84 | 1.15 90 | 0.20 73 | 0.90 81 | 3.84 90 | 1.08 82 | 2.44 90 | 2.78 90 | 2.17 90 | 0.95 82 | 5.25 90 | 0.90 80 | 6.03 90 | 11.5 90 | 4.83 90 | 4.75 90 | 8.29 90 | 3.21 90 | 0.12 5 | 0.23 69 | 0.15 5 | 2.20 86 | 7.49 90 | 5.15 87 |
SLK [47] | 81.6 | 0.33 85 | 0.98 89 | 0.43 85 | 1.50 85 | 2.71 86 | 1.60 87 | 1.34 85 | 2.30 86 | 1.77 85 | 1.98 90 | 3.91 88 | 2.22 89 | 2.14 88 | 2.64 87 | 3.49 88 | 0.92 86 | 3.28 88 | 0.96 86 | 0.17 39 | 0.24 74 | 0.24 22 | 2.89 88 | 4.18 87 | 4.97 86 |
Adaptive flow [45] | 81.7 | 0.41 87 | 0.71 81 | 0.44 86 | 1.50 85 | 2.24 80 | 1.58 85 | 1.34 85 | 2.27 85 | 1.90 88 | 0.90 80 | 3.35 82 | 0.99 81 | 1.29 78 | 1.97 74 | 1.24 70 | 0.91 84 | 2.11 70 | 0.65 83 | 0.70 90 | 0.47 90 | 1.88 90 | 1.12 79 | 2.12 69 | 2.48 79 |
PGAM+LK [55] | 85.1 | 0.36 86 | 0.93 85 | 0.54 87 | 1.23 84 | 2.78 87 | 1.35 84 | 1.04 82 | 2.09 79 | 1.26 81 | 1.38 84 | 4.86 89 | 1.25 83 | 1.81 86 | 2.47 86 | 2.51 83 | 1.00 87 | 2.91 84 | 0.79 84 | 0.47 89 | 0.36 89 | 0.86 89 | 2.11 85 | 3.52 85 | 4.01 85 |
FOLKI [16] | 85.6 | 0.29 82 | 0.96 87 | 0.39 84 | 1.93 89 | 3.01 88 | 2.64 89 | 1.30 84 | 2.51 89 | 1.34 82 | 0.92 81 | 3.46 84 | 1.21 82 | 2.13 87 | 2.77 88 | 3.35 87 | 1.03 88 | 4.15 89 | 1.21 88 | 0.24 72 | 0.26 81 | 0.74 88 | 3.53 89 | 4.69 88 | 6.56 89 |
Pyramid LK [2] | 87.1 | 0.41 87 | 0.69 80 | 0.77 90 | 2.66 90 | 2.61 84 | 3.17 90 | 1.58 88 | 2.26 84 | 1.94 89 | 1.95 89 | 3.70 87 | 2.60 90 | 4.10 89 | 5.31 89 | 4.43 89 | 3.35 89 | 2.88 83 | 2.91 89 | 0.27 80 | 0.29 84 | 0.61 81 | 6.29 90 | 7.34 89 | 7.54 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |