Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R1.0 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 4.9 | 0.82 8 | 4.87 9 | 0.37 10 | 1.75 5 | 12.1 5 | 0.53 5 | 2.22 2 | 7.90 2 | 0.57 6 | 1.07 2 | 9.10 3 | 0.17 2 | 9.77 1 | 16.5 1 | 2.56 2 | 4.53 2 | 15.6 2 | 3.00 3 | 0.00 1 | 0.02 22 | 0.00 1 | 5.99 6 | 19.5 16 | 3.94 2 |
OFLADF [82] | 5.6 | 0.82 8 | 4.86 8 | 0.38 12 | 1.74 4 | 11.1 4 | 0.62 11 | 2.08 1 | 7.42 1 | 0.57 6 | 1.61 6 | 12.0 7 | 0.48 9 | 11.2 6 | 19.0 6 | 3.96 4 | 6.81 10 | 19.8 6 | 4.79 9 | 0.00 1 | 0.00 1 | 0.00 1 | 5.80 3 | 15.6 1 | 9.76 10 |
MDP-Flow2 [70] | 8.2 | 0.77 3 | 4.59 4 | 0.31 4 | 1.46 2 | 9.56 1 | 0.39 1 | 2.59 4 | 9.00 5 | 0.91 15 | 2.48 30 | 17.7 31 | 0.70 30 | 14.1 11 | 23.0 10 | 8.20 15 | 5.27 3 | 18.2 4 | 4.66 8 | 0.00 1 | 0.00 1 | 0.00 1 | 5.91 5 | 16.7 3 | 8.80 5 |
NN-field [73] | 8.2 | 0.89 20 | 5.29 21 | 0.40 18 | 2.06 9 | 14.1 13 | 0.62 11 | 2.49 3 | 8.79 4 | 0.68 9 | 0.99 1 | 8.66 2 | 0.09 1 | 9.99 2 | 16.8 2 | 2.51 1 | 6.53 9 | 11.2 1 | 2.42 2 | 0.01 23 | 0.02 22 | 0.00 1 | 5.86 4 | 19.6 17 | 2.84 1 |
Correlation Flow [79] | 10.8 | 0.81 6 | 4.81 7 | 0.22 2 | 2.03 7 | 13.0 7 | 0.42 2 | 5.14 35 | 15.7 34 | 0.55 4 | 1.09 3 | 8.36 1 | 0.28 5 | 16.6 26 | 26.1 26 | 10.8 29 | 7.92 15 | 22.7 12 | 4.18 7 | 0.00 1 | 0.02 22 | 0.00 1 | 5.54 1 | 17.2 4 | 5.00 3 |
Epistemic [84] | 15.5 | 0.98 35 | 5.81 41 | 0.37 10 | 1.59 3 | 10.7 3 | 0.53 5 | 2.84 7 | 9.86 7 | 0.85 13 | 1.94 12 | 13.3 9 | 0.54 13 | 15.3 21 | 24.9 20 | 10.5 28 | 6.83 11 | 26.2 30 | 5.50 16 | 0.03 27 | 0.00 1 | 0.32 33 | 6.69 9 | 18.5 9 | 9.59 8 |
TC/T-Flow [80] | 15.9 | 0.71 1 | 4.20 1 | 0.40 18 | 2.67 23 | 15.4 19 | 0.77 15 | 3.30 9 | 11.2 8 | 0.44 2 | 2.33 24 | 15.9 26 | 0.60 19 | 14.8 15 | 23.6 13 | 8.02 13 | 3.70 1 | 15.8 3 | 2.27 1 | 0.13 34 | 0.02 22 | 1.23 47 | 7.85 24 | 21.7 24 | 10.9 19 |
Layers++ [37] | 16.4 | 0.91 25 | 5.39 26 | 0.43 29 | 2.18 12 | 13.9 12 | 0.96 18 | 2.73 6 | 9.43 6 | 1.40 22 | 1.70 8 | 10.5 4 | 0.56 14 | 10.2 3 | 16.8 2 | 6.50 9 | 9.09 26 | 22.7 12 | 5.92 27 | 0.21 38 | 0.02 22 | 0.69 37 | 6.88 11 | 17.6 6 | 10.9 19 |
FC-2Layers-FF [77] | 17.0 | 0.87 16 | 5.16 17 | 0.42 27 | 2.70 24 | 17.8 26 | 1.20 24 | 2.59 4 | 8.73 3 | 1.39 21 | 1.88 11 | 13.3 9 | 0.50 10 | 11.1 5 | 18.0 5 | 6.07 8 | 9.16 28 | 21.3 8 | 5.89 25 | 0.04 29 | 0.02 22 | 0.22 31 | 7.48 18 | 19.4 14 | 11.1 24 |
Direct ZNCC [66] | 17.5 | 0.89 20 | 5.31 23 | 0.21 1 | 2.53 21 | 15.8 23 | 1.17 22 | 5.32 37 | 16.6 36 | 0.56 5 | 1.40 4 | 10.5 4 | 0.33 6 | 19.4 38 | 29.5 35 | 14.6 41 | 8.20 18 | 24.0 21 | 4.89 11 | 0.00 1 | 0.02 22 | 0.00 1 | 6.53 8 | 20.4 19 | 5.52 4 |
ADF [67] | 17.8 | 0.78 4 | 4.42 2 | 0.40 18 | 2.01 6 | 13.1 9 | 0.87 17 | 4.38 29 | 14.5 27 | 1.64 29 | 2.83 38 | 17.9 32 | 0.71 32 | 15.1 18 | 24.6 19 | 7.86 11 | 9.90 43 | 24.4 22 | 5.77 21 | 0.00 1 | 0.02 22 | 0.00 1 | 6.41 7 | 18.1 7 | 9.87 12 |
LME [72] | 18.5 | 0.95 32 | 5.67 36 | 0.38 12 | 1.45 1 | 9.68 2 | 0.43 3 | 5.19 36 | 13.3 18 | 6.57 61 | 2.44 29 | 18.3 33 | 0.68 27 | 15.2 20 | 24.4 17 | 10.2 25 | 6.17 7 | 21.9 9 | 5.18 14 | 0.00 1 | 0.02 22 | 0.00 1 | 7.05 13 | 19.3 12 | 10.2 14 |
ALD-Flow [68] | 19.6 | 0.79 5 | 4.72 6 | 0.38 12 | 2.44 20 | 13.5 10 | 0.80 16 | 4.33 25 | 14.7 29 | 0.88 14 | 2.92 40 | 19.4 35 | 0.82 36 | 17.5 29 | 28.1 30 | 10.0 23 | 5.61 4 | 24.7 26 | 3.10 4 | 0.00 1 | 0.00 1 | 0.00 1 | 9.09 32 | 26.3 36 | 11.9 36 |
nLayers [57] | 20.0 | 0.88 17 | 5.25 20 | 0.44 32 | 2.79 26 | 15.6 22 | 1.47 31 | 4.34 26 | 14.4 25 | 2.33 40 | 1.54 5 | 11.6 6 | 0.52 12 | 10.4 4 | 17.1 4 | 5.51 7 | 8.89 23 | 19.3 5 | 5.79 23 | 0.31 49 | 0.00 1 | 1.16 45 | 7.27 15 | 19.3 12 | 11.3 30 |
SCR [74] | 21.6 | 0.91 25 | 5.41 28 | 0.40 18 | 3.02 31 | 19.6 34 | 1.19 23 | 3.73 12 | 12.5 11 | 1.96 33 | 1.74 9 | 12.7 8 | 0.44 7 | 14.5 14 | 23.6 13 | 8.55 17 | 9.24 30 | 23.0 15 | 5.85 24 | 0.36 53 | 0.02 22 | 1.48 56 | 7.02 12 | 18.7 10 | 9.99 13 |
IROF++ [58] | 22.5 | 0.96 33 | 5.70 40 | 0.44 32 | 3.00 30 | 19.4 32 | 1.37 28 | 3.90 16 | 12.8 13 | 1.96 33 | 2.36 27 | 15.8 25 | 0.69 29 | 14.1 11 | 23.0 10 | 8.22 16 | 9.14 27 | 25.0 27 | 6.07 35 | 0.00 1 | 0.02 22 | 0.00 1 | 7.35 16 | 20.3 18 | 10.8 18 |
TC-Flow [46] | 22.6 | 0.75 2 | 4.45 3 | 0.38 12 | 2.04 8 | 12.6 6 | 0.70 13 | 4.23 23 | 14.4 25 | 0.77 10 | 2.56 32 | 17.5 30 | 0.63 20 | 17.1 28 | 27.8 29 | 9.45 20 | 5.73 5 | 25.6 29 | 3.12 5 | 0.22 40 | 0.02 22 | 2.41 63 | 10.1 37 | 25.9 34 | 15.4 46 |
Efficient-NL [60] | 22.6 | 0.93 29 | 5.47 31 | 0.39 16 | 2.76 25 | 18.0 28 | 1.11 21 | 4.12 22 | 13.3 18 | 1.15 18 | 2.15 17 | 14.1 13 | 0.66 22 | 13.0 7 | 21.3 7 | 7.16 10 | 10.6 51 | 23.4 18 | 6.41 41 | 0.26 44 | 0.02 22 | 1.13 43 | 7.35 16 | 17.4 5 | 10.9 19 |
Levin3 [90] | 22.7 | 0.88 17 | 5.23 19 | 0.39 16 | 3.26 38 | 19.8 35 | 1.43 29 | 3.73 12 | 12.3 10 | 1.35 20 | 2.28 22 | 15.0 21 | 0.67 25 | 13.6 9 | 22.3 9 | 7.98 12 | 9.26 31 | 22.2 11 | 5.91 26 | 0.59 61 | 0.02 22 | 2.07 61 | 7.05 13 | 18.7 10 | 10.3 15 |
FESL [75] | 23.0 | 0.83 11 | 4.91 12 | 0.36 9 | 3.90 49 | 21.6 47 | 1.75 41 | 4.06 20 | 13.4 20 | 1.61 26 | 2.02 14 | 14.1 13 | 0.56 14 | 13.3 8 | 21.7 8 | 8.08 14 | 9.19 29 | 22.0 10 | 6.25 37 | 0.34 52 | 0.02 22 | 1.16 45 | 7.51 19 | 18.3 8 | 11.0 23 |
PMF [76] | 25.1 | 1.08 43 | 6.23 45 | 0.35 8 | 2.33 13 | 14.8 15 | 0.60 9 | 3.87 15 | 13.6 21 | 0.62 8 | 2.29 23 | 14.4 15 | 0.44 7 | 14.0 10 | 23.3 12 | 3.86 3 | 9.55 35 | 28.3 39 | 6.63 45 | 0.89 70 | 0.79 83 | 3.74 73 | 5.66 2 | 15.8 2 | 8.92 6 |
Sparse-NonSparse [56] | 25.2 | 0.88 17 | 5.21 18 | 0.40 18 | 3.16 34 | 19.8 35 | 1.53 34 | 3.90 16 | 12.9 14 | 2.00 36 | 2.18 19 | 15.2 23 | 0.66 22 | 15.6 22 | 25.4 23 | 10.1 24 | 9.38 33 | 23.7 19 | 5.97 31 | 0.31 49 | 0.00 1 | 1.28 48 | 7.74 20 | 20.9 21 | 11.2 28 |
Ramp [62] | 25.4 | 0.90 22 | 5.36 24 | 0.41 25 | 3.14 33 | 20.0 37 | 1.52 33 | 3.86 14 | 12.9 14 | 1.93 31 | 2.01 13 | 14.5 16 | 0.59 17 | 15.1 18 | 24.4 17 | 9.67 21 | 9.44 34 | 22.9 14 | 5.95 29 | 0.29 47 | 0.02 22 | 1.38 52 | 7.83 23 | 20.9 21 | 11.5 32 |
NL-TV-NCC [25] | 26.4 | 0.96 33 | 5.68 37 | 0.22 2 | 2.93 28 | 18.4 30 | 0.59 8 | 4.37 28 | 14.6 28 | 0.47 3 | 1.63 7 | 14.6 17 | 0.17 2 | 18.6 34 | 29.8 36 | 9.76 22 | 11.8 60 | 31.2 55 | 7.70 60 | 0.12 32 | 0.00 1 | 0.30 32 | 9.40 34 | 26.0 35 | 9.75 9 |
LSM [39] | 26.7 | 0.86 15 | 5.13 16 | 0.40 18 | 3.22 35 | 20.3 39 | 1.54 35 | 4.08 21 | 13.6 21 | 1.93 31 | 2.09 16 | 14.9 20 | 0.63 20 | 15.6 22 | 25.3 22 | 10.2 25 | 9.58 36 | 24.6 23 | 5.95 29 | 0.30 48 | 0.02 22 | 1.43 53 | 7.97 25 | 21.7 24 | 11.1 24 |
OFH [38] | 27.6 | 0.81 6 | 4.70 5 | 0.31 4 | 2.96 29 | 17.3 25 | 1.20 24 | 6.37 41 | 19.7 42 | 1.51 24 | 2.92 40 | 20.6 42 | 0.91 38 | 20.7 48 | 32.4 49 | 14.2 40 | 6.39 8 | 31.5 56 | 3.74 6 | 0.00 1 | 0.00 1 | 0.00 1 | 11.0 42 | 33.0 52 | 12.8 38 |
Sparse Occlusion [54] | 27.8 | 0.90 22 | 5.06 15 | 0.46 36 | 2.35 15 | 14.9 17 | 1.01 19 | 4.83 33 | 15.7 34 | 1.09 17 | 2.38 28 | 17.2 28 | 0.66 22 | 16.7 27 | 26.9 27 | 8.75 18 | 7.98 16 | 24.6 23 | 5.42 15 | 0.60 62 | 0.61 80 | 0.84 39 | 8.41 30 | 22.7 27 | 10.5 16 |
Classic+NL [31] | 28.2 | 0.91 25 | 5.38 25 | 0.45 35 | 3.22 35 | 20.4 40 | 1.49 32 | 3.97 18 | 13.1 17 | 1.97 35 | 2.33 24 | 15.0 21 | 0.68 27 | 14.9 16 | 24.0 16 | 10.2 25 | 9.83 40 | 23.9 20 | 6.24 36 | 0.33 51 | 0.02 22 | 1.28 48 | 7.80 22 | 21.2 23 | 11.1 24 |
MDP-Flow [26] | 28.2 | 0.84 12 | 5.01 13 | 0.47 37 | 2.37 16 | 13.0 7 | 1.76 42 | 4.04 19 | 14.0 23 | 2.72 46 | 2.70 35 | 21.0 43 | 0.98 41 | 18.0 32 | 28.5 32 | 13.1 38 | 8.58 22 | 26.6 31 | 5.71 19 | 0.00 1 | 0.02 22 | 0.00 1 | 12.4 49 | 31.9 48 | 16.2 49 |
EP-PM [83] | 28.4 | 1.16 51 | 5.61 34 | 0.33 7 | 2.33 13 | 15.4 19 | 0.60 9 | 4.28 24 | 14.7 29 | 0.32 1 | 2.20 20 | 14.7 18 | 0.59 17 | 14.3 13 | 23.6 13 | 5.47 6 | 12.2 61 | 29.9 48 | 7.04 51 | 2.28 81 | 0.03 58 | 6.80 77 | 6.72 10 | 19.4 14 | 8.96 7 |
CostFilter [40] | 30.5 | 1.14 48 | 6.62 51 | 0.40 18 | 2.38 17 | 14.8 15 | 0.53 5 | 3.58 10 | 12.5 11 | 0.84 11 | 2.62 33 | 17.3 29 | 0.51 11 | 14.9 16 | 24.9 20 | 4.14 5 | 9.99 47 | 29.2 46 | 6.06 34 | 1.38 76 | 0.81 84 | 6.01 76 | 8.00 26 | 23.2 31 | 9.84 11 |
Complementary OF [21] | 30.8 | 0.91 25 | 5.39 26 | 0.43 29 | 2.42 19 | 15.2 18 | 0.74 14 | 4.36 27 | 15.5 33 | 1.16 19 | 2.63 34 | 19.5 36 | 0.76 33 | 22.5 55 | 33.0 52 | 20.1 55 | 9.92 45 | 28.5 41 | 4.80 10 | 0.00 1 | 0.00 1 | 0.00 1 | 12.6 50 | 35.6 62 | 16.9 52 |
IROF-TV [53] | 32.8 | 1.10 46 | 6.24 46 | 0.57 52 | 3.29 41 | 21.5 45 | 1.72 40 | 4.40 30 | 14.2 24 | 1.87 30 | 3.04 43 | 21.7 47 | 1.11 43 | 16.2 24 | 26.0 24 | 11.3 30 | 9.60 38 | 32.4 60 | 5.72 20 | 0.00 1 | 0.02 22 | 0.00 1 | 8.00 26 | 22.4 26 | 11.2 28 |
SimpleFlow [49] | 33.1 | 0.94 30 | 5.57 33 | 0.44 32 | 3.52 43 | 21.7 48 | 1.79 44 | 5.82 40 | 17.6 38 | 2.36 41 | 2.55 31 | 16.5 27 | 0.81 35 | 16.3 25 | 26.0 24 | 11.8 32 | 10.3 49 | 23.1 16 | 6.33 39 | 0.24 42 | 0.00 1 | 0.81 38 | 8.33 28 | 22.7 27 | 11.5 32 |
ACK-Prior [27] | 33.2 | 0.82 8 | 4.87 9 | 0.32 6 | 2.12 11 | 13.7 11 | 0.43 3 | 3.68 11 | 12.9 14 | 0.92 16 | 1.77 10 | 14.0 12 | 0.19 4 | 19.5 40 | 28.2 31 | 16.7 52 | 12.3 63 | 29.1 45 | 7.52 59 | 2.44 82 | 0.30 71 | 8.47 83 | 13.9 55 | 30.2 46 | 18.0 54 |
COFM [59] | 33.2 | 1.15 49 | 6.80 56 | 0.58 54 | 2.62 22 | 15.8 23 | 1.25 27 | 5.68 39 | 18.2 39 | 2.12 37 | 2.20 20 | 13.5 11 | 0.58 16 | 19.6 41 | 31.0 43 | 15.7 48 | 9.91 44 | 23.3 17 | 6.03 33 | 0.81 67 | 0.00 1 | 1.43 53 | 7.76 21 | 20.7 20 | 10.6 17 |
TV-L1-MCT [64] | 35.1 | 0.90 22 | 5.30 22 | 0.41 25 | 3.73 46 | 22.1 50 | 1.79 44 | 4.61 32 | 15.3 31 | 1.63 28 | 2.16 18 | 14.7 18 | 0.67 25 | 17.6 30 | 27.1 28 | 15.2 44 | 11.0 55 | 25.0 27 | 6.58 44 | 0.36 53 | 0.02 22 | 2.46 65 | 9.73 35 | 23.0 29 | 16.2 49 |
Occlusion-TV-L1 [63] | 36.6 | 0.98 35 | 5.50 32 | 0.48 38 | 3.25 37 | 19.5 33 | 1.82 47 | 7.36 50 | 21.2 48 | 2.44 43 | 2.73 36 | 20.4 41 | 0.93 39 | 20.5 45 | 32.1 47 | 15.5 46 | 8.22 19 | 28.1 37 | 6.69 47 | 0.00 1 | 0.00 1 | 0.00 1 | 13.1 53 | 33.5 55 | 15.9 48 |
DPOF [18] | 37.5 | 1.11 47 | 6.56 50 | 0.53 44 | 4.51 54 | 21.0 42 | 2.42 52 | 3.25 8 | 11.3 9 | 0.84 11 | 2.03 15 | 15.3 24 | 0.70 30 | 17.8 31 | 28.8 33 | 9.36 19 | 11.4 59 | 26.9 32 | 6.26 38 | 4.21 86 | 0.02 22 | 10.5 84 | 10.2 38 | 26.7 37 | 11.8 34 |
CRTflow [88] | 40.3 | 1.02 40 | 5.69 38 | 0.58 54 | 3.12 32 | 18.1 29 | 1.46 30 | 6.89 45 | 20.9 47 | 2.40 42 | 3.38 49 | 22.2 48 | 1.42 49 | 19.7 42 | 31.3 44 | 12.3 33 | 11.0 55 | 35.9 69 | 10.1 71 | 0.00 1 | 0.00 1 | 0.00 1 | 12.0 48 | 33.6 56 | 14.7 44 |
ComplOF-FED-GPU [35] | 40.7 | 0.85 13 | 5.04 14 | 0.42 27 | 3.90 49 | 21.4 43 | 1.78 43 | 4.90 34 | 16.8 37 | 1.41 23 | 3.18 45 | 21.1 45 | 1.03 42 | 21.6 53 | 33.8 58 | 15.4 45 | 10.8 53 | 34.7 67 | 5.93 28 | 0.12 32 | 0.02 22 | 1.43 53 | 11.9 46 | 34.2 59 | 15.3 45 |
TCOF [71] | 41.4 | 1.00 37 | 5.63 35 | 0.59 57 | 3.53 44 | 21.5 45 | 1.69 39 | 7.64 52 | 22.0 51 | 3.79 52 | 2.80 37 | 19.9 39 | 0.77 34 | 21.1 51 | 32.7 51 | 13.9 39 | 7.79 14 | 20.7 7 | 5.77 21 | 0.92 71 | 0.03 58 | 3.23 69 | 8.40 29 | 23.2 31 | 11.4 31 |
Adaptive [20] | 42.2 | 1.05 41 | 6.01 44 | 0.48 38 | 3.27 39 | 20.1 38 | 1.79 44 | 7.11 48 | 20.1 43 | 1.62 27 | 3.29 47 | 22.4 49 | 1.15 45 | 18.8 36 | 29.8 36 | 12.6 35 | 10.6 51 | 28.4 40 | 6.72 49 | 0.57 60 | 0.71 82 | 0.96 41 | 8.64 31 | 23.1 30 | 10.9 19 |
TV-L1-improved [17] | 43.5 | 0.94 30 | 5.45 29 | 0.52 43 | 2.91 27 | 17.8 26 | 1.58 36 | 7.00 46 | 20.2 45 | 2.24 39 | 3.00 42 | 21.5 46 | 1.16 46 | 20.6 46 | 32.3 48 | 15.0 42 | 12.2 61 | 34.2 65 | 7.87 61 | 0.19 36 | 0.30 71 | 0.49 35 | 10.7 40 | 29.7 45 | 12.8 38 |
Aniso. Huber-L1 [22] | 44.6 | 1.06 42 | 5.69 38 | 0.65 59 | 5.24 56 | 25.4 58 | 3.29 57 | 8.19 54 | 21.4 50 | 4.09 55 | 3.10 44 | 21.0 43 | 0.97 40 | 18.5 33 | 29.1 34 | 12.6 35 | 9.08 25 | 27.0 34 | 5.56 17 | 0.68 64 | 0.08 64 | 2.93 68 | 9.25 33 | 24.1 33 | 11.8 34 |
Deep-Matching [85] | 46.4 | 1.36 62 | 6.51 49 | 0.66 60 | 5.77 59 | 24.0 54 | 3.89 62 | 9.93 61 | 25.3 59 | 8.32 62 | 5.65 64 | 25.6 56 | 3.70 68 | 19.0 37 | 30.8 41 | 11.5 31 | 7.34 12 | 29.0 44 | 4.96 13 | 0.00 1 | 0.02 22 | 0.00 1 | 17.5 64 | 36.3 63 | 27.1 68 |
Classic++ [32] | 46.4 | 1.00 37 | 5.92 43 | 0.56 50 | 3.28 40 | 19.2 31 | 1.87 48 | 6.88 44 | 20.7 46 | 3.38 48 | 3.41 51 | 23.6 52 | 1.30 47 | 20.8 49 | 33.2 54 | 15.0 42 | 10.0 48 | 31.8 58 | 6.69 47 | 0.66 63 | 0.02 22 | 2.59 66 | 11.3 44 | 29.5 42 | 13.5 42 |
CBF [12] | 46.5 | 0.85 13 | 4.89 11 | 0.43 29 | 4.99 55 | 22.3 52 | 4.63 64 | 6.60 42 | 19.2 40 | 4.08 54 | 3.61 52 | 24.5 54 | 1.49 50 | 20.0 43 | 30.9 42 | 16.2 50 | 9.67 39 | 27.4 36 | 5.64 18 | 2.65 83 | 0.37 73 | 6.97 78 | 11.5 45 | 28.4 41 | 16.9 52 |
Bartels [41] | 46.7 | 1.28 60 | 7.59 63 | 0.50 40 | 2.39 18 | 15.4 19 | 1.04 20 | 5.52 38 | 19.2 40 | 2.54 45 | 2.83 38 | 19.9 39 | 1.30 47 | 22.7 57 | 34.1 60 | 20.4 56 | 9.92 45 | 30.5 49 | 6.93 50 | 1.88 80 | 0.02 22 | 12.3 85 | 12.7 51 | 31.9 48 | 16.4 51 |
LocallyOriented [52] | 47.5 | 1.78 72 | 9.64 73 | 0.77 66 | 6.11 63 | 28.2 65 | 3.79 60 | 10.9 62 | 28.0 67 | 5.52 59 | 3.28 46 | 19.5 36 | 1.55 51 | 22.8 58 | 33.9 59 | 17.6 53 | 9.84 42 | 24.6 23 | 6.63 45 | 0.00 1 | 0.00 1 | 0.00 1 | 11.9 46 | 29.6 44 | 15.7 47 |
SIOF [69] | 48.8 | 1.24 55 | 6.63 52 | 0.51 42 | 5.26 57 | 26.2 59 | 3.22 56 | 11.5 64 | 26.1 60 | 12.3 64 | 4.49 57 | 27.4 63 | 2.29 56 | 22.8 58 | 33.3 55 | 23.4 64 | 8.56 21 | 28.8 43 | 7.15 54 | 0.00 1 | 0.02 22 | 0.00 1 | 13.6 54 | 32.1 50 | 23.6 64 |
CLG-TV [48] | 48.9 | 1.01 39 | 5.46 30 | 0.50 40 | 4.16 52 | 23.5 53 | 2.40 51 | 7.52 51 | 21.2 48 | 2.51 44 | 3.33 48 | 22.8 50 | 1.14 44 | 20.9 50 | 32.4 49 | 15.6 47 | 8.94 24 | 31.7 57 | 6.35 40 | 1.27 75 | 1.18 86 | 3.55 71 | 11.1 43 | 28.2 40 | 13.5 42 |
TriangleFlow [30] | 49.5 | 1.19 52 | 6.73 55 | 0.53 44 | 3.88 48 | 21.8 49 | 1.64 38 | 6.61 43 | 20.1 43 | 1.59 25 | 2.35 26 | 19.3 34 | 0.89 37 | 25.6 68 | 37.3 71 | 23.5 65 | 13.4 71 | 30.5 49 | 8.48 66 | 0.81 67 | 0.17 66 | 1.33 51 | 10.7 40 | 28.1 39 | 13.1 41 |
Fusion [6] | 49.7 | 1.15 49 | 6.83 57 | 0.71 64 | 2.10 10 | 14.5 14 | 1.23 26 | 4.58 31 | 15.4 32 | 3.60 50 | 3.73 54 | 27.2 61 | 2.38 57 | 23.9 62 | 33.7 56 | 26.4 69 | 8.36 20 | 27.3 35 | 7.11 53 | 1.00 72 | 0.64 81 | 2.66 67 | 14.5 58 | 34.0 58 | 18.7 56 |
F-TV-L1 [15] | 49.8 | 1.22 53 | 6.63 52 | 0.53 44 | 5.86 61 | 24.8 56 | 3.51 59 | 9.25 57 | 23.4 56 | 3.44 49 | 3.91 55 | 24.9 55 | 1.61 52 | 20.3 44 | 31.5 45 | 16.2 50 | 11.3 58 | 30.9 53 | 7.40 58 | 0.15 35 | 0.47 77 | 0.17 28 | 9.88 36 | 27.6 38 | 11.1 24 |
Rannacher [23] | 50.0 | 1.09 45 | 6.27 47 | 0.54 48 | 3.77 47 | 22.1 50 | 2.27 49 | 7.89 53 | 22.4 53 | 3.34 47 | 3.67 53 | 23.5 51 | 1.61 52 | 21.1 51 | 33.1 53 | 15.8 49 | 12.9 68 | 35.4 68 | 7.98 62 | 0.43 55 | 0.02 22 | 1.63 57 | 10.5 39 | 29.5 42 | 12.8 38 |
p-harmonic [29] | 51.0 | 1.08 43 | 6.28 48 | 0.55 49 | 3.66 45 | 20.5 41 | 2.48 54 | 8.22 55 | 23.0 55 | 3.92 53 | 5.04 60 | 28.4 65 | 3.51 65 | 24.8 66 | 34.1 60 | 30.1 72 | 7.78 13 | 32.3 59 | 6.54 42 | 0.19 36 | 0.44 76 | 0.00 1 | 14.2 57 | 33.0 52 | 21.8 58 |
Local-TV-L1 [65] | 51.3 | 1.57 64 | 7.45 61 | 0.67 62 | 7.93 67 | 28.0 64 | 5.97 68 | 12.9 67 | 26.6 62 | 12.2 63 | 6.04 69 | 31.1 69 | 3.55 67 | 18.7 35 | 29.9 39 | 12.9 37 | 9.33 32 | 28.1 37 | 5.97 31 | 0.00 1 | 0.02 22 | 0.00 1 | 21.0 72 | 37.7 67 | 37.5 75 |
Dynamic MRF [7] | 54.0 | 1.26 57 | 7.42 59 | 0.57 52 | 3.39 42 | 21.4 43 | 1.58 36 | 7.00 46 | 22.5 54 | 2.22 38 | 3.40 50 | 24.1 53 | 1.69 54 | 25.9 70 | 37.6 72 | 24.8 67 | 14.4 75 | 41.5 78 | 9.85 70 | 0.09 31 | 0.00 1 | 0.96 41 | 19.2 69 | 39.4 72 | 25.5 66 |
Brox et al. [5] | 55.3 | 1.22 53 | 6.66 54 | 0.70 63 | 4.15 51 | 24.3 55 | 2.39 50 | 7.21 49 | 22.1 52 | 4.18 56 | 4.91 59 | 26.3 58 | 2.65 58 | 26.2 73 | 35.7 68 | 31.4 74 | 10.5 50 | 33.4 63 | 7.34 57 | 0.01 23 | 0.13 65 | 0.00 1 | 17.1 63 | 39.1 71 | 23.0 62 |
FastOF [78] | 56.2 | 1.46 63 | 7.48 62 | 0.61 58 | 6.41 64 | 27.5 62 | 3.98 63 | 11.2 63 | 24.4 57 | 13.5 65 | 4.51 58 | 19.8 38 | 3.29 62 | 22.2 54 | 31.5 45 | 26.6 70 | 12.5 65 | 37.5 71 | 10.3 72 | 0.22 40 | 0.00 1 | 0.54 36 | 16.5 59 | 35.2 60 | 22.6 60 |
SuperFlow [89] | 56.4 | 1.26 57 | 5.91 42 | 0.66 60 | 6.58 65 | 24.8 56 | 5.70 67 | 12.7 66 | 26.7 63 | 20.1 68 | 5.60 63 | 28.6 66 | 3.33 63 | 24.6 65 | 33.7 56 | 31.7 75 | 8.09 17 | 30.8 52 | 7.19 55 | 0.02 25 | 0.07 62 | 0.02 26 | 16.6 60 | 37.3 65 | 22.5 59 |
Second-order prior [8] | 59.5 | 1.24 55 | 6.93 58 | 0.58 54 | 5.26 57 | 27.0 61 | 3.34 58 | 9.68 59 | 26.8 64 | 5.39 58 | 4.25 56 | 26.1 57 | 2.25 55 | 22.5 55 | 34.4 62 | 19.0 54 | 12.9 68 | 41.2 77 | 8.26 65 | 1.14 74 | 0.07 62 | 2.41 63 | 12.7 51 | 32.5 51 | 18.2 55 |
SegOF [10] | 61.7 | 1.62 67 | 9.24 72 | 1.14 74 | 14.8 77 | 38.8 77 | 14.3 77 | 17.8 71 | 33.2 70 | 22.3 72 | 6.57 70 | 27.5 64 | 4.43 71 | 32.5 81 | 41.8 81 | 43.4 84 | 14.1 74 | 38.0 73 | 10.5 73 | 0.00 1 | 0.00 1 | 0.00 1 | 14.0 56 | 33.7 57 | 12.6 37 |
Shiralkar [42] | 62.5 | 1.27 59 | 7.43 60 | 0.53 44 | 5.83 60 | 30.1 68 | 2.93 55 | 9.62 58 | 26.2 61 | 3.70 51 | 5.11 61 | 30.7 68 | 3.08 60 | 25.7 69 | 39.1 76 | 22.5 62 | 17.9 77 | 45.5 80 | 9.73 69 | 1.80 78 | 0.00 1 | 8.23 82 | 18.4 67 | 44.9 78 | 19.9 57 |
Ad-TV-NDC [36] | 63.5 | 3.59 81 | 8.26 68 | 6.67 86 | 21.3 80 | 38.0 75 | 22.4 81 | 19.7 74 | 33.6 71 | 21.8 71 | 13.5 76 | 33.9 73 | 15.0 76 | 19.4 38 | 30.6 40 | 12.5 34 | 9.58 36 | 28.6 42 | 6.54 42 | 0.21 38 | 0.37 73 | 0.17 28 | 28.1 80 | 43.2 77 | 47.4 84 |
Learning Flow [11] | 63.6 | 1.35 61 | 7.83 65 | 0.56 50 | 4.48 53 | 26.8 60 | 2.43 53 | 9.85 60 | 27.1 65 | 5.06 57 | 6.65 71 | 33.5 72 | 4.13 69 | 29.9 78 | 40.0 78 | 34.1 78 | 12.8 66 | 38.5 74 | 8.86 68 | 0.28 46 | 0.29 70 | 1.13 43 | 17.0 62 | 37.6 66 | 22.8 61 |
LDOF [28] | 63.8 | 1.59 66 | 8.06 66 | 0.97 69 | 6.08 62 | 27.9 63 | 3.79 60 | 8.98 56 | 25.2 58 | 6.05 60 | 5.90 67 | 33.2 71 | 3.14 61 | 23.5 60 | 34.5 63 | 22.7 63 | 9.83 40 | 34.0 64 | 7.30 56 | 0.86 69 | 1.28 87 | 3.67 72 | 16.7 61 | 39.7 74 | 23.5 63 |
StereoFlow [44] | 64.2 | 7.67 88 | 21.8 85 | 3.86 83 | 51.5 90 | 74.0 90 | 46.2 87 | 43.7 90 | 63.5 90 | 36.8 86 | 51.6 89 | 79.4 90 | 47.5 88 | 26.1 71 | 38.0 73 | 21.1 58 | 5.83 6 | 26.9 32 | 4.93 12 | 0.00 1 | 0.02 22 | 0.00 1 | 20.7 71 | 38.1 69 | 29.7 69 |
SPSA-learn [13] | 64.8 | 1.77 70 | 7.72 64 | 0.90 67 | 11.0 71 | 33.2 70 | 9.40 73 | 17.3 70 | 34.2 72 | 22.7 74 | 11.0 73 | 32.2 70 | 10.9 73 | 26.1 71 | 34.9 65 | 31.8 77 | 12.8 66 | 34.2 65 | 11.9 76 | 0.00 1 | 0.03 58 | 0.00 1 | 25.5 78 | 39.4 72 | 39.6 77 |
HBpMotionGpu [43] | 65.4 | 2.47 76 | 11.8 77 | 1.09 72 | 11.4 73 | 35.3 73 | 10.0 75 | 20.3 77 | 38.5 77 | 26.3 78 | 5.67 65 | 26.6 59 | 3.51 65 | 24.1 63 | 34.8 64 | 26.1 68 | 10.9 54 | 30.7 51 | 7.04 51 | 0.27 45 | 0.05 61 | 0.89 40 | 19.3 70 | 37.1 64 | 32.8 71 |
BlockOverlap [61] | 65.5 | 1.73 68 | 8.32 69 | 1.07 71 | 8.43 68 | 28.3 66 | 7.39 69 | 14.3 68 | 29.4 68 | 16.3 67 | 6.01 68 | 26.7 60 | 4.24 70 | 20.6 46 | 29.8 36 | 20.6 57 | 12.4 64 | 29.4 47 | 8.20 64 | 3.91 85 | 0.92 85 | 16.5 87 | 19.1 68 | 31.7 47 | 36.0 73 |
Filter Flow [19] | 65.5 | 1.97 74 | 10.2 75 | 1.14 74 | 8.79 69 | 33.9 72 | 5.66 65 | 18.8 72 | 35.7 73 | 26.2 77 | 21.9 79 | 42.4 77 | 22.0 79 | 27.9 76 | 36.8 70 | 35.0 79 | 13.2 70 | 32.6 61 | 8.11 63 | 0.05 30 | 0.02 22 | 0.37 34 | 17.5 64 | 33.0 52 | 25.2 65 |
GraphCuts [14] | 68.7 | 1.57 64 | 8.32 69 | 0.92 68 | 12.3 75 | 39.3 78 | 8.40 70 | 15.2 69 | 31.3 69 | 23.1 75 | 5.40 62 | 28.8 67 | 2.88 59 | 25.4 67 | 38.0 73 | 21.1 58 | 24.5 86 | 31.1 54 | 14.4 80 | 1.86 79 | 0.02 22 | 7.91 81 | 23.9 74 | 41.6 76 | 37.4 74 |
IAOF [50] | 68.8 | 1.77 70 | 8.80 71 | 0.98 70 | 11.2 72 | 32.5 69 | 9.32 72 | 19.8 75 | 35.7 73 | 20.2 69 | 17.5 77 | 37.6 74 | 19.8 77 | 23.7 61 | 35.0 66 | 22.3 61 | 18.1 80 | 40.2 75 | 10.9 74 | 0.56 58 | 0.02 22 | 2.17 62 | 24.8 76 | 37.8 68 | 43.9 79 |
IAOF2 [51] | 70.2 | 1.85 73 | 9.64 73 | 1.13 73 | 7.56 66 | 29.4 67 | 5.66 65 | 12.2 65 | 27.5 66 | 15.7 66 | 32.6 85 | 43.3 79 | 38.7 85 | 24.3 64 | 35.0 66 | 23.9 66 | 17.9 77 | 33.1 62 | 13.0 77 | 1.11 73 | 0.25 69 | 4.83 74 | 17.8 66 | 35.5 61 | 25.9 67 |
Black & Anandan [4] | 71.2 | 1.75 69 | 8.07 67 | 0.73 65 | 11.6 74 | 36.6 74 | 8.94 71 | 18.9 73 | 36.4 75 | 20.3 70 | 12.4 75 | 40.5 76 | 12.0 75 | 26.3 74 | 36.2 69 | 30.5 73 | 13.4 71 | 37.3 70 | 11.0 75 | 0.75 66 | 0.42 75 | 1.90 60 | 21.4 73 | 38.6 70 | 32.5 70 |
Nguyen [33] | 72.9 | 2.73 77 | 11.0 76 | 1.16 77 | 33.4 84 | 38.0 75 | 43.1 86 | 24.6 81 | 41.9 78 | 32.1 83 | 28.7 83 | 46.5 80 | 32.2 84 | 29.8 77 | 39.8 77 | 35.5 80 | 13.9 73 | 40.4 76 | 13.0 77 | 0.03 27 | 0.02 22 | 0.20 30 | 31.6 81 | 46.3 80 | 50.5 85 |
Modified CLG [34] | 73.0 | 2.46 75 | 12.2 78 | 1.37 78 | 10.5 70 | 33.6 71 | 9.99 74 | 20.2 76 | 37.9 76 | 27.9 80 | 9.52 72 | 38.0 75 | 7.95 72 | 27.6 75 | 38.6 75 | 31.7 75 | 11.2 57 | 37.6 72 | 8.53 67 | 0.70 65 | 0.24 68 | 3.33 70 | 24.7 75 | 45.8 79 | 38.5 76 |
2D-CLG [1] | 74.5 | 6.98 85 | 23.0 87 | 3.54 82 | 20.1 79 | 40.7 79 | 21.4 79 | 26.6 83 | 44.0 79 | 36.7 84 | 34.7 86 | 55.1 84 | 39.7 86 | 31.1 80 | 41.5 80 | 38.2 81 | 15.0 76 | 42.0 79 | 13.6 79 | 0.02 25 | 0.02 22 | 0.12 27 | 31.7 82 | 51.0 83 | 44.9 80 |
GroupFlow [9] | 75.5 | 3.39 79 | 16.8 83 | 1.37 78 | 23.0 81 | 51.6 84 | 21.5 80 | 20.7 78 | 45.1 82 | 22.3 72 | 5.67 65 | 27.3 62 | 3.50 64 | 34.6 83 | 51.5 87 | 22.0 60 | 22.4 83 | 47.9 82 | 25.4 87 | 0.55 57 | 0.47 77 | 1.70 58 | 25.2 77 | 47.9 81 | 33.5 72 |
SILK [87] | 76.7 | 3.45 80 | 15.8 82 | 2.61 81 | 19.0 78 | 44.9 80 | 19.5 78 | 23.5 80 | 44.1 80 | 26.6 79 | 12.0 74 | 42.7 78 | 11.1 74 | 35.3 84 | 46.3 84 | 44.8 85 | 18.0 79 | 49.4 83 | 14.5 81 | 1.53 77 | 0.00 1 | 5.00 75 | 32.1 83 | 50.8 82 | 47.1 83 |
Horn & Schunck [3] | 78.0 | 3.02 78 | 12.7 79 | 1.15 76 | 14.5 76 | 45.9 81 | 11.1 76 | 22.6 79 | 44.4 81 | 25.2 76 | 21.6 78 | 47.3 81 | 22.5 80 | 34.0 82 | 43.8 82 | 43.1 83 | 19.6 81 | 51.5 85 | 18.6 83 | 0.56 58 | 0.22 67 | 1.77 59 | 34.9 85 | 55.9 84 | 46.4 82 |
TI-DOFE [24] | 79.6 | 7.50 86 | 18.0 84 | 10.6 87 | 41.8 88 | 54.1 87 | 49.7 88 | 31.9 87 | 54.7 89 | 39.7 88 | 41.8 88 | 61.8 87 | 48.6 89 | 35.5 85 | 45.7 83 | 45.0 86 | 21.9 82 | 52.6 86 | 21.7 85 | 0.25 43 | 0.00 1 | 1.31 50 | 43.7 87 | 61.4 87 | 58.6 87 |
Periodicity [86] | 81.7 | 6.73 84 | 29.6 90 | 3.88 84 | 24.0 82 | 52.2 85 | 25.5 82 | 36.6 89 | 47.1 84 | 40.1 89 | 23.0 80 | 60.3 86 | 20.8 78 | 53.1 90 | 69.7 90 | 49.1 88 | 36.9 89 | 67.0 90 | 33.4 89 | 0.54 56 | 0.02 22 | 7.78 80 | 34.7 84 | 64.9 89 | 46.1 81 |
Adaptive flow [45] | 82.1 | 4.48 82 | 15.3 81 | 1.90 80 | 37.1 86 | 47.9 82 | 40.5 84 | 28.1 84 | 45.1 82 | 37.9 87 | 23.3 81 | 53.8 83 | 24.8 81 | 30.1 79 | 41.4 79 | 28.5 71 | 22.6 84 | 46.3 81 | 15.6 82 | 17.3 90 | 5.51 90 | 58.1 90 | 26.0 79 | 41.5 75 | 40.5 78 |
SLK [47] | 83.7 | 8.22 90 | 24.0 89 | 12.3 88 | 41.4 87 | 57.7 89 | 50.8 89 | 29.7 86 | 53.3 88 | 36.7 84 | 52.4 90 | 57.7 85 | 61.8 90 | 42.6 88 | 52.1 88 | 54.9 89 | 23.9 85 | 54.4 88 | 24.4 86 | 3.11 84 | 0.00 1 | 7.07 79 | 45.8 89 | 61.9 88 | 61.9 88 |
PGAM+LK [55] | 85.5 | 7.83 89 | 22.3 86 | 13.7 89 | 29.1 83 | 54.2 88 | 31.3 83 | 25.6 82 | 48.1 86 | 29.9 82 | 29.7 84 | 68.4 89 | 28.3 83 | 38.2 86 | 50.8 86 | 43.0 82 | 25.1 87 | 56.4 89 | 21.4 84 | 6.54 89 | 0.57 79 | 19.1 88 | 38.5 86 | 60.8 86 | 51.7 86 |
FOLKI [16] | 85.8 | 5.65 83 | 23.4 88 | 4.60 85 | 35.1 85 | 52.9 86 | 42.6 85 | 28.3 85 | 52.7 87 | 29.6 81 | 24.1 82 | 53.7 82 | 27.7 82 | 38.9 87 | 49.3 85 | 47.8 87 | 25.3 88 | 54.3 87 | 27.7 88 | 5.73 88 | 1.38 88 | 20.1 89 | 43.9 88 | 60.5 85 | 62.2 89 |
Pyramid LK [2] | 87.8 | 7.59 87 | 14.5 80 | 15.4 90 | 47.0 89 | 50.5 83 | 58.8 90 | 32.1 88 | 47.7 85 | 42.4 90 | 36.1 87 | 62.9 88 | 41.1 87 | 48.9 89 | 61.1 89 | 55.0 90 | 41.7 90 | 50.3 84 | 40.3 90 | 4.64 87 | 2.07 89 | 16.3 86 | 56.9 90 | 71.9 90 | 77.2 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |