Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A95 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 6.7 | 0.19 3 | 0.97 7 | 0.10 2 | 0.47 12 | 2.00 2 | 0.36 15 | 0.45 3 | 1.58 2 | 0.31 11 | 0.23 7 | 1.93 1 | 0.15 11 | 1.80 2 | 2.62 1 | 0.67 1 | 0.92 2 | 3.05 1 | 0.52 4 | 0.34 15 | 0.38 38 | 0.40 10 | 1.32 5 | 3.74 3 | 0.78 2 |
MDP-Flow2 [70] | 9.3 | 0.20 5 | 0.91 3 | 0.14 13 | 0.37 1 | 2.11 3 | 0.28 3 | 0.40 2 | 1.89 6 | 0.27 4 | 0.21 5 | 4.76 31 | 0.13 3 | 3.73 18 | 4.67 17 | 2.57 19 | 1.07 3 | 4.13 4 | 0.80 8 | 0.36 18 | 0.34 15 | 0.49 22 | 1.27 4 | 4.18 9 | 2.27 7 |
OFLADF [82] | 9.7 | 0.18 1 | 0.97 7 | 0.12 6 | 0.44 7 | 2.29 4 | 0.35 14 | 0.35 1 | 1.67 3 | 0.27 4 | 0.18 3 | 7.02 70 | 0.13 3 | 3.14 10 | 4.38 9 | 0.79 3 | 1.49 10 | 3.88 3 | 0.82 9 | 0.35 16 | 0.30 3 | 0.47 14 | 1.21 3 | 4.04 8 | 4.87 21 |
NN-field [73] | 10.8 | 0.21 8 | 1.05 19 | 0.10 2 | 0.55 19 | 1.97 1 | 0.41 22 | 0.45 3 | 1.81 4 | 0.31 11 | 0.20 4 | 2.01 2 | 0.13 3 | 1.78 1 | 2.62 1 | 0.67 1 | 5.40 60 | 3.52 2 | 0.33 1 | 0.39 30 | 0.37 33 | 0.48 18 | 1.33 6 | 4.03 7 | 0.65 1 |
Epistemic [84] | 16.2 | 0.20 5 | 1.12 37 | 0.14 13 | 0.42 5 | 2.56 9 | 0.36 15 | 0.50 7 | 2.09 10 | 0.30 9 | 0.25 13 | 4.26 22 | 0.15 11 | 4.34 30 | 5.53 49 | 3.20 29 | 1.39 9 | 4.77 16 | 1.21 15 | 0.36 18 | 0.34 15 | 0.49 22 | 1.46 7 | 4.63 13 | 3.43 10 |
Correlation Flow [79] | 18.7 | 0.24 20 | 0.96 5 | 0.13 10 | 0.44 7 | 2.72 12 | 0.28 3 | 1.13 36 | 7.59 65 | 0.26 2 | 0.25 13 | 2.18 3 | 0.18 19 | 4.34 30 | 5.12 28 | 3.88 34 | 1.60 11 | 4.99 28 | 0.78 7 | 0.43 42 | 0.35 23 | 0.61 42 | 1.14 1 | 3.93 4 | 1.00 3 |
TC/T-Flow [80] | 20.2 | 0.22 13 | 0.89 2 | 0.09 1 | 0.50 14 | 3.52 36 | 0.29 5 | 0.57 8 | 4.47 23 | 0.28 6 | 0.25 13 | 6.68 60 | 0.13 3 | 4.01 26 | 5.07 26 | 2.83 22 | 0.72 1 | 4.54 8 | 0.53 5 | 0.44 46 | 0.38 38 | 0.80 66 | 1.79 15 | 5.27 26 | 5.05 23 |
Layers++ [37] | 20.8 | 0.22 13 | 1.09 31 | 0.19 28 | 0.57 23 | 2.79 14 | 0.48 29 | 0.49 6 | 2.07 8 | 0.40 23 | 0.16 2 | 3.00 5 | 0.12 2 | 2.69 3 | 3.92 3 | 1.41 9 | 2.67 34 | 4.82 23 | 2.11 41 | 0.48 52 | 0.39 45 | 0.56 30 | 1.48 8 | 4.57 12 | 6.44 54 |
LME [72] | 21.0 | 0.19 3 | 1.18 49 | 0.14 13 | 0.40 3 | 2.36 5 | 0.31 9 | 1.12 35 | 4.78 26 | 2.16 63 | 0.28 21 | 4.22 21 | 0.18 19 | 3.83 20 | 4.64 15 | 3.19 28 | 1.35 6 | 5.14 30 | 1.20 14 | 0.39 30 | 0.36 28 | 0.51 24 | 1.74 14 | 4.69 14 | 4.21 14 |
IROF++ [58] | 22.0 | 0.23 16 | 1.11 35 | 0.15 19 | 0.69 38 | 3.07 19 | 0.55 44 | 0.71 16 | 3.60 15 | 0.49 40 | 0.31 26 | 3.72 16 | 0.21 34 | 3.45 12 | 4.49 10 | 1.91 14 | 2.27 25 | 4.87 25 | 1.85 31 | 0.28 7 | 0.35 23 | 0.35 6 | 1.84 18 | 4.90 20 | 4.73 18 |
FC-2Layers-FF [77] | 22.2 | 0.21 8 | 1.06 21 | 0.15 19 | 0.62 27 | 2.91 16 | 0.49 31 | 0.47 5 | 2.01 7 | 0.41 24 | 0.24 10 | 5.40 43 | 0.17 15 | 2.71 4 | 4.34 8 | 1.18 7 | 3.69 43 | 4.62 9 | 2.29 49 | 0.52 62 | 0.38 38 | 0.66 50 | 1.94 21 | 3.95 5 | 3.89 11 |
ADF [67] | 22.4 | 0.23 16 | 0.88 1 | 0.14 13 | 0.45 10 | 3.59 44 | 0.36 15 | 0.75 22 | 4.78 26 | 0.34 15 | 0.25 13 | 7.34 72 | 0.14 9 | 4.16 28 | 5.18 30 | 2.90 23 | 2.92 35 | 4.25 5 | 2.15 44 | 0.37 25 | 0.33 11 | 0.51 24 | 1.58 11 | 4.85 17 | 5.45 28 |
nLayers [57] | 25.1 | 0.18 1 | 1.13 40 | 0.11 4 | 0.71 42 | 2.43 6 | 0.60 49 | 0.79 27 | 3.30 13 | 0.59 45 | 0.14 1 | 7.94 85 | 0.11 1 | 3.02 7 | 4.52 11 | 1.30 8 | 2.95 36 | 4.35 6 | 2.38 58 | 0.41 36 | 0.40 52 | 0.45 12 | 1.73 13 | 5.23 25 | 5.32 25 |
Efficient-NL [60] | 25.2 | 0.21 8 | 1.07 26 | 0.13 10 | 0.68 37 | 2.73 13 | 0.54 40 | 0.76 23 | 5.11 33 | 0.42 26 | 0.25 13 | 4.36 23 | 0.17 15 | 3.55 13 | 4.65 16 | 1.75 12 | 13.6 76 | 4.78 18 | 2.28 46 | 0.43 42 | 0.38 38 | 0.64 45 | 1.85 19 | 3.96 6 | 2.86 8 |
PMF [76] | 25.2 | 0.24 20 | 1.20 52 | 0.12 6 | 0.55 19 | 2.53 7 | 0.36 15 | 0.73 21 | 2.07 8 | 0.33 13 | 0.23 7 | 7.68 81 | 0.16 14 | 2.88 5 | 4.18 5 | 0.81 4 | 2.19 23 | 4.86 24 | 1.77 28 | 0.57 72 | 0.69 88 | 0.88 72 | 1.16 2 | 3.64 1 | 4.75 19 |
TC-Flow [46] | 25.4 | 0.21 8 | 0.92 4 | 0.13 10 | 0.37 1 | 3.53 37 | 0.25 1 | 0.69 15 | 5.91 38 | 0.25 1 | 0.25 13 | 6.61 59 | 0.13 3 | 4.42 34 | 5.37 35 | 3.69 32 | 1.20 5 | 5.45 34 | 0.50 3 | 0.39 30 | 0.37 33 | 0.88 72 | 2.91 36 | 6.70 43 | 6.54 63 |
ALD-Flow [68] | 26.0 | 0.20 5 | 0.96 5 | 0.11 4 | 0.43 6 | 3.49 34 | 0.32 11 | 0.76 23 | 5.29 35 | 0.29 8 | 0.21 5 | 6.51 58 | 0.13 3 | 4.62 42 | 5.54 52 | 4.19 47 | 1.14 4 | 5.03 29 | 0.47 2 | 0.42 40 | 0.37 33 | 0.80 66 | 2.48 34 | 6.03 34 | 6.25 44 |
FESL [75] | 26.1 | 0.21 8 | 0.99 11 | 0.12 6 | 0.85 51 | 3.07 19 | 0.65 54 | 0.71 16 | 4.19 20 | 0.46 34 | 0.24 10 | 3.77 17 | 0.18 19 | 3.59 15 | 4.69 18 | 1.76 13 | 3.92 50 | 4.81 22 | 2.23 45 | 0.43 42 | 0.43 61 | 0.63 44 | 1.97 22 | 4.79 16 | 3.97 13 |
Direct ZNCC [66] | 26.3 | 0.25 26 | 1.07 26 | 0.14 13 | 0.46 11 | 3.75 52 | 0.30 8 | 1.22 38 | 7.36 60 | 0.26 2 | 0.25 13 | 2.96 4 | 0.17 15 | 4.78 51 | 5.38 36 | 4.65 58 | 2.14 21 | 5.64 36 | 0.95 11 | 0.44 46 | 0.36 28 | 0.62 43 | 1.63 12 | 4.86 18 | 1.18 4 |
Levin3 [90] | 27.9 | 0.22 13 | 1.04 17 | 0.14 13 | 0.70 40 | 3.55 38 | 0.54 40 | 0.67 11 | 4.18 19 | 0.41 24 | 0.32 28 | 3.48 7 | 0.19 26 | 3.39 11 | 4.55 12 | 1.61 10 | 4.06 53 | 4.76 15 | 2.07 40 | 0.55 67 | 0.45 64 | 0.68 53 | 1.79 15 | 4.96 21 | 5.72 32 |
LSM [39] | 28.2 | 0.24 20 | 1.02 16 | 0.19 28 | 0.65 32 | 3.08 22 | 0.52 37 | 0.72 18 | 3.97 17 | 0.43 28 | 0.33 32 | 3.60 11 | 0.20 28 | 3.70 17 | 4.69 18 | 2.45 17 | 3.76 46 | 4.77 16 | 2.29 49 | 0.51 60 | 0.34 15 | 0.66 50 | 2.17 30 | 5.39 29 | 6.15 42 |
EP-PM [83] | 28.5 | 0.39 59 | 1.06 21 | 0.21 45 | 0.56 22 | 2.53 7 | 0.34 13 | 0.83 30 | 4.71 24 | 0.38 20 | 0.43 43 | 4.42 24 | 0.22 40 | 3.08 9 | 4.30 7 | 1.11 6 | 2.35 32 | 4.79 20 | 1.58 24 | 0.75 80 | 0.38 38 | 1.07 76 | 1.49 9 | 4.37 10 | 5.32 25 |
IROF-TV [53] | 28.8 | 0.25 26 | 1.23 54 | 0.19 28 | 0.71 42 | 3.17 26 | 0.55 44 | 0.79 27 | 4.71 24 | 0.45 31 | 0.39 41 | 4.60 26 | 0.23 42 | 3.97 24 | 4.88 23 | 2.57 19 | 1.89 19 | 6.80 58 | 1.56 23 | 0.27 3 | 0.32 7 | 0.34 5 | 2.08 28 | 5.76 33 | 5.97 39 |
Sparse-NonSparse [56] | 29.0 | 0.24 20 | 1.06 21 | 0.20 39 | 0.65 32 | 3.13 24 | 0.54 40 | 0.68 13 | 4.08 18 | 0.43 28 | 0.34 34 | 3.65 14 | 0.21 34 | 3.81 19 | 4.81 21 | 2.51 18 | 3.72 44 | 4.72 14 | 2.29 49 | 0.50 56 | 0.33 11 | 0.65 48 | 2.04 26 | 5.64 31 | 6.16 43 |
SCR [74] | 29.1 | 0.23 16 | 1.14 42 | 0.15 19 | 0.70 40 | 3.21 27 | 0.55 44 | 0.63 9 | 3.27 12 | 0.42 26 | 0.29 22 | 3.52 10 | 0.21 34 | 3.60 16 | 4.61 14 | 1.97 15 | 3.74 45 | 4.67 11 | 2.30 53 | 0.51 60 | 0.40 52 | 0.65 48 | 2.03 25 | 5.10 23 | 5.87 36 |
OFH [38] | 29.2 | 0.31 40 | 0.97 7 | 0.23 54 | 0.49 13 | 3.57 40 | 0.29 5 | 1.68 44 | 6.87 51 | 0.33 13 | 0.31 26 | 7.52 78 | 0.15 11 | 4.62 42 | 5.44 41 | 4.26 50 | 1.36 8 | 6.26 50 | 0.68 6 | 0.30 8 | 0.33 11 | 0.39 9 | 2.93 37 | 6.20 36 | 4.92 22 |
Ramp [62] | 29.2 | 0.25 26 | 1.07 26 | 0.19 28 | 0.66 35 | 3.12 23 | 0.53 39 | 0.67 11 | 3.70 16 | 0.44 30 | 0.32 28 | 3.63 13 | 0.20 28 | 3.95 23 | 4.83 22 | 2.60 21 | 3.80 48 | 4.78 18 | 2.29 49 | 0.50 56 | 0.38 38 | 0.69 57 | 2.10 29 | 4.69 14 | 5.27 24 |
COFM [59] | 29.3 | 0.23 16 | 1.28 61 | 0.16 22 | 0.55 19 | 3.02 18 | 0.40 21 | 1.27 39 | 4.99 30 | 0.48 39 | 0.23 7 | 7.47 75 | 0.14 9 | 4.36 32 | 5.28 34 | 4.20 48 | 1.75 14 | 4.98 27 | 1.37 18 | 0.49 53 | 0.35 23 | 0.72 61 | 1.50 10 | 4.54 11 | 4.36 16 |
NL-TV-NCC [25] | 29.4 | 0.28 35 | 1.12 37 | 0.16 22 | 0.63 29 | 3.28 28 | 0.39 20 | 0.78 26 | 6.29 42 | 0.30 9 | 0.30 24 | 3.60 11 | 0.21 34 | 3.97 24 | 4.88 23 | 3.23 30 | 5.50 61 | 5.64 36 | 1.75 27 | 0.47 51 | 0.34 15 | 0.70 58 | 2.25 31 | 5.36 27 | 2.04 6 |
CostFilter [40] | 29.4 | 0.28 35 | 1.18 49 | 0.19 28 | 0.54 17 | 2.61 11 | 0.36 15 | 0.72 18 | 1.86 5 | 0.38 20 | 0.29 22 | 6.22 53 | 0.20 28 | 3.00 6 | 4.16 4 | 0.87 5 | 2.17 22 | 4.96 26 | 1.39 19 | 0.63 77 | 0.63 87 | 1.07 76 | 1.86 20 | 5.47 30 | 5.74 33 |
TV-L1-MCT [64] | 29.5 | 0.24 20 | 1.09 31 | 0.20 39 | 0.78 49 | 3.45 32 | 0.62 52 | 0.86 31 | 5.03 31 | 0.46 34 | 0.27 20 | 3.48 7 | 0.20 28 | 3.92 22 | 4.94 25 | 3.06 26 | 4.00 52 | 4.80 21 | 2.05 37 | 0.33 12 | 0.32 7 | 0.64 45 | 2.47 33 | 5.20 24 | 5.59 30 |
MDP-Flow [26] | 30.2 | 0.28 35 | 1.00 13 | 0.22 50 | 0.54 17 | 2.56 9 | 0.49 31 | 0.72 18 | 2.40 11 | 0.56 44 | 0.38 40 | 5.14 36 | 0.24 44 | 3.85 21 | 4.78 20 | 2.95 24 | 2.29 27 | 4.68 13 | 1.83 29 | 0.37 25 | 0.37 33 | 0.47 14 | 4.44 54 | 8.33 61 | 6.47 56 |
Classic+NL [31] | 30.7 | 0.25 26 | 1.09 31 | 0.20 39 | 0.66 35 | 3.15 25 | 0.51 34 | 0.68 13 | 4.28 21 | 0.46 34 | 0.34 34 | 3.70 15 | 0.22 40 | 3.55 13 | 4.59 13 | 2.29 16 | 3.76 46 | 4.67 11 | 2.30 53 | 0.52 62 | 0.39 45 | 0.66 50 | 2.04 26 | 4.96 21 | 5.83 34 |
Sparse Occlusion [54] | 31.8 | 0.24 20 | 1.01 15 | 0.18 27 | 0.62 27 | 2.87 15 | 0.54 40 | 0.93 33 | 6.27 41 | 0.38 20 | 0.30 24 | 5.16 37 | 0.21 34 | 4.14 27 | 5.21 31 | 3.08 27 | 1.70 12 | 4.62 9 | 1.31 16 | 0.60 76 | 0.62 85 | 0.68 53 | 2.46 32 | 5.70 32 | 5.56 29 |
Complementary OF [21] | 36.0 | 0.32 43 | 1.04 17 | 0.22 50 | 0.41 4 | 3.36 30 | 0.26 2 | 0.82 29 | 4.95 28 | 0.37 18 | 0.32 28 | 6.71 61 | 0.21 34 | 5.20 75 | 5.66 65 | 5.72 83 | 24.5 90 | 5.71 38 | 0.91 10 | 0.33 12 | 0.32 7 | 0.55 29 | 3.10 40 | 6.16 35 | 5.88 37 |
Occlusion-TV-L1 [63] | 36.1 | 0.27 32 | 1.08 30 | 0.16 22 | 0.61 26 | 3.58 43 | 0.47 27 | 2.20 52 | 7.85 74 | 0.45 31 | 0.32 28 | 5.18 39 | 0.17 15 | 4.60 40 | 5.43 39 | 3.95 38 | 2.33 31 | 6.22 49 | 2.14 43 | 0.27 3 | 0.34 15 | 0.28 2 | 5.04 59 | 8.77 69 | 6.49 59 |
ACK-Prior [27] | 36.9 | 0.27 32 | 0.98 10 | 0.20 39 | 0.44 7 | 2.96 17 | 0.29 5 | 0.63 9 | 4.42 22 | 0.28 6 | 0.24 10 | 5.07 35 | 0.18 19 | 4.46 35 | 5.22 32 | 4.13 44 | 23.3 89 | 6.26 50 | 3.16 72 | 0.83 85 | 0.57 81 | 1.12 80 | 4.06 47 | 6.70 43 | 4.42 17 |
TCOF [71] | 37.2 | 0.34 49 | 1.06 21 | 0.19 28 | 0.71 42 | 3.50 35 | 0.51 34 | 1.88 46 | 7.86 77 | 0.87 54 | 0.64 51 | 4.88 32 | 0.59 62 | 4.59 39 | 5.39 38 | 4.34 52 | 2.28 26 | 4.41 7 | 2.05 37 | 0.38 28 | 0.39 45 | 0.57 34 | 1.97 22 | 4.87 19 | 4.27 15 |
DPOF [18] | 37.6 | 0.43 65 | 1.12 37 | 0.19 28 | 0.90 53 | 3.38 31 | 0.56 47 | 0.76 23 | 1.50 1 | 0.55 43 | 0.46 46 | 3.50 9 | 0.36 52 | 3.07 8 | 4.29 6 | 1.64 11 | 9.19 71 | 7.16 62 | 2.59 63 | 0.93 86 | 0.40 52 | 1.36 84 | 1.82 17 | 3.73 2 | 1.68 5 |
ComplOF-FED-GPU [35] | 37.8 | 0.32 43 | 1.00 13 | 0.19 28 | 0.69 38 | 3.71 49 | 0.31 9 | 0.98 34 | 5.10 32 | 0.36 16 | 0.35 36 | 6.81 64 | 0.18 19 | 4.60 40 | 5.43 39 | 4.17 46 | 12.7 75 | 6.78 57 | 1.36 17 | 0.44 46 | 0.36 28 | 0.82 68 | 3.18 41 | 6.56 41 | 5.43 27 |
Adaptive [20] | 41.7 | 0.26 30 | 1.15 43 | 0.12 6 | 0.65 32 | 3.63 45 | 0.50 33 | 2.48 56 | 8.26 88 | 0.45 31 | 0.36 38 | 4.65 28 | 0.19 26 | 4.57 38 | 5.38 36 | 4.08 43 | 3.92 50 | 6.03 46 | 1.94 32 | 0.46 50 | 0.47 71 | 0.58 37 | 3.22 42 | 7.41 47 | 6.43 53 |
CRTflow [88] | 41.8 | 0.37 55 | 1.06 21 | 0.19 28 | 0.63 29 | 3.57 40 | 0.44 25 | 1.71 45 | 7.76 69 | 0.50 41 | 0.49 48 | 7.44 73 | 0.20 28 | 4.77 49 | 5.70 70 | 4.00 40 | 1.84 15 | 8.40 82 | 1.58 24 | 0.36 18 | 0.33 11 | 0.56 30 | 4.13 50 | 8.33 61 | 6.37 51 |
SimpleFlow [49] | 42.2 | 0.27 32 | 1.10 34 | 0.22 50 | 0.76 48 | 3.63 45 | 0.62 52 | 1.38 40 | 7.03 56 | 0.53 42 | 0.42 42 | 3.90 19 | 0.25 45 | 4.16 28 | 5.08 27 | 2.98 25 | 20.7 87 | 6.30 53 | 2.31 55 | 0.41 36 | 0.40 52 | 0.59 38 | 2.00 24 | 5.38 28 | 6.47 56 |
SIOF [69] | 44.8 | 0.26 30 | 1.29 63 | 0.16 22 | 1.09 58 | 3.92 61 | 0.47 27 | 3.40 62 | 6.92 55 | 2.58 67 | 0.77 56 | 5.51 44 | 0.39 53 | 4.87 58 | 5.54 52 | 5.00 63 | 1.88 16 | 5.61 35 | 1.83 29 | 0.39 30 | 0.39 45 | 0.47 14 | 3.64 44 | 6.69 42 | 6.33 50 |
Aniso. Huber-L1 [22] | 45.9 | 0.31 40 | 1.11 35 | 0.20 39 | 1.03 56 | 3.73 51 | 0.83 63 | 2.25 54 | 7.75 68 | 0.96 56 | 0.67 53 | 4.18 20 | 0.43 56 | 4.63 44 | 5.48 43 | 3.89 37 | 1.88 16 | 5.24 31 | 1.43 20 | 0.52 62 | 0.45 64 | 0.84 70 | 3.00 38 | 6.93 45 | 6.07 40 |
Deep-Matching [85] | 47.7 | 0.40 61 | 1.15 43 | 0.30 65 | 1.22 59 | 4.05 62 | 0.77 61 | 2.17 51 | 6.61 47 | 1.70 61 | 1.10 62 | 7.66 80 | 0.46 57 | 4.51 36 | 5.48 43 | 3.69 32 | 1.88 16 | 6.20 47 | 0.98 13 | 0.33 12 | 0.30 3 | 0.59 38 | 5.22 63 | 8.48 64 | 6.68 68 |
LocallyOriented [52] | 48.6 | 0.41 62 | 1.38 73 | 0.19 28 | 1.23 60 | 4.25 64 | 0.76 60 | 3.57 67 | 7.52 64 | 1.10 59 | 0.52 49 | 3.81 18 | 0.28 46 | 4.88 61 | 5.47 42 | 4.35 53 | 7.73 67 | 7.52 70 | 1.49 21 | 0.35 16 | 0.35 23 | 0.56 30 | 4.49 56 | 6.47 40 | 5.95 38 |
Classic++ [32] | 48.7 | 0.28 35 | 1.16 47 | 0.21 45 | 0.64 31 | 3.88 57 | 0.52 37 | 1.96 49 | 6.43 43 | 0.61 46 | 0.36 38 | 6.46 57 | 0.20 28 | 4.72 46 | 5.63 61 | 3.88 34 | 2.31 29 | 7.38 66 | 2.28 46 | 0.56 68 | 0.45 64 | 0.70 58 | 5.09 60 | 8.15 59 | 6.57 65 |
TriangleFlow [30] | 49.2 | 0.32 43 | 1.23 54 | 0.23 54 | 0.72 45 | 4.53 69 | 0.42 24 | 1.60 42 | 7.09 57 | 0.36 16 | 0.33 32 | 4.75 30 | 0.18 19 | 5.39 83 | 5.96 85 | 6.08 85 | 5.72 62 | 5.96 43 | 1.95 35 | 0.49 53 | 0.62 85 | 0.68 53 | 3.00 38 | 6.41 38 | 5.85 35 |
SegOF [10] | 49.8 | 0.56 75 | 1.27 60 | 0.41 72 | 1.94 70 | 3.85 56 | 1.77 74 | 3.44 64 | 6.14 40 | 1.96 62 | 1.26 68 | 3.34 6 | 0.92 71 | 4.83 54 | 5.24 33 | 4.79 61 | 16.6 81 | 7.57 72 | 4.51 81 | 0.21 1 | 0.32 7 | 0.32 4 | 2.87 35 | 6.41 38 | 3.00 9 |
F-TV-L1 [15] | 50.5 | 0.38 56 | 1.23 54 | 0.30 65 | 1.32 63 | 4.46 68 | 0.67 55 | 3.59 68 | 7.35 59 | 0.70 48 | 0.69 55 | 7.63 79 | 0.29 50 | 4.74 47 | 5.54 52 | 4.30 51 | 3.49 42 | 6.97 60 | 1.94 32 | 0.38 28 | 0.43 61 | 0.42 11 | 3.65 45 | 7.59 51 | 3.92 12 |
TV-L1-improved [17] | 50.8 | 0.28 35 | 1.05 19 | 0.17 26 | 0.57 23 | 3.55 38 | 0.44 25 | 2.24 53 | 8.19 84 | 0.46 34 | 0.35 36 | 7.45 74 | 0.18 19 | 4.86 57 | 5.68 67 | 4.21 49 | 17.3 82 | 7.54 71 | 2.47 61 | 0.56 68 | 0.48 73 | 0.72 61 | 4.10 49 | 7.73 54 | 6.51 62 |
CBF [12] | 51.0 | 0.32 43 | 0.99 11 | 0.20 39 | 1.00 55 | 3.48 33 | 0.97 64 | 1.61 43 | 6.55 46 | 0.81 52 | 0.66 52 | 6.31 54 | 0.46 57 | 4.87 58 | 5.65 63 | 4.92 62 | 2.31 29 | 5.30 32 | 1.62 26 | 0.77 83 | 0.54 77 | 1.11 78 | 4.07 48 | 7.61 52 | 6.58 66 |
Brox et al. [5] | 51.2 | 0.38 56 | 1.15 43 | 0.27 61 | 0.84 50 | 3.90 60 | 0.69 56 | 1.45 41 | 5.36 36 | 0.87 54 | 0.98 59 | 6.75 63 | 0.28 46 | 5.17 74 | 5.73 74 | 5.35 73 | 6.14 64 | 7.37 65 | 2.79 67 | 0.27 3 | 0.36 28 | 0.30 3 | 4.93 57 | 7.45 48 | 6.32 49 |
SuperFlow [89] | 51.9 | 0.34 49 | 1.13 40 | 0.21 45 | 1.31 62 | 3.57 40 | 1.11 65 | 2.62 59 | 6.44 44 | 2.67 68 | 1.19 65 | 5.82 48 | 0.77 68 | 5.01 63 | 5.61 60 | 5.26 68 | 2.39 33 | 5.84 40 | 2.34 56 | 0.43 42 | 0.47 71 | 0.48 18 | 4.46 55 | 7.92 56 | 5.62 31 |
Local-TV-L1 [65] | 52.3 | 0.43 65 | 1.24 57 | 0.29 63 | 1.98 71 | 4.55 70 | 1.15 68 | 4.88 74 | 7.48 63 | 2.20 64 | 1.35 69 | 6.92 67 | 0.63 64 | 4.63 44 | 5.50 47 | 4.04 42 | 2.22 24 | 5.75 39 | 1.94 32 | 0.36 18 | 0.31 6 | 0.47 14 | 5.53 66 | 7.86 55 | 6.89 73 |
p-harmonic [29] | 52.9 | 0.39 59 | 1.15 43 | 0.33 68 | 0.74 46 | 3.63 45 | 0.61 51 | 2.42 55 | 7.91 78 | 0.82 53 | 1.01 60 | 4.53 25 | 0.66 66 | 5.21 76 | 5.70 70 | 5.59 80 | 1.74 13 | 6.29 52 | 1.54 22 | 0.45 49 | 0.41 57 | 0.53 27 | 5.19 62 | 8.53 65 | 6.31 47 |
CLG-TV [48] | 53.2 | 0.33 47 | 1.07 26 | 0.22 50 | 0.90 53 | 3.76 53 | 0.75 59 | 2.15 50 | 7.98 80 | 0.73 49 | 0.67 53 | 4.67 29 | 0.53 61 | 4.84 55 | 5.55 55 | 4.44 54 | 2.11 20 | 7.44 68 | 2.05 37 | 0.57 72 | 0.56 80 | 0.86 71 | 4.18 51 | 8.19 60 | 6.25 44 |
FastOF [78] | 54.3 | 0.31 40 | 1.36 69 | 0.29 63 | 1.46 65 | 4.65 72 | 0.78 62 | 3.54 65 | 6.84 50 | 3.19 78 | 0.87 58 | 6.73 62 | 0.65 65 | 5.04 65 | 5.65 63 | 5.10 64 | 3.36 41 | 5.94 42 | 3.25 73 | 0.49 53 | 0.34 15 | 0.59 38 | 3.36 43 | 6.27 37 | 4.80 20 |
Fusion [6] | 55.2 | 0.38 56 | 1.17 48 | 0.28 62 | 0.53 16 | 3.35 29 | 0.48 29 | 0.90 32 | 3.47 14 | 0.76 51 | 0.63 50 | 5.66 45 | 0.39 53 | 5.21 76 | 5.79 81 | 5.33 72 | 4.41 55 | 5.98 44 | 2.82 68 | 0.56 68 | 0.51 75 | 0.75 63 | 6.49 77 | 11.3 86 | 7.02 76 |
Bartels [41] | 56.6 | 0.34 49 | 1.28 61 | 0.26 59 | 0.52 15 | 3.07 19 | 0.41 22 | 1.19 37 | 5.46 37 | 0.46 34 | 0.43 43 | 7.93 83 | 0.31 51 | 5.14 70 | 5.73 74 | 5.26 68 | 5.91 63 | 7.40 67 | 2.13 42 | 0.64 78 | 0.46 68 | 1.26 82 | 6.18 73 | 10.0 82 | 8.44 81 |
Second-order prior [8] | 56.9 | 0.36 52 | 1.22 53 | 0.21 45 | 1.07 57 | 3.69 48 | 0.70 58 | 2.58 58 | 7.79 71 | 1.06 58 | 0.78 57 | 5.23 41 | 0.28 46 | 4.77 49 | 5.58 58 | 4.74 60 | 3.07 38 | 7.16 62 | 2.63 64 | 0.64 78 | 0.45 64 | 0.79 64 | 4.31 52 | 7.93 57 | 6.99 75 |
LDOF [28] | 57.1 | 0.42 63 | 1.29 63 | 0.21 45 | 1.35 64 | 4.55 70 | 0.69 56 | 1.91 48 | 4.97 29 | 1.24 60 | 1.56 71 | 11.8 90 | 0.49 59 | 5.15 71 | 5.75 77 | 5.19 67 | 4.76 56 | 8.27 80 | 2.28 46 | 0.32 11 | 0.35 23 | 0.56 30 | 5.18 61 | 8.80 71 | 6.49 59 |
Rannacher [23] | 57.2 | 0.33 47 | 1.19 51 | 0.25 58 | 0.75 47 | 3.88 57 | 0.60 49 | 2.69 60 | 8.38 89 | 0.63 47 | 0.47 47 | 7.51 77 | 0.28 46 | 4.78 51 | 5.64 62 | 4.00 40 | 17.7 85 | 7.45 69 | 2.85 69 | 0.50 56 | 0.40 52 | 0.70 58 | 3.80 46 | 7.61 52 | 6.49 59 |
StereoFlow [44] | 57.2 | 1.36 89 | 2.53 89 | 0.92 84 | 3.87 84 | 5.71 86 | 2.94 82 | 3.43 63 | 6.77 49 | 2.99 73 | 3.06 77 | 9.56 88 | 2.88 77 | 4.78 51 | 5.57 57 | 4.67 59 | 1.35 6 | 6.94 59 | 0.97 12 | 0.22 2 | 0.28 2 | 0.27 1 | 4.93 57 | 8.34 63 | 6.55 64 |
Dynamic MRF [7] | 57.5 | 0.36 52 | 1.26 59 | 0.24 56 | 0.57 23 | 4.28 66 | 0.33 12 | 1.88 46 | 6.72 48 | 0.37 18 | 0.45 45 | 6.86 66 | 0.23 42 | 5.44 85 | 5.89 84 | 5.60 81 | 12.3 74 | 11.8 88 | 4.03 79 | 0.42 40 | 0.30 3 | 0.79 64 | 7.94 83 | 11.0 84 | 9.07 82 |
Ad-TV-NDC [36] | 60.0 | 0.89 81 | 1.39 74 | 1.05 86 | 4.30 86 | 5.21 79 | 3.61 85 | 7.03 83 | 7.85 74 | 2.68 69 | 2.01 73 | 4.92 33 | 1.93 73 | 4.55 37 | 5.53 49 | 3.64 31 | 2.30 28 | 7.11 61 | 2.02 36 | 0.37 25 | 0.34 15 | 0.48 18 | 8.69 86 | 9.20 74 | 9.22 83 |
Filter Flow [19] | 61.1 | 0.51 70 | 1.41 75 | 0.37 70 | 1.86 69 | 3.79 55 | 1.12 66 | 4.19 72 | 6.46 45 | 3.20 79 | 3.16 78 | 5.17 38 | 3.07 78 | 5.03 64 | 5.48 43 | 5.54 78 | 3.06 37 | 5.33 33 | 2.41 59 | 0.57 72 | 0.60 83 | 0.60 41 | 5.49 65 | 7.53 50 | 6.27 46 |
GroupFlow [9] | 61.6 | 0.78 79 | 1.73 80 | 0.60 79 | 3.11 80 | 5.38 82 | 2.49 80 | 4.27 73 | 6.91 54 | 2.76 71 | 1.21 66 | 4.61 27 | 0.79 69 | 5.09 68 | 5.76 78 | 3.88 34 | 7.80 69 | 7.20 64 | 5.19 86 | 0.31 9 | 0.42 60 | 0.45 12 | 4.34 53 | 8.00 58 | 6.31 47 |
Shiralkar [42] | 62.1 | 0.44 68 | 1.24 57 | 0.24 56 | 1.29 61 | 4.44 67 | 0.51 34 | 3.66 69 | 8.22 85 | 0.75 50 | 1.05 61 | 6.20 52 | 0.39 53 | 4.87 58 | 5.52 48 | 4.61 57 | 5.13 59 | 8.26 79 | 2.90 71 | 0.75 80 | 0.41 57 | 1.11 78 | 6.02 70 | 8.77 69 | 6.39 52 |
IAOF2 [51] | 62.3 | 0.42 63 | 1.36 69 | 0.30 65 | 1.58 66 | 4.27 65 | 1.14 67 | 3.56 66 | 7.66 66 | 2.70 70 | 3.55 81 | 5.20 40 | 3.60 82 | 4.84 55 | 5.67 66 | 4.15 45 | 4.20 54 | 6.02 45 | 2.87 70 | 0.56 68 | 0.46 68 | 0.98 74 | 5.41 64 | 7.19 46 | 6.10 41 |
Learning Flow [11] | 62.8 | 0.36 52 | 1.29 63 | 0.19 28 | 0.88 52 | 4.18 63 | 0.56 47 | 2.94 61 | 6.87 51 | 1.01 57 | 1.78 72 | 6.81 64 | 0.50 60 | 5.51 86 | 6.19 87 | 5.41 76 | 14.2 77 | 8.05 75 | 3.44 75 | 0.41 36 | 0.54 77 | 0.57 34 | 6.48 76 | 9.99 81 | 6.48 58 |
GraphCuts [14] | 63.5 | 0.53 71 | 1.30 66 | 0.26 59 | 2.63 76 | 5.49 84 | 1.53 71 | 2.57 57 | 5.15 34 | 2.57 66 | 1.14 64 | 4.94 34 | 0.61 63 | 4.40 33 | 5.13 29 | 3.95 38 | 17.3 82 | 6.38 55 | 5.59 87 | 0.75 80 | 0.43 61 | 1.14 81 | 6.31 75 | 9.98 80 | 7.32 77 |
2D-CLG [1] | 65.7 | 1.19 85 | 2.21 86 | 0.70 81 | 2.17 72 | 3.78 54 | 1.93 77 | 6.02 77 | 7.44 62 | 3.48 85 | 3.42 79 | 6.03 49 | 3.32 79 | 5.24 79 | 5.68 67 | 5.39 75 | 15.6 79 | 8.14 77 | 3.77 77 | 0.31 9 | 0.26 1 | 0.48 18 | 5.99 69 | 8.71 68 | 6.74 71 |
Black & Anandan [4] | 65.9 | 0.54 73 | 1.34 67 | 0.48 75 | 2.79 78 | 4.85 74 | 1.86 75 | 6.61 81 | 7.85 74 | 2.99 73 | 2.16 74 | 5.71 46 | 1.95 74 | 5.15 71 | 5.71 73 | 5.30 70 | 11.7 72 | 8.34 81 | 3.41 74 | 0.36 18 | 0.41 57 | 0.37 8 | 5.98 68 | 8.99 72 | 6.44 54 |
IAOF [50] | 66.2 | 0.54 73 | 1.35 68 | 0.47 74 | 2.65 77 | 5.31 80 | 1.90 76 | 8.88 90 | 9.21 90 | 3.37 82 | 3.44 80 | 5.36 42 | 3.47 80 | 4.74 47 | 5.53 49 | 4.56 56 | 3.32 40 | 6.48 56 | 2.37 57 | 0.53 66 | 0.39 45 | 0.68 53 | 7.36 81 | 7.48 49 | 7.98 79 |
Nguyen [33] | 67.3 | 0.71 77 | 1.68 78 | 0.49 76 | 2.50 75 | 4.86 75 | 2.21 79 | 7.41 85 | 7.97 79 | 3.47 84 | 3.87 83 | 5.77 47 | 3.73 83 | 5.05 67 | 5.76 78 | 5.14 65 | 3.81 49 | 7.76 73 | 2.63 64 | 0.39 30 | 0.36 28 | 0.57 34 | 6.17 72 | 8.67 66 | 6.69 69 |
SPSA-learn [13] | 68.7 | 0.53 71 | 1.36 69 | 0.45 73 | 2.47 74 | 5.72 87 | 1.69 73 | 4.97 75 | 7.78 70 | 2.93 72 | 2.51 75 | 7.47 75 | 2.31 75 | 5.30 81 | 5.83 83 | 5.44 77 | 22.3 88 | 7.93 74 | 4.87 83 | 0.36 18 | 0.34 15 | 0.51 24 | 6.03 71 | 9.76 79 | 6.66 67 |
Modified CLG [34] | 69.2 | 0.66 76 | 1.45 76 | 0.55 77 | 1.60 68 | 3.72 50 | 1.40 70 | 5.89 76 | 8.02 82 | 3.40 83 | 1.52 70 | 7.10 71 | 1.29 72 | 5.23 78 | 5.80 82 | 5.36 74 | 5.05 58 | 8.25 78 | 2.71 66 | 0.39 30 | 0.39 45 | 0.82 68 | 5.67 67 | 9.44 76 | 6.69 69 |
HBpMotionGpu [43] | 70.2 | 0.50 69 | 1.56 77 | 0.35 69 | 2.28 73 | 5.51 85 | 1.67 72 | 6.22 79 | 7.82 72 | 3.03 75 | 1.10 62 | 8.84 86 | 0.69 67 | 5.58 87 | 6.09 86 | 5.55 79 | 3.29 39 | 6.34 54 | 2.47 61 | 0.52 62 | 0.48 73 | 0.64 45 | 6.21 74 | 8.69 67 | 6.74 71 |
Horn & Schunck [3] | 70.2 | 0.73 78 | 1.72 79 | 0.59 78 | 2.87 79 | 4.93 77 | 2.05 78 | 6.26 80 | 7.71 67 | 3.28 80 | 3.80 82 | 6.43 55 | 3.48 81 | 5.10 69 | 5.55 55 | 5.31 71 | 8.89 70 | 10.1 86 | 4.92 84 | 0.41 36 | 0.46 68 | 0.36 7 | 6.67 78 | 9.11 73 | 6.95 74 |
TI-DOFE [24] | 70.8 | 1.13 84 | 2.07 84 | 1.14 87 | 3.43 83 | 4.87 76 | 3.26 84 | 7.27 84 | 7.84 73 | 3.50 86 | 4.33 85 | 6.11 50 | 4.19 85 | 5.04 65 | 5.58 58 | 5.15 66 | 6.52 65 | 10.3 87 | 4.70 82 | 0.36 18 | 0.37 33 | 0.53 27 | 7.85 82 | 9.38 75 | 8.17 80 |
BlockOverlap [61] | 71.1 | 0.43 65 | 1.36 69 | 0.37 70 | 1.58 66 | 3.89 59 | 1.30 69 | 4.01 70 | 7.31 58 | 2.26 65 | 1.22 67 | 7.93 83 | 0.84 70 | 5.24 79 | 5.70 70 | 6.40 87 | 4.80 57 | 6.20 47 | 2.44 60 | 0.80 84 | 0.55 79 | 3.83 90 | 7.28 80 | 9.60 77 | 10.0 85 |
Adaptive flow [45] | 76.0 | 0.94 82 | 2.01 83 | 0.71 82 | 4.43 87 | 5.33 81 | 4.12 86 | 6.07 78 | 6.90 53 | 3.85 88 | 4.09 84 | 6.17 51 | 4.06 84 | 5.00 62 | 5.73 74 | 4.48 55 | 6.57 66 | 5.86 41 | 3.68 76 | 2.03 90 | 1.05 90 | 3.31 89 | 7.27 79 | 11.0 84 | 7.57 78 |
SILK [87] | 77.4 | 0.80 80 | 1.82 82 | 0.80 83 | 3.23 81 | 5.00 78 | 2.92 81 | 7.68 88 | 8.24 86 | 3.11 77 | 3.00 76 | 6.98 68 | 2.43 76 | 5.34 82 | 5.77 80 | 5.92 84 | 15.0 78 | 8.08 76 | 4.36 80 | 0.50 56 | 0.38 38 | 1.01 75 | 8.67 85 | 10.9 83 | 9.92 84 |
PGAM+LK [55] | 79.7 | 1.38 90 | 2.26 87 | 2.75 90 | 4.11 85 | 5.46 83 | 4.31 87 | 4.04 71 | 5.95 39 | 3.10 76 | 6.71 90 | 9.38 87 | 6.38 89 | 5.15 71 | 5.49 46 | 5.71 82 | 7.75 68 | 8.68 84 | 3.81 78 | 1.11 88 | 0.72 89 | 1.89 85 | 8.55 84 | 9.73 78 | 10.6 86 |
SLK [47] | 80.9 | 1.25 86 | 2.15 85 | 1.34 88 | 3.35 82 | 4.75 73 | 3.16 83 | 7.53 86 | 8.14 83 | 3.31 81 | 5.19 87 | 6.99 69 | 4.99 87 | 5.42 84 | 5.69 69 | 6.26 86 | 16.1 80 | 8.44 83 | 4.98 85 | 0.59 75 | 0.39 45 | 1.26 82 | 10.7 87 | 12.1 88 | 11.0 87 |
Periodicity [86] | 83.4 | 1.29 88 | 3.11 90 | 0.66 80 | 8.81 90 | 9.31 90 | 9.57 90 | 7.66 87 | 7.36 60 | 6.46 90 | 6.64 89 | 9.79 89 | 6.12 88 | 22.6 90 | 24.0 90 | 21.6 90 | 20.0 86 | 15.2 90 | 12.8 90 | 0.27 3 | 0.53 76 | 2.84 86 | 13.6 90 | 17.6 90 | 13.3 90 |
FOLKI [16] | 85.9 | 1.10 83 | 2.44 88 | 0.96 85 | 6.01 89 | 6.49 89 | 6.33 89 | 6.80 82 | 8.01 81 | 3.62 87 | 4.98 86 | 7.71 82 | 4.88 86 | 5.98 88 | 6.25 88 | 7.48 88 | 12.2 73 | 14.8 89 | 5.96 88 | 1.11 88 | 0.59 82 | 2.88 87 | 11.0 88 | 11.9 87 | 11.5 88 |
Pyramid LK [2] | 86.1 | 1.25 86 | 1.79 81 | 1.67 89 | 5.06 88 | 5.74 88 | 5.11 88 | 7.76 89 | 8.24 86 | 4.54 89 | 6.31 88 | 6.43 55 | 6.90 90 | 12.3 89 | 13.8 89 | 10.9 89 | 17.4 84 | 9.60 85 | 6.83 89 | 0.94 87 | 0.60 83 | 3.13 88 | 12.6 89 | 16.8 89 | 11.7 89 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |