Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R0.5 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
OFLADF [82] | 6.7 | 1.67 2 | 9.54 2 | 0.81 8 | 4.12 5 | 23.1 4 | 2.26 12 | 3.43 1 | 11.8 1 | 1.47 7 | 2.31 5 | 15.3 4 | 0.67 5 | 18.1 2 | 27.2 3 | 8.68 3 | 12.6 16 | 27.0 7 | 6.93 14 | 0.78 9 | 1.08 20 | 3.37 13 | 11.6 6 | 25.9 2 | 16.2 10 |
MDP-Flow2 [70] | 8.0 | 1.76 5 | 9.93 6 | 0.86 9 | 3.26 1 | 20.6 1 | 1.44 3 | 4.04 2 | 13.6 2 | 1.26 5 | 3.09 17 | 21.8 18 | 0.88 13 | 22.4 8 | 32.2 7 | 14.3 10 | 9.15 5 | 23.6 2 | 5.83 6 | 2.18 27 | 0.32 7 | 4.78 23 | 10.8 4 | 26.3 3 | 15.0 7 |
ComplexFlow [81] | 8.9 | 1.75 4 | 9.66 3 | 0.87 10 | 4.56 11 | 27.6 13 | 2.46 16 | 4.52 3 | 15.6 5 | 2.18 11 | 2.57 10 | 18.4 10 | 0.86 10 | 18.8 4 | 29.2 4 | 8.22 1 | 9.37 7 | 24.2 3 | 5.22 4 | 0.95 10 | 2.02 44 | 1.90 8 | 10.6 3 | 31.8 17 | 8.21 2 |
NN-field [73] | 10.7 | 2.01 12 | 11.0 12 | 1.10 20 | 5.74 22 | 30.7 21 | 3.21 22 | 4.57 4 | 15.7 6 | 2.22 13 | 1.81 2 | 15.7 5 | 0.54 4 | 19.0 5 | 29.4 5 | 8.42 2 | 10.5 10 | 20.3 1 | 3.83 1 | 1.43 16 | 2.03 45 | 3.72 14 | 10.1 1 | 31.1 13 | 6.81 1 |
Epistemic [84] | 13.3 | 1.73 3 | 9.92 5 | 0.77 5 | 3.75 4 | 22.3 3 | 2.27 13 | 5.02 7 | 17.1 7 | 2.21 12 | 2.87 12 | 19.3 12 | 0.93 14 | 24.1 11 | 35.1 12 | 18.6 23 | 12.4 15 | 39.0 45 | 8.29 34 | 2.41 30 | 0.13 5 | 4.73 22 | 11.9 8 | 30.0 10 | 15.5 8 |
Correlation Flow [79] | 14.6 | 1.96 10 | 10.9 11 | 0.66 3 | 4.21 7 | 25.5 7 | 1.35 2 | 6.69 20 | 20.7 16 | 0.94 1 | 1.68 1 | 13.3 1 | 0.48 3 | 25.4 18 | 36.9 19 | 16.3 17 | 13.5 29 | 32.5 22 | 7.88 29 | 2.82 37 | 1.63 32 | 10.8 49 | 11.3 5 | 29.7 8 | 9.89 3 |
ADF [67] | 15.0 | 1.98 11 | 10.7 10 | 1.06 18 | 4.24 8 | 25.6 8 | 2.41 15 | 6.38 15 | 20.7 16 | 2.38 14 | 3.73 29 | 24.4 30 | 1.25 25 | 23.6 10 | 35.5 15 | 13.3 9 | 13.0 20 | 30.6 16 | 6.74 10 | 1.45 17 | 0.84 15 | 5.42 26 | 12.0 9 | 28.7 4 | 16.6 11 |
LME [72] | 16.1 | 1.89 9 | 10.6 9 | 0.75 4 | 3.53 2 | 21.3 2 | 1.83 6 | 7.04 29 | 18.6 9 | 8.24 51 | 3.10 18 | 23.0 24 | 0.86 10 | 24.8 17 | 35.5 15 | 17.9 22 | 10.1 9 | 30.1 12 | 6.46 7 | 2.67 34 | 1.51 29 | 5.54 27 | 12.8 11 | 30.9 12 | 17.7 18 |
Layers++ [37] | 16.7 | 1.85 7 | 10.1 7 | 1.03 16 | 6.26 26 | 27.9 14 | 4.58 29 | 4.88 6 | 15.2 4 | 3.65 24 | 2.26 4 | 14.4 2 | 0.68 6 | 17.8 1 | 25.4 1 | 12.2 6 | 13.3 24 | 28.3 9 | 6.81 11 | 4.53 52 | 2.71 59 | 7.34 38 | 13.2 16 | 29.7 8 | 19.2 30 |
nLayers [57] | 18.1 | 1.40 1 | 7.64 1 | 0.64 1 | 8.47 48 | 30.5 20 | 7.07 53 | 6.80 25 | 20.0 12 | 5.79 45 | 2.13 3 | 14.7 3 | 0.78 9 | 18.3 3 | 26.0 2 | 12.2 6 | 12.9 19 | 25.6 4 | 6.84 12 | 1.93 24 | 2.24 49 | 3.35 12 | 14.5 25 | 32.0 20 | 20.9 37 |
FC-2Layers-FF [77] | 19.4 | 1.81 6 | 9.71 4 | 1.07 19 | 6.99 31 | 33.9 30 | 4.71 30 | 4.71 5 | 15.0 3 | 3.63 23 | 2.67 11 | 18.3 9 | 0.87 12 | 20.6 6 | 29.7 6 | 14.5 11 | 13.3 24 | 28.4 10 | 7.26 19 | 5.67 63 | 1.82 37 | 14.9 63 | 12.9 14 | 29.4 5 | 18.4 25 |
TC/T-Flow [80] | 20.9 | 2.19 23 | 11.8 23 | 1.21 25 | 5.00 14 | 29.4 17 | 1.89 7 | 5.57 8 | 18.5 8 | 1.28 6 | 3.63 26 | 23.7 27 | 1.24 23 | 24.1 11 | 35.4 14 | 15.2 14 | 7.02 1 | 25.8 5 | 5.43 5 | 3.79 49 | 2.13 46 | 19.3 73 | 14.6 27 | 36.2 29 | 17.9 20 |
Direct ZNCC [66] | 21.2 | 2.09 15 | 11.6 20 | 0.77 5 | 4.60 12 | 27.3 12 | 2.05 9 | 6.83 26 | 21.6 24 | 1.00 2 | 2.33 6 | 18.1 7 | 0.72 7 | 28.1 29 | 40.3 32 | 20.2 32 | 13.9 39 | 34.0 28 | 9.14 43 | 3.08 42 | 2.00 42 | 10.9 50 | 11.7 7 | 31.3 15 | 10.9 4 |
TC-Flow [46] | 21.3 | 2.04 13 | 11.0 12 | 0.94 11 | 3.69 3 | 23.4 5 | 1.68 4 | 5.96 10 | 19.9 11 | 1.06 3 | 3.73 29 | 23.6 26 | 1.24 23 | 25.7 21 | 38.0 24 | 14.8 12 | 8.99 4 | 34.6 29 | 5.03 3 | 2.82 37 | 2.47 53 | 15.9 69 | 16.0 34 | 38.1 34 | 22.0 41 |
IROF++ [58] | 23.5 | 2.18 22 | 11.5 18 | 1.33 31 | 7.91 40 | 36.5 41 | 5.96 43 | 6.71 21 | 21.7 26 | 4.85 40 | 3.62 25 | 22.8 20 | 1.63 33 | 24.2 13 | 34.9 11 | 17.1 20 | 13.3 24 | 33.4 26 | 7.82 27 | 0.55 7 | 1.09 21 | 1.01 7 | 12.8 11 | 32.9 23 | 16.7 13 |
ALD-Flow [68] | 23.5 | 2.22 25 | 11.8 23 | 1.02 15 | 4.33 10 | 24.7 6 | 2.04 8 | 6.35 14 | 20.9 18 | 1.56 8 | 3.67 27 | 24.0 29 | 1.10 20 | 25.8 22 | 37.5 23 | 15.8 16 | 8.24 3 | 32.7 24 | 4.68 2 | 3.06 41 | 2.62 58 | 16.6 71 | 15.6 33 | 39.3 36 | 19.8 33 |
FESL [75] | 24.2 | 1.86 8 | 10.2 8 | 0.99 12 | 10.4 58 | 39.3 53 | 7.94 57 | 6.79 24 | 21.2 22 | 4.35 33 | 2.39 7 | 16.2 6 | 0.76 8 | 24.2 13 | 34.7 10 | 19.2 27 | 12.6 16 | 27.7 8 | 7.10 18 | 3.35 46 | 2.20 48 | 8.03 42 | 14.5 25 | 31.2 14 | 17.6 17 |
SCR [74] | 24.7 | 2.11 17 | 11.5 18 | 1.34 33 | 7.97 41 | 36.8 42 | 6.00 45 | 6.07 11 | 19.8 10 | 3.90 26 | 3.02 16 | 20.6 14 | 1.09 19 | 24.5 16 | 35.1 12 | 17.7 21 | 13.3 24 | 30.5 15 | 7.01 17 | 5.27 60 | 2.17 47 | 13.0 59 | 12.5 10 | 29.6 6 | 16.7 13 |
Efficient-NL [60] | 26.9 | 2.41 31 | 11.8 23 | 1.55 49 | 8.28 45 | 35.4 35 | 5.90 42 | 6.72 22 | 20.9 18 | 3.78 25 | 2.95 15 | 19.1 11 | 1.20 22 | 22.1 7 | 32.4 8 | 15.3 15 | 14.6 50 | 31.0 18 | 8.05 32 | 3.32 44 | 2.40 52 | 7.02 34 | 13.6 19 | 29.6 6 | 18.2 22 |
PMF [76] | 27.6 | 2.30 28 | 12.8 30 | 1.01 13 | 5.64 21 | 31.4 24 | 2.51 17 | 6.83 26 | 22.5 29 | 1.72 10 | 3.26 19 | 21.1 16 | 0.94 15 | 24.3 15 | 36.7 18 | 9.56 4 | 14.4 47 | 40.0 48 | 8.40 36 | 7.45 75 | 8.62 86 | 24.8 77 | 10.4 2 | 25.6 1 | 12.7 5 |
Ramp [62] | 28.3 | 2.21 24 | 12.1 26 | 1.45 44 | 7.45 37 | 35.5 37 | 5.63 39 | 6.33 12 | 20.6 15 | 4.23 28 | 3.43 21 | 22.5 19 | 1.38 27 | 25.8 22 | 37.0 20 | 19.3 28 | 13.5 29 | 30.3 13 | 7.45 22 | 4.89 56 | 1.97 40 | 15.1 66 | 13.1 15 | 31.9 18 | 18.0 21 |
Sparse-NonSparse [56] | 28.4 | 2.11 17 | 11.7 21 | 1.39 37 | 7.47 38 | 35.1 33 | 5.75 40 | 6.48 17 | 21.2 22 | 4.34 31 | 3.52 23 | 22.9 21 | 1.38 27 | 26.1 25 | 37.3 22 | 19.6 31 | 13.5 29 | 31.2 20 | 7.42 21 | 5.02 59 | 1.18 25 | 13.5 61 | 13.5 17 | 31.7 16 | 18.8 28 |
Levin3 [90] | 28.5 | 2.11 17 | 11.2 15 | 1.27 28 | 7.99 42 | 37.3 45 | 5.82 41 | 6.34 13 | 20.3 13 | 3.97 27 | 3.72 28 | 23.2 25 | 1.67 36 | 23.1 9 | 33.2 9 | 16.5 18 | 13.6 34 | 30.3 13 | 7.68 26 | 6.59 69 | 3.60 66 | 17.7 72 | 12.8 11 | 30.6 11 | 16.8 15 |
NL-TV-NCC [25] | 29.2 | 2.25 27 | 11.7 21 | 0.78 7 | 6.94 30 | 35.5 37 | 2.54 18 | 6.48 17 | 21.1 21 | 1.08 4 | 2.48 9 | 21.5 17 | 0.46 2 | 31.5 43 | 46.7 57 | 16.7 19 | 17.3 61 | 41.0 55 | 10.2 51 | 4.41 51 | 0.10 4 | 10.1 47 | 18.4 41 | 43.2 41 | 18.2 22 |
LSM [39] | 29.3 | 2.24 26 | 12.4 27 | 1.39 37 | 7.37 36 | 35.4 35 | 5.47 38 | 6.61 19 | 21.6 24 | 4.24 29 | 3.46 22 | 23.8 28 | 1.30 26 | 25.8 22 | 37.0 20 | 19.3 28 | 13.7 35 | 32.1 21 | 7.36 20 | 5.34 61 | 1.11 23 | 14.5 62 | 13.7 21 | 32.3 21 | 18.2 22 |
Classic+NL [31] | 29.6 | 2.08 14 | 11.4 16 | 1.35 34 | 7.33 35 | 35.9 39 | 5.30 36 | 6.47 16 | 21.0 20 | 4.53 37 | 3.59 24 | 22.9 21 | 1.49 32 | 25.4 18 | 36.3 17 | 19.4 30 | 13.8 37 | 31.1 19 | 7.57 23 | 5.78 65 | 2.32 51 | 15.0 64 | 13.5 17 | 31.9 18 | 18.7 27 |
OFH [38] | 29.9 | 2.82 44 | 13.9 38 | 2.01 61 | 4.91 13 | 28.6 15 | 2.33 14 | 8.97 41 | 28.0 42 | 2.88 17 | 4.00 35 | 27.0 37 | 1.43 30 | 31.0 42 | 44.5 46 | 22.7 38 | 10.5 10 | 41.8 57 | 6.88 13 | 0.03 1 | 0.02 1 | 0.27 2 | 17.1 39 | 46.4 52 | 19.2 30 |
Sparse Occlusion [54] | 30.0 | 2.14 20 | 11.4 16 | 1.03 16 | 7.32 34 | 31.0 22 | 6.11 46 | 7.29 32 | 22.9 31 | 2.48 16 | 3.29 20 | 22.9 21 | 1.03 17 | 26.9 27 | 39.4 28 | 14.9 13 | 13.0 20 | 33.3 25 | 7.63 24 | 7.80 76 | 8.76 87 | 12.2 56 | 14.8 29 | 34.8 27 | 16.9 16 |
IROF-TV [53] | 31.4 | 2.51 34 | 13.5 34 | 1.41 40 | 8.08 43 | 38.7 51 | 6.19 48 | 6.97 28 | 22.3 27 | 4.43 34 | 4.23 38 | 28.8 44 | 1.72 38 | 28.3 30 | 39.9 30 | 22.6 37 | 13.8 37 | 40.0 48 | 8.01 30 | 0.23 4 | 0.39 10 | 0.67 4 | 13.7 21 | 33.6 25 | 17.8 19 |
TV-L1-MCT [64] | 32.0 | 2.09 15 | 11.1 14 | 1.39 37 | 9.67 53 | 39.0 52 | 7.35 54 | 7.11 30 | 22.3 27 | 4.27 30 | 2.94 14 | 20.7 15 | 1.13 21 | 28.4 31 | 39.4 28 | 25.8 51 | 16.0 59 | 35.0 30 | 9.27 45 | 1.27 15 | 0.57 12 | 7.24 36 | 14.8 29 | 33.2 24 | 23.3 45 |
Complementary OF [21] | 33.0 | 2.69 40 | 15.0 45 | 1.33 31 | 4.19 6 | 26.9 10 | 1.70 5 | 7.15 31 | 24.4 34 | 3.09 19 | 3.86 33 | 26.1 32 | 1.41 29 | 33.2 53 | 44.6 47 | 29.7 57 | 13.3 24 | 40.7 54 | 7.00 16 | 0.74 8 | 0.03 2 | 7.12 35 | 23.9 57 | 53.1 64 | 33.9 60 |
COFM [59] | 33.5 | 2.51 34 | 13.9 38 | 1.42 42 | 5.54 17 | 28.9 16 | 3.40 23 | 7.79 35 | 23.6 32 | 4.53 37 | 2.90 13 | 18.2 8 | 0.95 16 | 29.1 36 | 40.8 33 | 25.4 49 | 15.5 56 | 30.7 17 | 9.39 46 | 4.69 54 | 1.23 26 | 15.4 68 | 16.8 38 | 37.1 30 | 21.8 40 |
Occlusion-TV-L1 [63] | 33.6 | 2.47 32 | 13.1 31 | 1.12 21 | 6.32 27 | 32.2 26 | 4.45 27 | 9.86 46 | 28.3 43 | 4.44 35 | 3.86 33 | 26.7 35 | 1.43 30 | 31.9 49 | 44.3 43 | 27.1 52 | 11.3 12 | 35.3 34 | 10.4 53 | 0.47 6 | 1.16 24 | 0.67 4 | 19.8 48 | 46.6 53 | 22.9 43 |
MDP-Flow [26] | 34.1 | 2.33 29 | 13.4 33 | 1.20 23 | 5.61 20 | 26.9 10 | 4.88 32 | 6.76 23 | 22.6 30 | 5.72 44 | 4.13 36 | 29.5 47 | 1.92 42 | 28.7 33 | 40.8 33 | 23.2 42 | 12.8 18 | 36.7 39 | 8.04 31 | 2.54 32 | 2.96 61 | 4.43 20 | 19.4 47 | 44.6 46 | 26.0 48 |
CostFilter [40] | 34.2 | 2.65 38 | 14.9 43 | 1.01 13 | 5.51 16 | 31.6 25 | 2.23 11 | 7.39 33 | 24.1 33 | 3.06 18 | 3.82 31 | 26.1 32 | 1.08 18 | 25.4 18 | 38.9 27 | 10.2 5 | 15.1 53 | 42.7 60 | 8.52 38 | 8.99 78 | 10.3 88 | 29.5 79 | 14.4 24 | 37.2 31 | 16.1 9 |
ACK-Prior [27] | 34.4 | 2.16 21 | 12.4 27 | 0.64 1 | 4.26 9 | 25.9 9 | 1.33 1 | 5.91 9 | 20.4 14 | 1.67 9 | 2.39 7 | 20.4 13 | 0.33 1 | 30.0 39 | 41.1 35 | 24.4 45 | 19.2 71 | 40.3 52 | 12.2 63 | 14.4 87 | 6.30 80 | 40.9 87 | 21.0 52 | 43.6 42 | 27.5 51 |
SimpleFlow [49] | 35.3 | 2.39 30 | 12.6 29 | 1.60 52 | 9.03 51 | 38.3 47 | 7.38 55 | 8.52 39 | 25.7 36 | 5.41 42 | 4.36 43 | 25.5 31 | 2.48 48 | 26.8 26 | 38.0 24 | 21.6 34 | 14.0 40 | 29.7 11 | 7.65 25 | 2.77 36 | 1.97 40 | 6.48 31 | 14.3 23 | 32.8 22 | 19.7 32 |
EP-PM [83] | 39.6 | 3.53 57 | 16.6 50 | 1.44 43 | 5.80 23 | 35.3 34 | 2.22 10 | 8.01 36 | 26.3 37 | 2.45 15 | 4.38 44 | 28.0 40 | 1.77 40 | 27.0 28 | 40.0 31 | 13.0 8 | 18.6 66 | 44.4 65 | 10.8 55 | 10.5 81 | 2.30 50 | 37.7 85 | 13.6 19 | 35.6 28 | 13.9 6 |
Adaptive [20] | 40.0 | 2.49 33 | 13.2 32 | 1.13 22 | 7.17 32 | 34.5 32 | 4.97 33 | 10.2 47 | 28.7 45 | 4.34 31 | 4.31 42 | 28.2 41 | 1.66 34 | 34.5 60 | 48.1 63 | 28.2 54 | 14.3 45 | 36.1 36 | 8.24 33 | 4.04 50 | 4.49 74 | 7.32 37 | 14.7 28 | 34.7 26 | 18.9 29 |
TCOF [71] | 41.6 | 3.05 49 | 15.4 47 | 1.75 55 | 8.12 44 | 38.6 49 | 5.20 35 | 13.8 56 | 34.5 56 | 13.2 61 | 8.75 63 | 29.0 45 | 8.90 68 | 33.8 56 | 47.3 59 | 23.1 41 | 9.33 6 | 25.9 6 | 6.64 9 | 2.59 33 | 1.95 39 | 6.38 30 | 15.3 32 | 39.1 35 | 18.4 25 |
ComplOF-FED-GPU [35] | 42.3 | 2.87 47 | 15.6 48 | 1.35 34 | 6.14 25 | 33.6 29 | 3.15 20 | 8.26 37 | 27.4 39 | 3.30 20 | 4.29 39 | 28.2 41 | 1.71 37 | 33.1 52 | 47.9 62 | 24.1 44 | 14.7 51 | 45.7 68 | 9.19 44 | 3.33 45 | 1.48 28 | 15.0 64 | 18.8 44 | 48.4 56 | 22.0 41 |
Classic++ [32] | 43.2 | 2.59 37 | 13.9 38 | 1.51 47 | 6.79 29 | 32.3 27 | 5.37 37 | 9.15 42 | 27.8 41 | 5.54 43 | 4.29 39 | 29.0 45 | 1.77 40 | 30.2 41 | 43.9 40 | 22.8 39 | 14.8 52 | 40.0 48 | 8.36 35 | 6.82 71 | 4.17 70 | 16.5 70 | 16.5 35 | 39.5 37 | 19.8 33 |
SIOF [69] | 44.1 | 2.67 39 | 13.6 35 | 1.23 27 | 7.65 39 | 37.9 46 | 4.78 31 | 14.2 59 | 32.9 54 | 15.4 63 | 6.36 53 | 34.7 55 | 3.84 53 | 34.0 57 | 45.8 54 | 33.2 61 | 13.5 29 | 35.7 35 | 10.5 54 | 1.99 25 | 0.99 18 | 4.21 17 | 20.5 50 | 45.6 48 | 30.7 57 |
TV-L1-improved [17] | 44.3 | 2.56 36 | 13.6 35 | 1.20 23 | 5.80 23 | 30.0 19 | 4.04 25 | 9.84 45 | 28.4 44 | 4.60 39 | 4.16 37 | 27.0 37 | 1.66 34 | 31.5 43 | 45.4 51 | 23.0 40 | 17.5 62 | 45.5 67 | 13.7 67 | 7.01 73 | 4.32 73 | 20.5 75 | 17.1 39 | 42.5 40 | 20.4 36 |
F-TV-L1 [15] | 45.1 | 3.34 51 | 17.3 53 | 1.80 58 | 9.99 56 | 38.6 49 | 7.03 51 | 13.2 54 | 32.6 53 | 7.82 50 | 5.85 51 | 32.9 52 | 2.91 50 | 31.5 43 | 45.0 48 | 25.2 47 | 15.1 53 | 38.7 44 | 8.99 42 | 2.19 28 | 3.29 64 | 3.03 10 | 15.1 31 | 38.0 33 | 16.6 11 |
Bartels [41] | 45.6 | 3.26 50 | 16.7 52 | 1.37 36 | 5.33 15 | 29.8 18 | 3.18 21 | 8.40 38 | 26.9 38 | 4.45 36 | 4.40 45 | 26.9 36 | 2.16 44 | 32.7 51 | 45.4 51 | 28.4 56 | 14.3 45 | 38.1 43 | 12.9 64 | 8.20 77 | 3.82 68 | 31.3 80 | 18.4 41 | 43.7 44 | 23.3 45 |
Deep-Matching [85] | 46.1 | 3.71 61 | 18.7 58 | 1.74 54 | 10.7 59 | 38.4 48 | 8.48 59 | 14.6 62 | 35.8 60 | 14.6 62 | 7.23 57 | 33.7 53 | 4.86 58 | 29.0 35 | 42.6 39 | 18.7 24 | 9.77 8 | 36.6 38 | 6.93 14 | 0.96 11 | 0.13 5 | 7.34 38 | 31.8 69 | 55.8 67 | 42.5 68 |
CRTflow [88] | 46.5 | 3.53 57 | 18.6 56 | 1.79 56 | 6.54 28 | 34.0 31 | 4.08 26 | 10.5 48 | 31.6 50 | 5.02 41 | 4.95 48 | 30.6 49 | 2.31 45 | 30.1 40 | 44.2 42 | 19.1 25 | 24.2 76 | 50.1 74 | 26.0 81 | 1.80 23 | 0.92 17 | 6.63 32 | 22.7 55 | 52.1 60 | 30.0 55 |
LocallyOriented [52] | 48.3 | 4.06 64 | 20.2 65 | 1.87 60 | 12.1 61 | 47.6 68 | 8.49 60 | 15.9 63 | 39.1 67 | 11.1 58 | 5.10 49 | 28.6 43 | 2.84 49 | 34.0 57 | 47.4 60 | 25.7 50 | 11.8 13 | 32.6 23 | 7.84 28 | 1.10 12 | 1.51 29 | 6.95 33 | 20.3 49 | 46.8 54 | 23.1 44 |
Aniso. Huber-L1 [22] | 48.4 | 2.84 46 | 14.5 41 | 1.46 45 | 14.0 62 | 42.6 63 | 12.9 62 | 13.4 55 | 31.3 48 | 13.0 60 | 6.50 54 | 35.2 57 | 4.19 55 | 29.7 38 | 42.4 37 | 21.8 36 | 14.5 48 | 35.0 30 | 8.43 37 | 5.54 62 | 3.18 63 | 12.8 58 | 16.6 36 | 37.7 32 | 20.9 37 |
TriangleFlow [30] | 48.5 | 2.81 43 | 14.9 43 | 1.22 26 | 7.27 33 | 37.1 44 | 3.76 24 | 9.83 44 | 30.2 47 | 3.34 21 | 3.84 32 | 27.1 39 | 1.72 38 | 39.4 73 | 53.7 75 | 34.8 65 | 21.8 75 | 43.5 62 | 16.0 70 | 4.72 55 | 7.40 83 | 8.30 44 | 18.5 43 | 44.3 45 | 21.5 39 |
Rannacher [23] | 48.9 | 3.03 48 | 16.1 49 | 1.59 51 | 8.35 46 | 36.9 43 | 6.87 50 | 11.1 50 | 31.8 51 | 6.71 47 | 4.88 47 | 29.7 48 | 2.34 46 | 31.7 48 | 45.9 55 | 23.3 43 | 16.8 60 | 44.0 63 | 10.3 52 | 4.89 56 | 2.57 56 | 12.1 55 | 16.7 37 | 41.9 38 | 19.9 35 |
Dynamic MRF [7] | 49.9 | 3.39 52 | 18.9 60 | 1.30 29 | 5.60 19 | 33.5 28 | 2.81 19 | 9.67 43 | 31.3 48 | 3.54 22 | 4.64 46 | 33.7 53 | 2.39 47 | 38.0 67 | 51.2 71 | 34.9 66 | 19.2 71 | 51.8 77 | 15.2 69 | 3.41 47 | 0.37 8 | 20.9 76 | 25.1 59 | 52.2 61 | 31.7 59 |
DPOF [18] | 51.7 | 4.03 62 | 21.8 69 | 2.11 63 | 9.50 52 | 40.4 55 | 5.97 44 | 8.88 40 | 27.5 40 | 6.05 46 | 4.29 39 | 30.8 50 | 2.08 43 | 31.5 43 | 45.1 49 | 21.6 34 | 15.9 58 | 37.3 41 | 9.53 48 | 15.3 88 | 1.61 31 | 47.3 88 | 22.1 54 | 46.3 51 | 28.5 52 |
Brox et al. [5] | 51.8 | 3.55 59 | 18.8 59 | 1.64 53 | 10.1 57 | 39.6 54 | 8.97 61 | 11.7 51 | 33.4 55 | 8.96 52 | 6.57 55 | 36.4 59 | 3.41 51 | 38.2 68 | 47.6 61 | 45.3 78 | 13.5 29 | 42.4 59 | 9.63 49 | 0.27 5 | 0.99 18 | 0.47 3 | 31.0 67 | 56.4 70 | 43.3 69 |
Local-TV-L1 [65] | 52.1 | 4.05 63 | 19.4 63 | 2.51 68 | 17.1 65 | 43.6 65 | 15.9 64 | 19.8 67 | 37.3 63 | 23.3 66 | 9.20 66 | 43.3 64 | 6.89 65 | 28.6 32 | 41.3 36 | 20.2 32 | 14.1 41 | 35.1 33 | 8.67 39 | 1.24 13 | 0.62 13 | 3.94 15 | 33.5 72 | 57.2 71 | 49.6 74 |
CBF [12] | 52.3 | 2.82 44 | 15.0 45 | 1.32 30 | 18.0 66 | 40.4 55 | 21.6 68 | 10.6 49 | 29.2 46 | 9.72 53 | 6.57 55 | 34.8 56 | 4.55 57 | 31.5 43 | 44.0 41 | 24.5 46 | 14.5 48 | 35.0 30 | 8.92 41 | 10.9 83 | 6.02 78 | 26.2 78 | 20.7 51 | 43.6 42 | 27.2 50 |
Fusion [6] | 52.4 | 3.40 53 | 19.1 61 | 2.16 64 | 5.57 18 | 31.1 23 | 4.53 28 | 7.70 34 | 25.2 35 | 7.53 49 | 5.78 50 | 35.6 58 | 4.10 54 | 36.6 63 | 47.1 58 | 38.8 69 | 14.2 43 | 41.9 58 | 13.2 65 | 6.84 72 | 5.31 75 | 11.7 53 | 24.8 58 | 51.1 59 | 31.6 58 |
CLG-TV [48] | 53.4 | 2.80 42 | 14.6 42 | 1.41 40 | 14.0 62 | 40.7 58 | 14.1 63 | 12.7 52 | 32.0 52 | 11.0 57 | 8.13 61 | 47.7 71 | 5.99 61 | 32.0 50 | 45.2 50 | 25.2 47 | 14.1 41 | 40.1 51 | 10.9 56 | 6.45 68 | 5.82 77 | 10.4 48 | 19.0 45 | 42.4 39 | 26.6 49 |
LDOF [28] | 53.9 | 4.09 65 | 20.0 64 | 2.31 66 | 9.96 55 | 41.8 61 | 7.06 52 | 14.1 57 | 37.0 61 | 10.1 56 | 8.41 62 | 43.3 64 | 4.97 59 | 34.4 59 | 46.2 56 | 32.5 59 | 12.2 14 | 41.0 55 | 8.88 40 | 1.63 20 | 2.00 42 | 5.79 28 | 29.9 65 | 56.0 68 | 38.8 65 |
p-harmonic [29] | 54.5 | 3.47 55 | 19.1 61 | 2.29 65 | 8.40 47 | 35.9 39 | 6.80 49 | 12.8 53 | 34.6 57 | 9.84 55 | 9.04 64 | 47.6 70 | 6.72 64 | 37.1 64 | 48.7 65 | 39.6 70 | 13.1 22 | 44.0 63 | 11.2 57 | 3.43 48 | 2.50 54 | 6.33 29 | 21.2 53 | 45.2 47 | 30.5 56 |
FastOF [78] | 55.5 | 2.70 41 | 13.6 35 | 1.46 45 | 11.0 60 | 42.1 62 | 8.28 58 | 15.9 63 | 35.5 59 | 19.7 64 | 7.41 59 | 26.6 34 | 6.24 62 | 33.6 54 | 44.3 43 | 38.0 68 | 19.9 73 | 52.4 79 | 16.0 70 | 4.67 53 | 0.89 16 | 8.72 45 | 27.2 64 | 52.6 62 | 35.8 62 |
SuperFlow [89] | 57.0 | 3.40 53 | 16.6 50 | 1.81 59 | 15.3 64 | 41.5 59 | 15.9 64 | 17.0 65 | 35.2 58 | 27.6 67 | 10.0 68 | 43.1 63 | 8.60 67 | 36.1 62 | 44.3 43 | 46.7 79 | 13.1 22 | 39.8 47 | 11.3 58 | 2.49 31 | 4.24 72 | 4.26 18 | 30.0 66 | 54.7 65 | 40.8 67 |
Learning Flow [11] | 58.8 | 3.56 60 | 18.2 55 | 1.56 50 | 8.71 49 | 41.5 59 | 6.17 47 | 14.5 60 | 37.8 65 | 11.8 59 | 7.92 60 | 41.1 62 | 5.02 60 | 40.9 76 | 51.7 73 | 42.4 72 | 15.4 55 | 47.2 70 | 11.4 59 | 2.73 35 | 6.19 79 | 7.64 41 | 23.0 56 | 49.9 57 | 28.9 53 |
Second-order prior [8] | 59.2 | 3.49 56 | 18.6 56 | 1.79 56 | 9.83 54 | 40.6 57 | 7.83 56 | 14.1 57 | 39.0 66 | 9.82 54 | 6.20 52 | 31.4 51 | 3.83 52 | 34.7 61 | 49.4 68 | 27.6 53 | 18.7 67 | 52.1 78 | 11.4 59 | 9.18 79 | 3.60 66 | 20.1 74 | 19.1 46 | 48.2 55 | 24.4 47 |
Ad-TV-NDC [36] | 60.0 | 10.3 80 | 20.2 65 | 18.1 85 | 38.1 80 | 53.0 75 | 43.3 80 | 28.0 76 | 45.6 73 | 35.7 73 | 20.6 75 | 48.9 73 | 23.8 76 | 29.1 36 | 42.5 38 | 19.1 25 | 13.7 35 | 36.1 36 | 9.46 47 | 2.03 26 | 1.43 27 | 4.38 19 | 41.4 80 | 65.3 79 | 57.0 80 |
BlockOverlap [61] | 63.1 | 4.14 68 | 17.3 53 | 3.50 71 | 23.3 69 | 43.1 64 | 25.5 71 | 21.0 68 | 37.2 62 | 27.8 68 | 13.1 69 | 39.0 60 | 13.7 71 | 28.8 34 | 38.6 26 | 28.2 54 | 18.7 67 | 37.2 40 | 13.3 66 | 12.6 85 | 6.40 82 | 40.8 86 | 26.8 62 | 45.8 49 | 43.3 69 |
SegOF [10] | 64.3 | 6.07 75 | 25.2 74 | 3.62 72 | 36.7 78 | 55.3 76 | 41.7 78 | 26.1 72 | 43.8 71 | 39.2 76 | 15.2 71 | 45.4 67 | 12.3 69 | 46.5 79 | 56.0 79 | 57.5 83 | 18.2 65 | 49.9 73 | 14.9 68 | 0.19 3 | 0.71 14 | 0.86 6 | 31.1 68 | 52.9 63 | 35.9 63 |
Shiralkar [42] | 64.8 | 4.11 66 | 23.3 70 | 1.52 48 | 8.88 50 | 44.5 66 | 5.07 34 | 14.5 60 | 41.9 69 | 6.96 48 | 7.32 58 | 44.7 66 | 4.37 56 | 38.8 72 | 55.2 78 | 33.1 60 | 26.7 80 | 60.7 80 | 18.5 76 | 10.4 80 | 3.38 65 | 32.9 82 | 26.7 61 | 61.6 76 | 29.5 54 |
HBpMotionGpu [43] | 65.0 | 5.00 69 | 21.6 68 | 2.81 70 | 31.1 75 | 49.5 70 | 35.0 75 | 26.3 74 | 45.3 72 | 37.1 75 | 9.18 65 | 39.3 61 | 7.65 66 | 33.7 55 | 45.6 53 | 32.2 58 | 15.7 57 | 37.4 42 | 9.89 50 | 5.71 64 | 4.19 71 | 12.5 57 | 33.4 71 | 56.3 69 | 47.8 72 |
SPSA-learn [13] | 65.3 | 5.52 72 | 25.3 76 | 4.12 74 | 25.2 72 | 50.0 71 | 26.8 72 | 25.1 71 | 45.7 74 | 36.7 74 | 19.0 72 | 54.2 75 | 20.8 73 | 38.6 69 | 48.4 64 | 44.4 75 | 17.9 63 | 45.3 66 | 17.6 73 | 1.60 19 | 0.54 11 | 5.27 25 | 39.6 77 | 57.9 73 | 53.3 77 |
StereoFlow [44] | 65.5 | 28.4 90 | 55.1 90 | 37.7 89 | 81.1 90 | 92.6 90 | 77.8 90 | 65.0 90 | 82.9 90 | 51.1 87 | 69.6 90 | 90.7 90 | 65.5 88 | 52.7 85 | 67.5 85 | 44.9 77 | 8.13 2 | 33.5 27 | 6.60 8 | 0.05 2 | 0.37 8 | 0.17 1 | 32.2 70 | 54.8 66 | 40.4 66 |
Black & Anandan [4] | 67.5 | 5.52 72 | 25.2 74 | 4.71 76 | 24.4 71 | 52.8 73 | 24.4 70 | 26.8 75 | 48.3 76 | 34.4 71 | 20.9 76 | 60.4 78 | 22.4 75 | 38.7 71 | 49.7 69 | 42.8 73 | 18.9 69 | 49.4 71 | 17.1 72 | 1.78 22 | 2.57 56 | 3.30 11 | 36.0 73 | 57.3 72 | 49.5 73 |
Filter Flow [19] | 67.8 | 5.13 70 | 23.5 71 | 2.40 67 | 20.5 68 | 51.3 72 | 19.6 67 | 23.3 70 | 42.6 70 | 35.3 72 | 27.2 77 | 48.8 72 | 28.3 77 | 39.4 73 | 49.1 67 | 44.6 76 | 17.9 63 | 40.5 53 | 11.8 62 | 7.39 74 | 7.67 85 | 11.5 52 | 26.6 60 | 46.0 50 | 33.9 60 |
IAOF2 [51] | 68.1 | 4.13 67 | 20.4 67 | 2.02 62 | 18.0 66 | 45.9 67 | 18.0 66 | 17.1 66 | 37.3 63 | 21.4 65 | 46.4 84 | 57.8 77 | 56.1 87 | 37.4 66 | 48.8 66 | 35.9 67 | 25.5 77 | 42.7 60 | 20.4 78 | 6.62 70 | 3.04 62 | 15.3 67 | 26.8 62 | 51.0 58 | 37.9 64 |
Modified CLG [34] | 69.5 | 7.42 76 | 31.9 78 | 5.50 77 | 31.7 76 | 52.9 74 | 37.6 77 | 28.4 77 | 50.8 77 | 40.4 78 | 20.3 74 | 60.5 79 | 21.3 74 | 39.5 75 | 51.2 71 | 42.2 71 | 14.2 43 | 45.8 69 | 11.5 61 | 3.24 43 | 1.70 36 | 9.31 46 | 40.3 78 | 65.1 78 | 54.7 79 |
IAOF [50] | 70.2 | 5.70 74 | 24.0 72 | 3.65 73 | 30.0 74 | 48.7 69 | 33.9 74 | 26.2 73 | 47.8 75 | 29.5 69 | 28.0 78 | 51.3 74 | 32.9 78 | 37.3 65 | 50.2 70 | 34.4 64 | 26.2 78 | 50.9 76 | 18.0 75 | 5.85 66 | 1.63 32 | 11.7 53 | 36.3 74 | 59.4 75 | 51.9 75 |
GraphCuts [14] | 70.8 | 5.45 71 | 24.7 73 | 2.64 69 | 24.3 70 | 55.8 78 | 21.9 69 | 21.4 69 | 40.8 68 | 32.4 70 | 9.25 67 | 46.4 68 | 6.31 63 | 38.6 69 | 51.7 73 | 33.8 62 | 28.8 82 | 39.7 46 | 18.7 77 | 12.1 84 | 2.87 60 | 35.1 84 | 38.5 75 | 58.4 74 | 53.9 78 |
GroupFlow [9] | 72.3 | 8.95 79 | 33.2 79 | 7.07 79 | 43.6 81 | 70.7 86 | 45.5 81 | 32.7 79 | 59.8 82 | 42.4 81 | 13.2 70 | 46.6 69 | 12.4 70 | 51.1 82 | 70.0 87 | 34.2 63 | 30.8 84 | 62.8 82 | 33.8 85 | 1.54 18 | 2.56 55 | 4.14 16 | 39.0 76 | 67.0 81 | 47.4 71 |
2D-CLG [1] | 72.5 | 14.0 84 | 40.7 84 | 8.09 81 | 45.8 82 | 59.5 79 | 54.5 83 | 36.8 83 | 60.4 83 | 47.3 84 | 48.9 86 | 75.1 86 | 54.2 86 | 44.9 77 | 54.8 76 | 52.5 80 | 19.0 70 | 50.3 75 | 17.8 74 | 1.26 14 | 0.07 3 | 4.43 20 | 47.4 83 | 71.2 82 | 59.9 84 |
Nguyen [33] | 74.4 | 8.19 77 | 31.4 77 | 4.40 75 | 54.9 85 | 55.7 77 | 70.2 86 | 33.6 81 | 54.6 78 | 43.3 82 | 43.5 83 | 60.9 80 | 50.5 84 | 45.1 78 | 54.9 77 | 54.2 81 | 21.1 74 | 49.4 71 | 21.0 79 | 2.92 39 | 1.87 38 | 7.39 40 | 44.7 81 | 66.2 80 | 58.5 82 |
Horn & Schunck [3] | 75.4 | 8.56 78 | 35.5 80 | 7.11 80 | 29.4 73 | 65.4 82 | 28.1 73 | 33.4 80 | 64.4 85 | 41.2 80 | 30.6 79 | 67.2 82 | 33.6 79 | 49.1 81 | 61.3 80 | 55.5 82 | 26.4 79 | 64.7 85 | 26.1 82 | 3.02 40 | 3.95 69 | 2.44 9 | 48.8 84 | 75.0 84 | 58.8 83 |
SILK [87] | 76.7 | 10.7 81 | 35.7 81 | 14.6 82 | 37.7 79 | 64.2 80 | 42.5 79 | 32.3 78 | 59.3 81 | 40.6 79 | 19.9 73 | 56.8 76 | 20.4 72 | 51.6 84 | 62.6 82 | 59.6 86 | 27.2 81 | 63.0 83 | 23.2 80 | 4.92 58 | 1.68 35 | 13.1 60 | 46.9 82 | 71.6 83 | 61.7 86 |
TI-DOFE [24] | 79.8 | 21.2 89 | 43.7 86 | 34.5 88 | 64.6 89 | 71.9 88 | 76.5 89 | 47.1 88 | 75.6 89 | 53.7 88 | 57.3 88 | 76.4 87 | 65.6 89 | 51.5 83 | 63.9 83 | 60.0 87 | 30.4 83 | 65.8 87 | 33.2 83 | 2.24 29 | 1.65 34 | 5.22 24 | 59.1 88 | 82.1 89 | 71.2 88 |
Periodicity [86] | 80.0 | 11.0 82 | 41.5 85 | 5.85 78 | 35.3 77 | 64.5 81 | 36.8 76 | 51.0 89 | 55.5 79 | 61.7 90 | 49.6 87 | 81.4 89 | 48.4 83 | 66.0 90 | 83.6 90 | 59.0 84 | 46.1 89 | 76.4 90 | 43.0 89 | 1.67 21 | 5.33 76 | 8.13 43 | 48.8 84 | 78.9 86 | 57.5 81 |
SLK [47] | 82.5 | 17.8 87 | 50.1 89 | 21.7 86 | 62.2 88 | 77.8 89 | 74.7 88 | 40.4 86 | 72.7 88 | 48.1 85 | 66.2 89 | 73.9 85 | 76.1 90 | 60.9 88 | 71.2 88 | 72.9 90 | 33.1 85 | 68.3 88 | 35.4 87 | 5.99 67 | 1.09 21 | 11.4 51 | 60.5 89 | 81.9 88 | 75.0 89 |
Adaptive flow [45] | 83.0 | 16.0 85 | 36.3 82 | 17.5 84 | 57.9 86 | 67.3 83 | 64.2 85 | 38.7 85 | 59.2 80 | 48.8 86 | 39.9 81 | 69.2 83 | 44.2 82 | 49.0 80 | 62.0 81 | 43.6 74 | 39.1 88 | 62.2 81 | 34.3 86 | 34.2 90 | 23.4 90 | 82.8 90 | 40.6 79 | 64.9 77 | 51.9 75 |
FOLKI [16] | 84.2 | 13.4 83 | 45.9 87 | 16.0 83 | 48.5 84 | 67.4 84 | 57.8 84 | 36.6 82 | 66.2 86 | 40.3 77 | 32.2 80 | 66.9 81 | 37.2 80 | 52.9 86 | 64.2 84 | 60.1 88 | 34.7 86 | 65.7 86 | 40.2 88 | 12.9 86 | 7.56 84 | 33.8 83 | 55.3 87 | 78.0 85 | 70.7 87 |
PGAM+LK [55] | 85.8 | 17.6 86 | 48.4 88 | 26.7 87 | 45.8 82 | 71.8 87 | 49.9 82 | 38.3 84 | 67.6 87 | 44.6 83 | 42.8 82 | 79.5 88 | 42.6 81 | 56.5 87 | 69.9 86 | 59.0 84 | 37.8 87 | 70.5 89 | 33.6 84 | 23.5 89 | 15.0 89 | 48.8 89 | 54.6 86 | 80.9 87 | 61.1 85 |
Pyramid LK [2] | 86.6 | 19.8 88 | 36.7 83 | 40.3 90 | 61.8 87 | 68.8 85 | 74.6 87 | 43.5 87 | 63.7 84 | 58.2 89 | 46.9 85 | 72.7 84 | 54.1 85 | 61.5 89 | 74.5 89 | 65.8 89 | 51.3 90 | 64.1 84 | 50.1 90 | 10.8 82 | 6.30 80 | 31.9 81 | 68.2 90 | 84.9 90 | 84.8 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |