Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R2.0 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 3.4 | 0.19 16 | 1.11 18 | 0.00 1 | 0.73 2 | 5.01 2 | 0.12 2 | 1.08 2 | 3.84 2 | 0.00 1 | 0.54 1 | 4.91 1 | 0.02 1 | 4.35 2 | 7.43 2 | 0.89 2 | 1.53 1 | 8.39 2 | 1.54 2 | 0.00 1 | 0.00 1 | 0.00 1 | 3.65 4 | 12.4 12 | 1.32 2 |
NN-field [73] | 6.5 | 0.23 32 | 1.37 35 | 0.00 1 | 0.64 1 | 4.87 1 | 0.07 1 | 1.23 5 | 4.31 3 | 0.03 2 | 0.60 2 | 5.03 2 | 0.04 2 | 4.24 1 | 7.24 1 | 0.70 1 | 5.93 29 | 6.73 1 | 2.33 5 | 0.00 1 | 0.00 1 | 0.00 1 | 3.87 7 | 13.1 21 | 1.27 1 |
OFLADF [82] | 7.2 | 0.20 20 | 1.21 21 | 0.00 1 | 0.92 6 | 5.66 5 | 0.25 12 | 1.22 3 | 4.32 4 | 0.12 7 | 1.03 9 | 8.42 12 | 0.22 14 | 7.31 6 | 12.4 6 | 2.79 6 | 3.20 5 | 11.6 4 | 3.15 9 | 0.00 1 | 0.00 1 | 0.00 1 | 3.66 5 | 9.73 2 | 7.15 12 |
Layers++ [37] | 11.0 | 0.15 5 | 0.90 6 | 0.00 1 | 0.88 5 | 6.28 6 | 0.29 13 | 1.61 10 | 5.50 10 | 0.95 43 | 0.92 6 | 5.94 4 | 0.24 19 | 6.07 3 | 9.99 3 | 3.95 10 | 6.14 33 | 15.3 11 | 5.23 42 | 0.00 1 | 0.00 1 | 0.00 1 | 4.11 10 | 10.5 3 | 7.50 17 |
Epistemic [84] | 11.0 | 0.17 8 | 1.02 12 | 0.03 37 | 0.93 7 | 6.31 7 | 0.23 11 | 1.48 8 | 5.26 8 | 0.22 11 | 0.68 3 | 6.90 6 | 0.05 3 | 10.5 27 | 17.2 28 | 7.34 28 | 3.34 6 | 15.8 14 | 3.80 15 | 0.00 1 | 0.00 1 | 0.00 1 | 3.81 6 | 11.2 7 | 6.45 9 |
MDP-Flow2 [70] | 11.0 | 0.18 12 | 1.07 14 | 0.03 37 | 0.82 3 | 5.18 3 | 0.20 7 | 1.31 6 | 4.69 6 | 0.09 5 | 1.24 27 | 11.0 33 | 0.24 19 | 9.23 17 | 15.2 20 | 5.96 18 | 2.65 3 | 11.8 5 | 3.56 12 | 0.00 1 | 0.00 1 | 0.00 1 | 3.61 3 | 11.1 5 | 5.40 7 |
TC/T-Flow [80] | 11.1 | 0.11 1 | 0.67 1 | 0.00 1 | 1.63 28 | 8.48 22 | 0.45 17 | 2.21 11 | 7.45 12 | 0.16 8 | 1.20 24 | 10.2 28 | 0.16 4 | 9.34 20 | 14.9 17 | 6.04 19 | 1.76 2 | 9.86 3 | 1.36 1 | 0.00 1 | 0.00 1 | 0.00 1 | 4.64 17 | 12.6 15 | 7.19 13 |
FC-2Layers-FF [77] | 15.5 | 0.19 16 | 1.10 16 | 0.00 1 | 1.53 26 | 10.0 34 | 0.68 34 | 1.47 7 | 5.05 7 | 0.37 22 | 1.07 11 | 8.29 11 | 0.22 14 | 6.46 4 | 10.5 4 | 3.24 7 | 6.93 39 | 15.2 10 | 5.43 48 | 0.00 1 | 0.00 1 | 0.00 1 | 4.89 21 | 12.6 15 | 7.93 21 |
nLayers [57] | 15.5 | 0.19 16 | 1.13 19 | 0.00 1 | 1.04 8 | 7.08 12 | 0.31 14 | 2.42 19 | 8.37 24 | 0.50 27 | 1.10 14 | 8.82 13 | 0.38 39 | 6.91 5 | 11.4 5 | 3.98 11 | 6.52 36 | 12.6 6 | 5.28 43 | 0.00 1 | 0.00 1 | 0.00 1 | 4.63 16 | 12.5 14 | 8.25 27 |
Correlation Flow [79] | 15.7 | 0.25 44 | 1.46 45 | 0.00 1 | 1.10 12 | 7.16 13 | 0.22 9 | 4.18 39 | 12.3 39 | 0.35 20 | 0.74 4 | 5.14 3 | 0.22 14 | 11.5 31 | 17.7 30 | 9.04 34 | 4.12 13 | 13.1 7 | 2.69 7 | 0.00 1 | 0.00 1 | 0.00 1 | 3.48 1 | 10.9 4 | 3.71 3 |
PMF [76] | 17.0 | 0.20 20 | 1.19 20 | 0.03 37 | 1.06 11 | 6.51 8 | 0.18 4 | 1.50 9 | 5.33 9 | 0.09 5 | 1.26 29 | 9.04 17 | 0.23 17 | 7.32 7 | 12.4 6 | 1.91 3 | 5.47 24 | 16.3 19 | 4.67 28 | 0.09 62 | 0.00 1 | 0.25 60 | 3.51 2 | 9.50 1 | 6.99 10 |
IROF++ [58] | 17.1 | 0.23 32 | 1.37 35 | 0.00 1 | 1.37 20 | 8.26 19 | 0.45 17 | 2.40 15 | 7.86 14 | 0.51 29 | 1.16 21 | 9.50 23 | 0.24 19 | 8.06 12 | 13.2 11 | 4.86 14 | 5.64 26 | 16.4 22 | 4.51 25 | 0.00 1 | 0.00 1 | 0.00 1 | 4.62 14 | 12.7 18 | 7.93 21 |
EP-PM [83] | 19.3 | 0.21 22 | 1.25 25 | 0.03 37 | 1.05 9 | 6.95 11 | 0.19 5 | 2.42 19 | 8.24 21 | 0.08 4 | 1.00 7 | 7.81 9 | 0.21 11 | 7.69 9 | 13.0 9 | 2.55 5 | 6.45 35 | 18.5 37 | 4.04 17 | 0.43 79 | 0.00 1 | 0.76 67 | 3.98 9 | 11.1 5 | 7.10 11 |
CostFilter [40] | 19.4 | 0.22 25 | 1.32 30 | 0.03 37 | 1.16 14 | 6.61 9 | 0.22 9 | 1.22 3 | 4.37 5 | 0.21 10 | 1.29 30 | 10.2 28 | 0.21 11 | 7.77 10 | 13.2 11 | 2.07 4 | 5.43 23 | 15.9 16 | 3.96 16 | 0.07 59 | 0.00 1 | 0.12 56 | 4.75 20 | 13.5 25 | 7.19 13 |
TC-Flow [46] | 20.5 | 0.13 2 | 0.77 2 | 0.00 1 | 1.38 21 | 8.10 18 | 0.47 20 | 2.97 32 | 10.0 33 | 0.34 18 | 1.36 34 | 10.5 30 | 0.25 29 | 11.2 30 | 18.1 32 | 7.49 29 | 3.36 7 | 17.1 30 | 1.78 4 | 0.00 1 | 0.00 1 | 0.00 1 | 6.35 36 | 17.8 38 | 10.0 44 |
COFM [59] | 22.0 | 0.28 50 | 1.64 50 | 0.06 52 | 1.31 18 | 7.81 15 | 0.57 27 | 3.57 37 | 12.0 37 | 1.10 46 | 0.91 5 | 7.78 8 | 0.16 4 | 11.7 33 | 18.5 34 | 10.3 44 | 4.05 11 | 13.7 8 | 4.28 21 | 0.00 1 | 0.00 1 | 0.00 1 | 3.96 8 | 11.5 8 | 6.40 8 |
ADF [67] | 22.2 | 0.17 8 | 0.94 8 | 0.03 37 | 1.34 19 | 8.61 24 | 0.61 30 | 2.92 28 | 9.93 31 | 0.85 38 | 1.37 35 | 10.8 32 | 0.21 11 | 10.2 25 | 16.5 26 | 6.07 21 | 7.19 43 | 16.5 24 | 5.13 40 | 0.00 1 | 0.00 1 | 0.00 1 | 4.37 12 | 12.2 11 | 8.09 26 |
Sparse-NonSparse [56] | 22.7 | 0.22 25 | 1.31 27 | 0.00 1 | 1.87 40 | 11.4 40 | 0.80 36 | 2.47 23 | 8.05 18 | 0.52 30 | 1.15 20 | 8.89 15 | 0.24 19 | 9.37 21 | 15.3 21 | 5.94 17 | 7.18 41 | 16.3 19 | 5.47 51 | 0.00 1 | 0.00 1 | 0.00 1 | 5.08 27 | 13.1 21 | 8.42 29 |
ALD-Flow [68] | 23.0 | 0.14 4 | 0.85 4 | 0.01 28 | 1.70 31 | 8.34 20 | 0.50 23 | 2.94 30 | 9.96 32 | 0.38 24 | 1.68 43 | 13.0 42 | 0.32 36 | 11.8 34 | 18.8 35 | 8.42 33 | 2.93 4 | 16.4 22 | 1.70 3 | 0.00 1 | 0.00 1 | 0.00 1 | 5.91 33 | 17.4 37 | 8.45 30 |
LSM [39] | 23.1 | 0.21 22 | 1.23 22 | 0.00 1 | 1.88 41 | 11.5 41 | 0.82 38 | 2.45 21 | 8.04 17 | 0.52 30 | 1.12 16 | 9.06 18 | 0.23 17 | 9.27 19 | 15.1 19 | 6.05 20 | 7.21 45 | 16.5 24 | 5.47 51 | 0.00 1 | 0.00 1 | 0.00 1 | 5.29 30 | 13.8 28 | 8.49 32 |
LME [72] | 23.1 | 0.24 37 | 1.40 39 | 0.04 46 | 0.84 4 | 5.51 4 | 0.21 8 | 3.70 38 | 8.78 25 | 5.39 63 | 1.38 36 | 11.0 33 | 0.37 38 | 9.52 23 | 15.3 21 | 7.58 30 | 3.73 8 | 16.9 28 | 4.43 23 | 0.00 1 | 0.00 1 | 0.00 1 | 4.62 14 | 12.6 15 | 7.77 19 |
Levin3 [90] | 23.1 | 0.22 25 | 1.31 27 | 0.00 1 | 1.69 30 | 9.54 30 | 0.50 23 | 2.41 17 | 7.70 13 | 0.34 18 | 1.10 14 | 7.98 10 | 0.24 19 | 7.67 8 | 12.7 8 | 3.81 9 | 7.52 47 | 15.8 14 | 5.43 48 | 0.30 73 | 0.00 1 | 0.99 72 | 4.70 18 | 11.9 10 | 7.79 20 |
MDP-Flow [26] | 23.4 | 0.13 2 | 0.78 3 | 0.00 1 | 1.05 9 | 6.71 10 | 0.64 32 | 2.31 13 | 8.09 19 | 1.26 51 | 1.35 33 | 12.5 41 | 0.28 30 | 10.4 26 | 16.8 27 | 7.29 26 | 5.39 22 | 16.9 28 | 4.89 34 | 0.00 1 | 0.00 1 | 0.00 1 | 8.69 52 | 21.5 49 | 12.1 51 |
FESL [75] | 23.9 | 0.23 32 | 1.35 33 | 0.00 1 | 1.71 33 | 9.38 29 | 0.54 26 | 2.22 12 | 7.40 11 | 0.31 13 | 1.08 12 | 9.18 20 | 0.16 4 | 7.97 11 | 13.0 9 | 4.61 12 | 7.68 50 | 16.5 24 | 5.87 57 | 0.09 62 | 0.00 1 | 0.17 58 | 4.96 23 | 12.4 12 | 8.31 28 |
SCR [74] | 24.6 | 0.23 32 | 1.35 33 | 0.00 1 | 1.38 21 | 8.36 21 | 0.40 16 | 2.40 15 | 7.95 15 | 0.83 37 | 1.13 17 | 8.88 14 | 0.24 19 | 8.66 15 | 14.2 16 | 4.97 15 | 7.19 43 | 15.6 12 | 5.55 53 | 0.09 62 | 0.00 1 | 0.42 63 | 5.03 25 | 12.9 19 | 8.06 25 |
NL-TV-NCC [25] | 24.8 | 0.24 37 | 1.43 43 | 0.01 28 | 1.43 24 | 9.86 33 | 0.16 3 | 3.10 33 | 10.1 34 | 0.20 9 | 1.13 17 | 9.56 24 | 0.16 4 | 11.5 31 | 18.3 33 | 7.31 27 | 8.51 59 | 20.7 53 | 4.68 29 | 0.00 1 | 0.00 1 | 0.00 1 | 5.59 31 | 16.1 33 | 5.10 6 |
Classic+NL [31] | 24.8 | 0.23 32 | 1.34 32 | 0.01 28 | 1.93 42 | 11.7 42 | 0.80 36 | 2.57 25 | 8.35 22 | 0.58 33 | 1.22 25 | 9.29 22 | 0.24 19 | 8.66 15 | 14.1 15 | 5.48 16 | 7.52 47 | 16.3 19 | 5.42 46 | 0.00 1 | 0.00 1 | 0.00 1 | 5.06 26 | 12.9 19 | 8.47 31 |
DPOF [18] | 25.0 | 0.17 8 | 0.99 9 | 0.00 1 | 2.06 45 | 10.3 35 | 0.92 42 | 0.99 1 | 3.51 1 | 0.05 3 | 1.08 12 | 9.87 26 | 0.17 8 | 8.25 14 | 13.8 14 | 3.72 8 | 9.58 69 | 18.7 38 | 5.78 56 | 1.06 85 | 0.00 1 | 2.93 83 | 4.41 13 | 13.4 24 | 3.94 4 |
Direct ZNCC [66] | 26.0 | 0.31 57 | 1.85 60 | 0.00 1 | 1.78 35 | 11.1 37 | 0.84 40 | 4.20 40 | 12.6 42 | 0.37 22 | 1.01 8 | 6.53 5 | 0.29 33 | 14.1 52 | 21.0 47 | 12.7 54 | 5.18 20 | 16.0 17 | 3.43 10 | 0.00 1 | 0.00 1 | 0.00 1 | 4.32 11 | 13.6 26 | 4.14 5 |
Efficient-NL [60] | 26.1 | 0.22 25 | 1.29 26 | 0.00 1 | 1.25 16 | 7.99 17 | 0.48 22 | 2.92 28 | 9.31 27 | 0.31 13 | 1.23 26 | 9.67 25 | 0.31 35 | 8.23 13 | 13.5 13 | 4.72 13 | 8.45 58 | 17.1 30 | 6.06 59 | 0.12 67 | 0.00 1 | 0.54 65 | 4.71 19 | 11.6 9 | 7.75 18 |
Complementary OF [21] | 27.2 | 0.15 5 | 0.89 5 | 0.00 1 | 1.43 24 | 8.69 25 | 0.35 15 | 2.54 24 | 8.95 26 | 0.28 12 | 1.45 37 | 12.4 38 | 0.28 30 | 14.9 58 | 21.6 55 | 15.4 60 | 7.75 51 | 17.6 35 | 3.64 13 | 0.00 1 | 0.00 1 | 0.00 1 | 7.27 42 | 22.2 55 | 9.59 40 |
Ramp [62] | 27.6 | 0.21 22 | 1.24 23 | 0.00 1 | 1.77 34 | 11.1 37 | 0.79 35 | 2.39 14 | 7.95 15 | 0.55 32 | 1.17 23 | 9.16 19 | 0.24 19 | 9.25 18 | 14.9 17 | 6.31 22 | 7.18 41 | 15.7 13 | 5.42 46 | 0.19 71 | 0.00 1 | 0.96 71 | 5.18 29 | 13.3 23 | 8.87 37 |
OFH [38] | 28.4 | 0.17 8 | 1.00 11 | 0.00 1 | 1.80 37 | 9.80 31 | 0.66 33 | 4.49 44 | 13.2 46 | 0.47 26 | 1.62 41 | 13.6 44 | 0.35 37 | 13.2 42 | 20.8 44 | 10.2 42 | 3.85 9 | 20.4 50 | 2.41 6 | 0.00 1 | 0.00 1 | 0.00 1 | 7.06 39 | 21.6 50 | 9.31 38 |
IROF-TV [53] | 28.8 | 0.22 25 | 1.24 23 | 0.01 28 | 1.83 39 | 11.9 43 | 0.87 41 | 2.96 31 | 9.37 28 | 0.50 27 | 1.70 44 | 14.6 48 | 0.46 43 | 9.51 22 | 15.4 23 | 6.49 23 | 4.78 18 | 22.9 61 | 4.55 27 | 0.00 1 | 0.00 1 | 0.00 1 | 5.17 28 | 14.4 31 | 8.73 34 |
TV-L1-MCT [64] | 30.5 | 0.22 25 | 1.33 31 | 0.00 1 | 1.64 29 | 9.85 32 | 0.52 25 | 2.86 27 | 9.38 29 | 0.32 16 | 1.14 19 | 8.89 15 | 0.24 19 | 10.6 28 | 16.4 25 | 9.05 35 | 8.81 63 | 17.2 33 | 5.12 39 | 0.08 61 | 0.00 1 | 0.84 69 | 5.93 34 | 14.3 30 | 10.1 45 |
TCOF [71] | 30.5 | 0.18 12 | 1.06 13 | 0.00 1 | 1.56 27 | 9.24 28 | 0.60 29 | 4.63 46 | 12.8 44 | 0.89 40 | 1.34 32 | 12.4 38 | 0.20 10 | 12.4 36 | 19.6 37 | 9.52 37 | 6.02 30 | 14.3 9 | 5.03 36 | 0.34 78 | 0.00 1 | 1.23 76 | 4.94 22 | 13.6 26 | 8.00 23 |
ACK-Prior [27] | 31.5 | 0.15 5 | 0.91 7 | 0.00 1 | 1.21 15 | 7.63 14 | 0.19 5 | 2.41 17 | 8.36 23 | 0.35 20 | 1.25 28 | 10.5 30 | 0.18 9 | 12.4 36 | 18.0 31 | 11.2 45 | 9.00 67 | 19.4 44 | 6.39 63 | 0.17 69 | 0.00 1 | 1.01 73 | 9.72 57 | 20.1 43 | 13.3 54 |
CRTflow [88] | 32.0 | 0.18 12 | 0.99 9 | 0.03 37 | 1.70 31 | 9.09 27 | 0.59 28 | 4.56 45 | 12.8 44 | 0.68 34 | 2.03 53 | 15.1 49 | 0.64 49 | 12.4 36 | 20.0 41 | 8.26 32 | 4.42 14 | 24.0 65 | 3.47 11 | 0.00 1 | 0.00 1 | 0.00 1 | 7.88 48 | 22.0 54 | 10.4 47 |
SimpleFlow [49] | 32.6 | 0.22 25 | 1.31 27 | 0.00 1 | 1.78 35 | 11.0 36 | 0.82 38 | 4.30 42 | 12.5 41 | 1.22 50 | 1.16 21 | 9.20 21 | 0.24 19 | 9.84 24 | 15.8 24 | 6.94 25 | 8.51 59 | 17.3 34 | 6.11 60 | 0.09 62 | 0.00 1 | 0.39 62 | 5.01 24 | 14.1 29 | 8.00 23 |
Sparse Occlusion [54] | 32.9 | 0.24 37 | 1.38 37 | 0.06 52 | 1.27 17 | 7.83 16 | 0.45 17 | 3.42 34 | 11.1 35 | 0.33 17 | 1.52 39 | 11.4 36 | 0.28 30 | 10.9 29 | 17.6 29 | 6.76 24 | 4.10 12 | 16.2 18 | 4.27 20 | 0.03 51 | 0.17 85 | 0.15 57 | 5.90 32 | 15.7 32 | 8.69 33 |
ComplOF-FED-GPU [35] | 34.1 | 0.19 16 | 1.10 16 | 0.03 37 | 2.32 51 | 12.5 46 | 0.92 42 | 2.76 26 | 9.65 30 | 0.31 13 | 1.65 42 | 13.1 43 | 0.38 39 | 13.4 45 | 21.2 48 | 10.2 42 | 8.60 62 | 22.8 59 | 4.22 19 | 0.00 1 | 0.00 1 | 0.00 1 | 7.44 43 | 22.4 56 | 9.81 41 |
Adaptive [20] | 37.8 | 0.29 52 | 1.72 55 | 0.06 52 | 2.04 44 | 12.5 46 | 1.13 51 | 5.51 53 | 14.7 52 | 0.68 34 | 1.83 46 | 13.9 46 | 0.59 48 | 12.7 41 | 19.9 39 | 10.1 39 | 7.15 40 | 18.9 41 | 4.08 18 | 0.00 1 | 0.00 1 | 0.00 1 | 6.38 37 | 16.4 34 | 8.82 36 |
TriangleFlow [30] | 41.6 | 0.24 37 | 1.39 38 | 0.00 1 | 2.50 55 | 14.3 56 | 0.98 45 | 4.46 43 | 12.7 43 | 0.41 25 | 1.49 38 | 12.2 37 | 0.42 42 | 15.8 64 | 23.1 64 | 16.4 63 | 8.57 61 | 17.7 36 | 4.86 33 | 0.03 51 | 0.00 1 | 0.05 53 | 6.59 38 | 17.3 36 | 9.55 39 |
Occlusion-TV-L1 [63] | 41.8 | 0.27 49 | 1.55 49 | 0.06 52 | 1.99 43 | 12.1 44 | 1.14 52 | 5.42 51 | 14.9 53 | 0.93 41 | 1.83 46 | 14.0 47 | 0.49 45 | 13.6 46 | 21.2 48 | 11.5 47 | 6.13 32 | 19.6 47 | 5.37 45 | 0.00 1 | 0.00 1 | 0.00 1 | 9.19 53 | 23.4 60 | 11.5 50 |
Aniso. Huber-L1 [22] | 41.9 | 0.29 52 | 1.66 51 | 0.06 52 | 2.43 54 | 13.1 50 | 1.12 50 | 5.68 54 | 14.3 50 | 1.27 54 | 1.56 40 | 12.4 38 | 0.30 34 | 12.4 36 | 19.2 36 | 10.1 39 | 4.70 17 | 17.1 30 | 4.45 24 | 0.17 69 | 0.00 1 | 0.89 70 | 6.28 35 | 16.7 35 | 8.80 35 |
CBF [12] | 42.8 | 0.18 12 | 1.09 15 | 0.01 28 | 2.37 52 | 12.9 48 | 1.94 59 | 4.28 41 | 12.0 37 | 1.13 48 | 1.97 51 | 16.1 52 | 0.66 51 | 13.3 44 | 20.5 42 | 12.7 54 | 5.89 28 | 18.8 40 | 4.73 30 | 0.45 81 | 0.00 1 | 1.33 78 | 7.67 45 | 18.9 39 | 12.7 52 |
LocallyOriented [52] | 43.6 | 0.49 69 | 2.66 74 | 0.06 52 | 3.28 59 | 15.4 58 | 1.91 58 | 6.59 61 | 16.9 64 | 1.20 49 | 1.29 30 | 10.1 27 | 0.52 47 | 14.6 54 | 21.5 52 | 12.6 52 | 7.79 52 | 16.7 27 | 4.33 22 | 0.00 1 | 0.00 1 | 0.00 1 | 7.87 47 | 19.1 40 | 11.1 49 |
TV-L1-improved [17] | 45.4 | 0.25 44 | 1.46 45 | 0.07 59 | 1.82 38 | 11.1 37 | 1.02 46 | 5.46 52 | 15.0 54 | 1.32 55 | 2.26 59 | 16.4 55 | 0.79 56 | 13.8 48 | 21.5 52 | 11.8 48 | 9.40 68 | 23.6 64 | 6.48 64 | 0.00 1 | 0.00 1 | 0.00 1 | 7.89 49 | 21.3 48 | 10.3 46 |
Deep-Matching [85] | 45.8 | 0.44 63 | 1.83 59 | 0.11 67 | 3.60 62 | 13.7 54 | 2.22 63 | 5.75 55 | 14.4 51 | 3.99 61 | 2.75 68 | 16.1 52 | 1.68 68 | 12.2 35 | 19.8 38 | 7.97 31 | 4.78 18 | 19.8 48 | 2.88 8 | 0.00 1 | 0.00 1 | 0.00 1 | 11.3 65 | 23.6 61 | 18.4 68 |
CLG-TV [48] | 46.4 | 0.31 57 | 1.67 53 | 0.06 52 | 2.10 47 | 13.0 49 | 0.92 42 | 5.33 50 | 14.2 49 | 1.04 45 | 1.71 45 | 13.7 45 | 0.38 39 | 13.9 50 | 21.4 51 | 12.0 49 | 5.20 21 | 22.7 58 | 5.07 37 | 0.20 72 | 0.00 1 | 1.01 73 | 7.85 46 | 19.4 41 | 9.91 42 |
Classic++ [32] | 47.9 | 0.26 47 | 1.50 47 | 0.07 59 | 2.08 46 | 12.2 45 | 1.03 47 | 4.84 49 | 14.0 48 | 1.26 51 | 2.07 55 | 16.1 52 | 0.64 49 | 13.9 50 | 22.5 58 | 10.1 39 | 6.11 31 | 23.1 63 | 5.28 43 | 0.06 58 | 0.00 1 | 0.34 61 | 8.66 51 | 21.7 51 | 11.0 48 |
Bartels [41] | 48.0 | 0.24 37 | 1.40 39 | 0.01 28 | 1.42 23 | 8.88 26 | 0.62 31 | 3.51 36 | 12.4 40 | 1.00 44 | 2.26 59 | 15.8 50 | 0.95 59 | 15.5 61 | 23.3 67 | 15.8 62 | 7.99 54 | 23.0 62 | 5.20 41 | 0.33 75 | 0.00 1 | 1.92 80 | 9.95 59 | 24.0 62 | 13.7 56 |
Brox et al. [5] | 48.3 | 0.25 44 | 1.45 44 | 0.03 37 | 2.22 50 | 13.7 54 | 1.07 48 | 3.44 35 | 11.4 36 | 0.68 34 | 2.20 57 | 16.7 58 | 0.72 53 | 17.8 72 | 23.4 68 | 24.6 77 | 8.90 66 | 24.6 66 | 6.63 67 | 0.00 1 | 0.00 1 | 0.00 1 | 10.6 62 | 25.9 67 | 14.8 61 |
Fusion [6] | 48.6 | 0.24 37 | 1.41 41 | 0.05 48 | 1.13 13 | 8.57 23 | 0.47 20 | 2.45 21 | 8.15 20 | 0.93 41 | 2.12 56 | 18.3 67 | 1.21 64 | 16.2 67 | 23.1 64 | 19.6 71 | 6.72 38 | 18.7 38 | 5.67 54 | 0.07 59 | 0.15 83 | 0.10 55 | 10.4 61 | 24.9 66 | 14.6 60 |
SegOF [10] | 48.9 | 0.24 37 | 1.41 41 | 0.05 48 | 4.72 70 | 21.4 72 | 3.68 71 | 9.28 70 | 19.5 69 | 4.83 62 | 1.05 10 | 7.42 7 | 0.78 55 | 20.7 81 | 27.1 80 | 28.6 81 | 10.4 72 | 26.0 70 | 7.80 75 | 0.00 1 | 0.00 1 | 0.00 1 | 7.25 41 | 20.0 42 | 7.44 16 |
Rannacher [23] | 49.8 | 0.33 60 | 1.95 62 | 0.07 59 | 2.21 49 | 13.4 52 | 1.29 54 | 5.78 56 | 15.6 58 | 1.48 57 | 2.51 64 | 17.8 62 | 0.95 59 | 14.5 53 | 22.5 58 | 12.2 51 | 9.72 70 | 24.8 67 | 6.66 68 | 0.00 1 | 0.00 1 | 0.00 1 | 7.50 44 | 21.1 47 | 9.97 43 |
SuperFlow [89] | 50.0 | 0.45 64 | 1.75 57 | 0.10 65 | 3.01 58 | 13.4 52 | 2.04 60 | 6.82 63 | 15.2 56 | 8.24 68 | 1.96 50 | 17.0 60 | 0.50 46 | 15.6 63 | 22.2 56 | 19.2 70 | 5.87 27 | 20.6 51 | 5.46 50 | 0.00 1 | 0.00 1 | 0.00 1 | 10.1 60 | 24.6 65 | 13.4 55 |
SIOF [69] | 51.0 | 0.42 62 | 2.28 66 | 0.08 63 | 3.55 61 | 17.7 66 | 2.05 61 | 8.15 67 | 17.9 67 | 7.78 67 | 2.41 62 | 17.9 63 | 1.00 61 | 15.5 61 | 22.7 61 | 17.8 67 | 4.67 16 | 19.5 45 | 4.77 32 | 0.00 1 | 0.00 1 | 0.00 1 | 9.35 54 | 21.8 52 | 17.7 66 |
Local-TV-L1 [65] | 51.4 | 0.53 70 | 2.10 63 | 0.12 69 | 4.96 71 | 18.0 67 | 3.44 70 | 8.54 68 | 16.7 63 | 6.16 64 | 2.47 63 | 18.5 68 | 1.01 62 | 12.5 40 | 19.9 39 | 9.65 38 | 5.53 25 | 19.5 45 | 4.95 35 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 71 | 24.2 63 | 27.1 77 |
FastOF [78] | 52.5 | 0.48 68 | 2.25 65 | 0.12 69 | 4.11 67 | 17.5 64 | 2.25 65 | 7.59 65 | 15.6 58 | 8.32 69 | 1.95 49 | 11.0 33 | 1.18 63 | 14.6 54 | 20.8 44 | 18.3 69 | 8.13 56 | 25.5 69 | 7.08 71 | 0.00 1 | 0.00 1 | 0.00 1 | 9.41 55 | 20.7 45 | 14.2 59 |
Second-order prior [8] | 52.9 | 0.26 47 | 1.53 48 | 0.05 48 | 2.88 57 | 15.5 59 | 1.60 56 | 5.87 57 | 15.3 57 | 1.11 47 | 2.21 58 | 17.2 61 | 0.94 58 | 13.8 48 | 21.3 50 | 12.6 52 | 7.46 46 | 27.8 76 | 5.71 55 | 0.16 68 | 0.00 1 | 0.76 67 | 8.65 50 | 21.0 46 | 13.9 58 |
p-harmonic [29] | 53.3 | 0.29 52 | 1.73 56 | 0.02 35 | 2.16 48 | 13.2 51 | 1.33 55 | 5.87 57 | 15.8 60 | 1.59 58 | 2.55 65 | 17.9 63 | 1.49 66 | 17.0 69 | 22.7 61 | 23.3 74 | 4.53 15 | 21.5 57 | 4.53 26 | 0.03 51 | 0.02 82 | 0.00 1 | 9.65 56 | 23.2 59 | 15.0 62 |
F-TV-L1 [15] | 54.7 | 0.46 65 | 2.58 72 | 0.07 59 | 4.05 66 | 16.2 61 | 2.21 62 | 6.59 61 | 15.9 61 | 1.39 56 | 2.35 61 | 17.9 63 | 0.88 57 | 13.7 47 | 21.5 52 | 11.4 46 | 7.53 49 | 21.1 56 | 4.75 31 | 0.03 51 | 0.17 85 | 0.05 53 | 7.15 40 | 20.5 44 | 7.39 15 |
Dynamic MRF [7] | 55.5 | 0.30 56 | 1.79 58 | 0.04 46 | 2.37 52 | 14.9 57 | 1.09 49 | 4.81 48 | 15.0 54 | 0.86 39 | 2.66 66 | 18.2 66 | 1.25 65 | 17.6 71 | 25.7 78 | 18.1 68 | 10.9 76 | 30.4 81 | 7.45 73 | 0.00 1 | 0.00 1 | 0.00 1 | 15.1 75 | 29.9 79 | 21.9 72 |
Shiralkar [42] | 55.6 | 0.28 50 | 1.66 51 | 0.02 35 | 3.80 64 | 19.8 71 | 1.78 57 | 6.50 59 | 16.1 62 | 1.26 51 | 3.17 69 | 20.8 71 | 1.56 67 | 16.3 68 | 25.1 76 | 14.5 58 | 12.4 79 | 29.4 79 | 6.20 61 | 0.00 1 | 0.00 1 | 0.00 1 | 12.6 67 | 30.1 80 | 13.8 57 |
GraphCuts [14] | 58.3 | 0.29 52 | 1.67 53 | 0.16 75 | 6.77 76 | 22.4 75 | 3.81 72 | 7.73 66 | 17.2 65 | 9.04 70 | 1.86 48 | 16.8 59 | 0.46 43 | 15.8 64 | 24.0 71 | 14.1 57 | 20.2 88 | 22.8 59 | 12.5 85 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 71 | 27.0 73 | 23.4 74 |
Ad-TV-NDC [36] | 59.7 | 0.79 76 | 2.68 75 | 0.12 69 | 13.0 82 | 26.5 79 | 12.9 82 | 12.9 76 | 22.0 73 | 9.24 71 | 5.02 73 | 20.3 70 | 4.82 73 | 13.2 42 | 20.5 42 | 9.43 36 | 6.17 34 | 20.3 49 | 5.07 37 | 0.03 51 | 0.00 1 | 0.00 1 | 20.5 82 | 26.9 72 | 40.8 86 |
HBpMotionGpu [43] | 60.4 | 0.80 77 | 2.79 76 | 0.18 76 | 5.57 72 | 23.8 78 | 4.00 73 | 13.1 77 | 27.8 82 | 11.6 77 | 2.05 54 | 16.4 55 | 0.74 54 | 17.9 73 | 25.1 76 | 22.3 73 | 6.69 37 | 21.0 55 | 6.04 58 | 0.00 1 | 0.00 1 | 0.00 1 | 14.1 74 | 27.7 74 | 25.1 75 |
Filter Flow [19] | 61.3 | 0.58 72 | 2.59 73 | 0.11 67 | 4.48 69 | 19.7 69 | 2.66 68 | 12.1 73 | 23.7 76 | 13.5 81 | 14.5 81 | 30.4 79 | 15.0 81 | 18.7 78 | 23.7 70 | 27.5 80 | 8.11 55 | 20.7 53 | 6.48 64 | 0.00 1 | 0.00 1 | 0.00 1 | 11.0 63 | 21.9 53 | 17.2 64 |
StereoFlow [44] | 62.2 | 2.82 89 | 6.92 88 | 1.29 88 | 21.5 88 | 42.6 90 | 13.8 83 | 20.5 88 | 33.3 89 | 20.4 85 | 20.6 87 | 51.2 89 | 18.6 85 | 14.9 58 | 22.6 60 | 13.7 56 | 3.89 10 | 18.9 41 | 3.74 14 | 0.00 1 | 0.00 1 | 0.00 1 | 11.3 65 | 25.9 67 | 18.7 69 |
Modified CLG [34] | 63.0 | 0.62 73 | 2.54 71 | 0.12 69 | 3.52 60 | 18.7 68 | 2.59 67 | 12.2 75 | 23.5 75 | 12.5 79 | 3.25 70 | 20.1 69 | 2.03 70 | 18.6 77 | 25.0 75 | 25.0 78 | 8.86 65 | 26.9 75 | 7.14 72 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 71 | 29.8 78 | 21.8 71 |
Learning Flow [11] | 64.3 | 0.32 59 | 1.89 61 | 0.01 28 | 2.61 56 | 16.0 60 | 1.21 53 | 6.52 60 | 17.9 67 | 1.65 59 | 4.69 72 | 24.9 76 | 3.14 72 | 20.8 82 | 27.4 83 | 26.9 79 | 10.9 76 | 28.6 78 | 7.90 76 | 0.10 66 | 0.00 1 | 0.64 66 | 13.3 70 | 28.5 77 | 18.1 67 |
IAOF2 [51] | 64.8 | 0.47 67 | 2.28 66 | 0.33 80 | 3.77 63 | 16.3 62 | 2.22 63 | 7.40 64 | 17.2 65 | 7.06 66 | 14.7 82 | 29.4 78 | 16.6 82 | 15.2 60 | 23.0 63 | 14.7 59 | 10.5 73 | 20.6 51 | 7.03 70 | 0.32 74 | 0.00 1 | 2.00 82 | 11.2 64 | 22.6 58 | 15.4 63 |
SPSA-learn [13] | 64.9 | 0.86 79 | 3.30 78 | 0.28 79 | 6.02 74 | 22.0 73 | 4.09 74 | 10.6 71 | 21.3 71 | 9.82 75 | 5.83 75 | 22.9 72 | 5.66 76 | 17.9 73 | 23.4 68 | 23.4 75 | 10.2 71 | 25.0 68 | 8.09 77 | 0.00 1 | 0.00 1 | 0.00 1 | 15.9 77 | 28.1 75 | 23.3 73 |
LDOF [28] | 65.5 | 0.41 61 | 2.31 69 | 0.09 64 | 3.85 65 | 17.3 63 | 2.32 66 | 4.68 47 | 13.5 47 | 2.59 60 | 3.97 71 | 24.8 75 | 2.14 71 | 16.1 66 | 23.1 64 | 17.6 65 | 8.24 57 | 26.0 70 | 6.50 66 | 0.33 75 | 0.34 87 | 1.95 81 | 9.77 58 | 26.7 70 | 12.9 53 |
IAOF [50] | 67.0 | 0.46 65 | 2.11 64 | 0.10 65 | 6.63 75 | 19.7 69 | 4.61 76 | 13.8 79 | 23.3 74 | 9.33 72 | 9.91 77 | 23.2 74 | 11.3 78 | 14.8 57 | 22.2 56 | 15.5 61 | 10.6 74 | 26.8 74 | 6.99 69 | 0.05 57 | 0.00 1 | 0.42 63 | 18.0 80 | 24.4 64 | 35.4 83 |
BlockOverlap [61] | 67.3 | 0.62 73 | 2.30 68 | 0.14 74 | 4.11 67 | 17.6 65 | 3.02 69 | 9.12 69 | 19.6 70 | 6.97 65 | 2.74 67 | 16.5 57 | 1.72 69 | 14.7 56 | 20.9 46 | 16.8 64 | 7.89 53 | 19.3 43 | 6.25 62 | 2.12 87 | 0.52 89 | 10.9 89 | 15.2 76 | 22.4 56 | 32.3 81 |
Nguyen [33] | 68.5 | 0.83 78 | 3.37 79 | 0.22 77 | 7.27 78 | 22.1 74 | 6.46 79 | 15.4 82 | 26.8 80 | 12.4 78 | 17.6 84 | 30.4 79 | 20.2 87 | 18.5 76 | 24.7 73 | 24.5 76 | 8.82 64 | 28.5 77 | 8.81 79 | 0.00 1 | 0.00 1 | 0.00 1 | 18.9 81 | 31.7 81 | 29.4 79 |
GroupFlow [9] | 68.6 | 0.56 71 | 3.20 77 | 0.05 48 | 9.79 81 | 32.3 84 | 7.11 80 | 11.4 72 | 24.6 77 | 9.68 74 | 2.01 52 | 16.0 51 | 0.70 52 | 19.8 79 | 29.9 85 | 12.0 49 | 15.2 85 | 32.5 82 | 15.4 87 | 0.33 75 | 0.00 1 | 1.11 75 | 13.2 69 | 28.4 76 | 17.2 64 |
2D-CLG [1] | 71.1 | 1.77 85 | 6.22 87 | 0.51 85 | 5.91 73 | 22.4 75 | 4.54 75 | 16.4 83 | 28.6 84 | 18.1 84 | 17.9 85 | 35.8 83 | 19.9 86 | 20.4 80 | 25.8 79 | 29.3 82 | 12.0 78 | 29.6 80 | 11.4 82 | 0.00 1 | 0.00 1 | 0.00 1 | 17.7 79 | 32.8 82 | 26.2 76 |
Black & Anandan [4] | 73.8 | 0.68 75 | 2.46 70 | 0.13 73 | 7.01 77 | 23.6 77 | 4.65 77 | 12.1 73 | 21.6 72 | 9.40 73 | 5.45 74 | 23.1 73 | 4.84 74 | 17.5 70 | 24.3 72 | 21.6 72 | 10.6 74 | 26.6 73 | 7.49 74 | 0.43 79 | 0.15 83 | 1.31 77 | 12.7 68 | 26.7 70 | 18.8 70 |
TI-DOFE [24] | 74.5 | 1.58 83 | 5.19 84 | 0.36 82 | 16.8 84 | 34.3 85 | 17.7 85 | 19.3 87 | 30.2 87 | 21.6 87 | 23.3 88 | 39.1 86 | 27.6 88 | 21.1 83 | 27.1 80 | 29.5 83 | 14.4 83 | 35.1 85 | 12.1 84 | 0.00 1 | 0.00 1 | 0.00 1 | 27.2 87 | 40.8 86 | 41.2 87 |
Horn & Schunck [3] | 75.5 | 1.05 80 | 4.22 81 | 0.25 78 | 7.74 79 | 29.1 82 | 5.17 78 | 13.6 78 | 24.6 77 | 10.8 76 | 12.7 79 | 36.1 84 | 12.8 79 | 21.4 84 | 27.3 82 | 30.9 85 | 13.9 82 | 35.2 86 | 11.6 83 | 0.03 51 | 0.00 1 | 0.17 58 | 22.3 84 | 37.9 84 | 31.7 80 |
SILK [87] | 78.0 | 1.05 80 | 4.27 82 | 0.44 83 | 9.69 80 | 27.9 80 | 8.93 81 | 15.2 81 | 26.9 81 | 13.1 80 | 6.14 76 | 25.9 77 | 5.57 75 | 23.0 85 | 29.2 84 | 34.1 86 | 12.6 80 | 33.9 83 | 9.78 80 | 0.81 84 | 0.00 1 | 3.50 84 | 21.5 83 | 33.3 83 | 34.5 82 |
Adaptive flow [45] | 80.9 | 1.75 84 | 5.07 83 | 0.34 81 | 18.4 86 | 28.3 81 | 18.5 87 | 18.5 84 | 28.6 84 | 22.9 88 | 13.3 80 | 37.4 85 | 13.9 80 | 17.9 73 | 24.7 73 | 17.7 66 | 12.9 81 | 26.2 72 | 8.68 78 | 5.20 90 | 0.61 90 | 22.8 90 | 16.7 78 | 26.0 69 | 28.2 78 |
PGAM+LK [55] | 81.6 | 2.98 90 | 6.17 86 | 6.36 90 | 16.8 84 | 36.2 87 | 17.8 86 | 14.7 80 | 26.5 79 | 14.5 82 | 19.1 86 | 53.9 90 | 18.3 84 | 23.1 86 | 30.6 86 | 29.9 84 | 14.4 83 | 36.8 87 | 11.1 81 | 1.07 86 | 0.00 1 | 4.16 85 | 25.9 85 | 40.1 85 | 40.3 85 |
SLK [47] | 82.0 | 1.44 82 | 5.58 85 | 0.49 84 | 14.4 83 | 35.8 86 | 14.8 84 | 18.5 84 | 30.1 86 | 21.4 86 | 24.6 89 | 35.7 82 | 27.7 89 | 26.3 88 | 31.9 87 | 39.4 88 | 15.6 86 | 38.8 88 | 13.6 86 | 0.55 83 | 0.00 1 | 1.35 79 | 31.7 88 | 41.0 87 | 49.0 88 |
FOLKI [16] | 83.4 | 1.98 86 | 7.18 89 | 0.87 87 | 24.5 89 | 36.3 88 | 30.3 89 | 18.7 86 | 32.4 88 | 16.5 83 | 15.2 83 | 33.2 81 | 18.1 83 | 26.0 87 | 32.3 88 | 36.0 87 | 17.7 87 | 40.6 89 | 17.9 88 | 2.33 89 | 0.00 1 | 10.6 87 | 33.9 89 | 43.6 88 | 52.7 89 |
Periodicity [86] | 83.5 | 2.36 88 | 9.12 90 | 0.79 86 | 19.1 87 | 40.7 89 | 20.6 88 | 28.2 90 | 35.2 90 | 26.8 90 | 11.2 78 | 40.6 87 | 10.3 77 | 42.3 90 | 55.4 90 | 41.1 89 | 31.7 89 | 56.3 90 | 27.7 89 | 0.54 82 | 0.00 1 | 7.78 86 | 26.1 86 | 51.0 89 | 36.2 84 |
Pyramid LK [2] | 88.0 | 2.31 87 | 4.20 80 | 3.47 89 | 31.6 90 | 32.0 83 | 40.4 90 | 21.0 89 | 28.5 83 | 24.0 89 | 24.6 89 | 43.7 88 | 28.6 90 | 37.5 89 | 46.6 89 | 43.7 90 | 33.1 90 | 34.2 84 | 31.3 90 | 2.17 88 | 0.47 88 | 10.7 88 | 46.5 90 | 57.3 90 | 67.2 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |