Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
SD interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
CBF [12] | 14.4 | 8.02 2 | 12.4 2 | 1.75 28 | 8.18 27 | 10.3 16 | 4.84 46 | 13.2 5 | 15.5 11 | 9.17 15 | 11.5 1 | 15.0 1 | 7.94 11 | 22.8 1 | 25.8 1 | 12.2 21 | 16.2 4 | 22.9 5 | 6.24 24 | 23.4 14 | 35.8 14 | 8.06 30 | 21.2 13 | 26.7 14 | 8.24 40 |
MDP-Flow2 [70] | 15.2 | 8.94 25 | 13.9 24 | 1.56 1 | 7.36 5 | 9.57 5 | 2.68 2 | 15.9 27 | 20.5 54 | 16.3 52 | 13.4 12 | 18.2 23 | 8.87 19 | 24.1 6 | 27.3 6 | 12.1 13 | 17.6 14 | 25.0 18 | 6.01 11 | 22.8 7 | 34.9 8 | 7.11 2 | 20.9 10 | 26.2 10 | 7.78 10 |
Deep-Matching [85] | 21.0 | 8.90 20 | 13.8 17 | 1.62 3 | 8.10 22 | 10.4 22 | 4.58 37 | 14.0 13 | 17.8 34 | 8.36 11 | 12.8 6 | 16.4 6 | 11.7 61 | 28.8 35 | 32.7 35 | 12.1 13 | 17.6 14 | 25.0 18 | 6.20 21 | 22.0 1 | 33.6 2 | 7.52 12 | 23.0 44 | 28.9 45 | 7.98 13 |
SuperFlow [89] | 22.2 | 8.83 15 | 13.8 17 | 1.68 8 | 8.19 28 | 10.3 16 | 5.04 52 | 16.0 29 | 16.6 23 | 10.9 27 | 14.9 43 | 15.1 2 | 7.67 9 | 23.0 3 | 26.0 2 | 12.5 32 | 18.0 25 | 25.5 27 | 6.55 43 | 23.6 17 | 35.8 14 | 9.80 59 | 20.7 8 | 26.0 8 | 8.12 25 |
CLG-TV [48] | 22.4 | 8.34 6 | 12.9 7 | 1.98 59 | 8.74 43 | 10.8 37 | 4.75 44 | 14.0 13 | 16.0 16 | 9.23 16 | 12.4 3 | 16.1 3 | 9.95 29 | 29.7 48 | 33.7 48 | 12.0 10 | 16.8 8 | 23.9 8 | 5.46 1 | 22.2 3 | 32.9 1 | 8.02 28 | 21.8 25 | 27.4 25 | 8.33 57 |
Aniso. Huber-L1 [22] | 23.9 | 8.22 4 | 12.7 4 | 1.84 46 | 9.12 61 | 11.1 49 | 5.11 54 | 13.6 9 | 16.3 22 | 7.58 8 | 12.2 2 | 16.1 3 | 9.16 22 | 29.8 51 | 33.8 51 | 12.7 37 | 16.9 9 | 23.9 8 | 5.57 3 | 23.2 11 | 35.5 11 | 7.30 3 | 21.8 25 | 27.4 25 | 8.32 56 |
SIOF [69] | 23.9 | 8.78 13 | 13.5 11 | 1.80 40 | 8.97 51 | 11.2 54 | 4.51 36 | 16.7 36 | 23.2 67 | 11.6 31 | 13.2 9 | 17.7 15 | 9.61 26 | 23.7 5 | 26.8 5 | 11.8 5 | 17.8 19 | 25.2 22 | 5.98 10 | 23.4 14 | 35.9 16 | 7.33 5 | 22.1 27 | 27.8 28 | 8.15 29 |
MDP-Flow [26] | 26.2 | 8.27 5 | 12.8 6 | 1.74 24 | 7.26 4 | 9.42 3 | 3.90 22 | 17.2 41 | 16.1 20 | 15.0 47 | 13.6 16 | 18.0 19 | 10.9 42 | 28.8 35 | 32.7 35 | 15.3 67 | 17.9 24 | 25.2 22 | 7.36 62 | 23.6 17 | 36.1 18 | 12.2 71 | 20.6 5 | 25.9 6 | 8.07 17 |
LME [72] | 26.2 | 8.97 27 | 14.0 29 | 1.62 3 | 8.07 21 | 10.5 27 | 3.69 17 | 16.9 39 | 17.7 32 | 9.29 18 | 14.5 35 | 19.6 44 | 9.68 27 | 29.2 45 | 33.1 45 | 15.3 67 | 18.1 27 | 25.7 29 | 6.15 18 | 22.7 6 | 34.7 6 | 7.37 7 | 21.0 11 | 26.4 12 | 8.20 37 |
Second-order prior [8] | 26.3 | 8.06 3 | 12.5 3 | 1.93 55 | 8.80 44 | 11.0 43 | 4.80 45 | 12.8 2 | 16.2 21 | 7.51 7 | 12.6 5 | 16.7 8 | 6.25 3 | 28.9 39 | 32.8 39 | 12.2 21 | 18.1 27 | 25.7 29 | 6.10 17 | 23.3 12 | 35.5 11 | 9.35 48 | 22.7 37 | 28.6 41 | 8.45 72 |
p-harmonic [29] | 26.6 | 8.89 19 | 13.9 24 | 1.68 8 | 8.86 46 | 10.9 40 | 5.20 61 | 13.4 6 | 17.5 30 | 6.45 2 | 13.7 18 | 17.9 18 | 10.0 31 | 28.9 39 | 32.8 39 | 12.8 39 | 17.6 14 | 24.9 16 | 6.53 42 | 22.9 8 | 35.0 9 | 8.88 39 | 22.5 34 | 28.3 35 | 8.10 22 |
NN-field [73] | 27.0 | 9.03 30 | 14.1 31 | 1.74 24 | 7.01 2 | 9.05 2 | 2.74 6 | 18.3 50 | 19.1 45 | 12.6 40 | 16.8 70 | 22.7 74 | 15.8 81 | 24.2 7 | 27.5 7 | 12.1 13 | 17.8 19 | 25.1 20 | 6.07 16 | 23.1 10 | 35.4 10 | 7.69 19 | 20.6 5 | 25.9 6 | 8.36 62 |
IROF-TV [53] | 27.4 | 8.93 23 | 13.9 24 | 1.82 44 | 8.15 25 | 10.6 30 | 4.01 25 | 13.9 12 | 17.6 31 | 8.70 13 | 13.3 10 | 18.0 19 | 9.04 20 | 28.5 32 | 32.3 31 | 15.3 67 | 18.5 38 | 26.2 39 | 6.57 44 | 24.7 30 | 37.8 32 | 6.81 1 | 22.2 30 | 28.0 33 | 6.71 5 |
ComplexFlow [81] | 27.9 | 8.84 16 | 13.8 17 | 1.61 2 | 7.25 3 | 9.44 4 | 2.76 7 | 14.6 20 | 19.3 48 | 14.5 46 | 16.0 65 | 21.6 67 | 15.8 81 | 24.2 7 | 27.5 7 | 12.2 21 | 18.4 34 | 26.0 35 | 6.42 35 | 24.2 23 | 37.1 25 | 9.54 51 | 20.3 4 | 25.4 4 | 8.27 48 |
ADF [67] | 28.0 | 8.35 7 | 12.7 4 | 1.67 7 | 7.85 12 | 10.2 14 | 4.30 33 | 14.0 13 | 14.4 2 | 8.90 14 | 14.0 21 | 19.0 34 | 6.93 5 | 29.2 45 | 33.1 45 | 15.4 79 | 16.3 6 | 23.0 6 | 6.03 13 | 25.6 41 | 39.2 45 | 8.36 35 | 23.6 64 | 29.6 63 | 8.38 64 |
ALD-Flow [68] | 28.2 | 10.4 66 | 16.0 66 | 1.76 29 | 7.99 18 | 10.3 16 | 3.78 19 | 14.1 16 | 19.3 48 | 6.64 3 | 16.1 66 | 21.9 70 | 5.92 2 | 26.5 12 | 30.0 12 | 14.0 50 | 16.9 9 | 23.9 8 | 6.23 23 | 22.5 5 | 34.4 5 | 7.50 11 | 23.2 50 | 29.2 53 | 8.09 20 |
Ad-TV-NDC [36] | 28.8 | 9.09 31 | 13.8 17 | 2.24 71 | 9.50 75 | 11.1 49 | 6.94 85 | 14.2 17 | 15.4 10 | 6.85 4 | 14.5 35 | 18.6 27 | 9.51 25 | 27.4 21 | 31.1 21 | 12.3 28 | 18.2 31 | 25.8 33 | 6.40 34 | 22.9 8 | 34.7 6 | 7.43 8 | 20.6 5 | 25.8 5 | 8.26 46 |
IROF++ [58] | 29.0 | 8.58 9 | 13.3 9 | 1.68 8 | 7.99 18 | 10.4 22 | 3.84 20 | 17.3 42 | 18.5 39 | 12.5 39 | 12.4 3 | 16.7 8 | 9.15 21 | 28.4 31 | 32.3 31 | 15.3 67 | 19.5 63 | 27.6 64 | 6.06 14 | 23.3 12 | 35.6 13 | 8.55 38 | 23.4 55 | 29.4 58 | 7.79 11 |
Modified CLG [34] | 30.0 | 7.87 1 | 12.2 1 | 1.68 8 | 8.96 49 | 10.7 35 | 5.94 81 | 16.8 37 | 16.7 25 | 15.9 51 | 13.3 10 | 16.4 6 | 12.6 72 | 27.6 24 | 31.3 24 | 11.9 6 | 18.8 44 | 26.6 45 | 6.50 40 | 22.3 4 | 34.0 4 | 7.67 18 | 22.2 30 | 27.9 30 | 8.64 74 |
Brox et al. [5] | 30.4 | 9.33 43 | 14.7 47 | 1.62 3 | 7.86 13 | 10.1 10 | 4.14 28 | 15.9 27 | 16.0 16 | 10.4 24 | 13.5 15 | 17.7 15 | 8.77 18 | 26.8 14 | 30.4 14 | 11.9 6 | 19.1 55 | 27.0 56 | 9.52 86 | 28.6 67 | 43.6 65 | 23.0 89 | 19.9 2 | 25.0 2 | 8.05 15 |
Local-TV-L1 [65] | 33.1 | 8.65 10 | 13.3 9 | 1.90 52 | 9.07 56 | 11.0 43 | 5.04 52 | 13.1 4 | 15.3 9 | 8.62 12 | 12.8 6 | 17.0 10 | 7.89 10 | 30.8 79 | 35.0 79 | 15.5 83 | 18.4 34 | 26.0 35 | 6.98 52 | 23.9 20 | 36.5 21 | 7.66 17 | 21.4 17 | 26.9 17 | 8.40 67 |
F-TV-L1 [15] | 33.8 | 10.4 66 | 16.2 68 | 1.94 57 | 9.02 53 | 11.2 54 | 4.72 42 | 14.6 20 | 16.7 25 | 11.0 29 | 14.2 25 | 18.9 32 | 10.3 33 | 27.5 22 | 31.2 23 | 12.3 28 | 16.0 1 | 22.6 1 | 6.38 32 | 23.9 20 | 36.6 22 | 9.23 45 | 21.3 15 | 26.7 14 | 10.2 83 |
FastOF [78] | 34.9 | 10.4 66 | 16.1 67 | 2.35 72 | 8.97 51 | 11.3 60 | 4.48 35 | 14.4 19 | 18.8 41 | 7.35 6 | 14.9 43 | 19.7 47 | 7.05 6 | 26.9 16 | 30.5 16 | 15.3 67 | 16.4 7 | 23.2 7 | 5.70 4 | 24.9 33 | 37.9 34 | 7.32 4 | 23.2 50 | 29.2 53 | 8.19 34 |
Filter Flow [19] | 36.4 | 9.35 45 | 14.5 44 | 1.79 37 | 9.19 63 | 11.1 49 | 5.50 74 | 17.6 45 | 16.8 28 | 12.2 35 | 14.0 21 | 18.0 19 | 11.3 47 | 24.6 9 | 27.9 9 | 12.2 21 | 18.4 34 | 26.0 35 | 7.54 67 | 24.8 31 | 37.9 34 | 7.77 21 | 21.5 19 | 27.0 19 | 8.40 67 |
CRTflow [88] | 37.0 | 8.75 12 | 13.6 13 | 2.04 62 | 9.27 66 | 11.5 72 | 5.28 62 | 16.2 30 | 22.5 64 | 9.27 17 | 12.8 6 | 17.0 10 | 11.5 54 | 27.0 17 | 30.6 17 | 15.3 67 | 17.6 14 | 24.9 16 | 6.06 14 | 27.8 57 | 42.7 59 | 7.62 16 | 23.4 55 | 29.4 58 | 8.16 31 |
TC/T-Flow [80] | 37.2 | 9.42 47 | 14.6 46 | 2.39 75 | 8.67 41 | 11.2 54 | 4.00 23 | 13.6 9 | 16.0 16 | 8.03 10 | 17.5 75 | 23.5 78 | 10.8 39 | 27.3 20 | 31.0 20 | 15.3 67 | 17.4 13 | 24.6 13 | 5.89 7 | 25.8 44 | 37.8 32 | 9.59 53 | 22.8 40 | 28.7 43 | 8.13 27 |
Sparse Occlusion [54] | 37.5 | 9.75 56 | 15.2 58 | 2.05 65 | 8.71 42 | 11.2 54 | 4.19 29 | 13.5 7 | 15.9 15 | 7.80 9 | 14.6 38 | 19.7 47 | 7.51 8 | 30.4 65 | 34.5 66 | 15.3 67 | 16.1 2 | 22.7 2 | 6.27 26 | 26.9 53 | 41.1 53 | 7.45 10 | 23.2 50 | 29.2 53 | 8.12 25 |
2D-CLG [1] | 37.7 | 8.51 8 | 13.2 8 | 1.76 29 | 8.84 45 | 10.4 22 | 5.71 79 | 19.4 55 | 15.6 13 | 15.0 47 | 14.2 25 | 16.3 5 | 14.0 75 | 31.1 83 | 35.3 83 | 20.9 89 | 16.1 2 | 22.7 2 | 6.34 30 | 27.7 56 | 42.3 55 | 8.19 32 | 21.4 17 | 26.9 17 | 8.13 27 |
ComplOF-FED-GPU [35] | 38.1 | 9.91 61 | 15.5 62 | 1.77 34 | 7.74 9 | 10.1 10 | 4.25 32 | 19.8 59 | 17.7 32 | 17.0 54 | 15.3 52 | 20.7 58 | 11.8 62 | 28.2 30 | 32.0 30 | 14.5 52 | 16.2 4 | 22.8 4 | 5.95 9 | 26.2 49 | 39.6 49 | 9.25 46 | 22.7 37 | 28.4 36 | 8.25 44 |
Horn & Schunck [3] | 38.9 | 8.92 22 | 13.6 13 | 1.73 18 | 9.79 81 | 11.4 63 | 6.31 83 | 24.1 72 | 18.7 40 | 18.6 60 | 15.8 62 | 19.4 41 | 11.1 45 | 28.0 27 | 31.8 28 | 10.4 3 | 17.8 19 | 25.2 22 | 5.54 2 | 25.3 38 | 38.4 38 | 9.70 55 | 22.1 27 | 27.7 27 | 8.27 48 |
COFM [59] | 39.1 | 8.95 26 | 13.8 17 | 1.90 52 | 7.42 6 | 9.61 6 | 3.19 11 | 15.3 24 | 22.1 62 | 16.3 52 | 15.4 55 | 20.9 60 | 14.6 78 | 26.8 14 | 30.4 14 | 12.2 21 | 21.4 86 | 30.3 86 | 6.26 25 | 26.3 50 | 40.4 50 | 10.4 64 | 20.8 9 | 26.1 9 | 8.36 62 |
Fusion [6] | 39.3 | 8.82 14 | 13.8 17 | 2.62 78 | 7.96 17 | 10.1 10 | 4.47 34 | 16.5 32 | 13.6 1 | 17.3 57 | 14.0 21 | 18.1 22 | 9.97 30 | 29.8 51 | 33.8 51 | 12.8 39 | 19.4 61 | 27.4 62 | 10.1 88 | 26.4 51 | 40.4 50 | 8.14 31 | 21.7 22 | 27.2 23 | 10.1 82 |
OFLADF [82] | 39.5 | 9.70 53 | 15.0 53 | 1.69 13 | 7.94 16 | 10.4 22 | 2.73 5 | 14.3 18 | 15.0 6 | 10.2 20 | 13.8 19 | 18.6 27 | 8.40 15 | 30.0 56 | 34.0 56 | 15.4 79 | 17.0 11 | 23.9 8 | 6.73 46 | 30.1 79 | 46.1 79 | 13.9 75 | 23.4 55 | 29.3 56 | 9.45 80 |
PMF [76] | 39.5 | 9.35 45 | 14.5 44 | 1.77 34 | 7.80 11 | 10.1 10 | 2.68 2 | 24.0 71 | 28.7 83 | 22.5 80 | 15.3 52 | 20.6 57 | 11.6 57 | 25.7 10 | 29.2 10 | 12.1 13 | 19.1 55 | 27.0 56 | 5.92 8 | 27.6 55 | 42.4 57 | 9.09 43 | 23.1 46 | 29.0 48 | 6.47 1 |
LDOF [28] | 39.7 | 8.85 17 | 13.8 17 | 2.04 62 | 10.2 86 | 9.70 9 | 10.8 90 | 17.0 40 | 20.4 53 | 12.0 32 | 13.4 12 | 17.4 14 | 12.3 71 | 22.9 2 | 26.0 2 | 11.9 6 | 18.9 48 | 26.7 48 | 6.27 26 | 30.1 79 | 46.3 80 | 16.0 80 | 19.7 1 | 24.7 1 | 8.89 77 |
TC-Flow [46] | 39.7 | 10.9 73 | 17.1 74 | 1.71 16 | 8.86 46 | 11.6 75 | 4.00 23 | 13.0 3 | 16.0 16 | 6.24 1 | 15.6 58 | 21.1 62 | 8.58 16 | 27.9 26 | 31.7 26 | 15.1 61 | 18.7 41 | 26.4 42 | 6.72 45 | 24.6 29 | 37.6 30 | 7.95 26 | 23.4 55 | 29.4 58 | 8.28 51 |
Black & Anandan [4] | 39.8 | 9.24 41 | 14.1 31 | 1.95 58 | 9.65 79 | 11.4 63 | 5.28 62 | 28.3 78 | 24.2 70 | 20.2 70 | 14.8 41 | 18.7 30 | 10.5 35 | 27.7 25 | 31.5 25 | 9.57 2 | 19.0 53 | 27.0 56 | 6.35 31 | 24.2 23 | 36.7 23 | 8.42 36 | 21.0 11 | 26.3 11 | 6.55 2 |
TV-L1-MCT [64] | 40.9 | 9.18 37 | 14.2 34 | 1.78 36 | 8.53 36 | 11.1 49 | 3.70 18 | 17.7 46 | 23.3 68 | 13.6 42 | 14.4 32 | 19.5 43 | 11.6 57 | 30.5 70 | 34.6 68 | 13.8 48 | 18.1 27 | 25.7 29 | 6.02 12 | 25.8 44 | 39.5 48 | 15.0 78 | 21.7 22 | 27.3 24 | 7.99 14 |
Levin3 [90] | 41.6 | 8.90 20 | 13.7 15 | 1.69 13 | 8.22 31 | 10.6 30 | 4.95 47 | 18.9 53 | 21.1 58 | 13.0 41 | 14.2 25 | 19.3 37 | 11.4 51 | 30.0 56 | 34.0 56 | 12.4 31 | 19.1 55 | 27.0 56 | 7.17 57 | 28.3 62 | 43.4 62 | 8.28 33 | 23.1 46 | 29.0 48 | 8.06 16 |
Bartels [41] | 42.2 | 12.7 84 | 20.1 85 | 2.13 69 | 8.52 35 | 11.0 43 | 4.96 48 | 13.5 7 | 14.5 3 | 10.2 20 | 14.4 32 | 18.9 32 | 10.8 39 | 23.5 4 | 26.6 4 | 12.9 42 | 19.0 53 | 26.9 54 | 6.94 51 | 24.5 27 | 37.5 28 | 19.7 85 | 23.4 55 | 29.4 58 | 8.31 54 |
OFH [38] | 42.5 | 9.54 50 | 15.0 53 | 1.74 24 | 8.49 34 | 10.6 30 | 5.13 55 | 18.1 48 | 24.9 75 | 10.4 24 | 17.4 74 | 23.7 80 | 5.72 1 | 28.7 34 | 32.5 33 | 14.6 54 | 17.6 14 | 24.8 14 | 5.85 5 | 26.0 47 | 39.2 45 | 10.2 62 | 22.7 37 | 28.5 39 | 14.1 88 |
BlockOverlap [61] | 42.5 | 9.09 31 | 14.3 37 | 2.04 62 | 8.96 49 | 10.9 40 | 5.37 68 | 18.1 48 | 15.5 11 | 18.0 58 | 14.2 25 | 17.2 12 | 14.0 75 | 28.9 39 | 32.8 39 | 13.8 48 | 18.8 44 | 26.7 48 | 7.92 73 | 24.8 31 | 37.2 26 | 21.0 87 | 20.0 3 | 25.1 3 | 8.38 64 |
nLayers [57] | 43.6 | 9.15 35 | 14.3 37 | 1.76 29 | 7.42 6 | 9.62 7 | 3.57 15 | 27.8 77 | 29.9 85 | 25.8 85 | 15.9 63 | 21.5 66 | 11.9 63 | 30.2 59 | 34.3 60 | 14.7 57 | 20.3 73 | 28.8 73 | 6.45 37 | 23.5 16 | 36.0 17 | 7.87 24 | 21.6 20 | 27.1 20 | 8.10 22 |
TCOF [71] | 44.0 | 9.34 44 | 14.3 37 | 1.89 49 | 9.50 75 | 11.7 82 | 5.42 69 | 16.2 30 | 21.7 60 | 10.3 22 | 13.8 19 | 18.6 27 | 9.45 24 | 30.4 65 | 34.6 68 | 13.6 45 | 18.2 31 | 25.7 29 | 6.20 21 | 28.5 64 | 43.5 64 | 7.54 13 | 22.9 43 | 28.8 44 | 8.18 32 |
DPOF [18] | 44.5 | 11.0 74 | 17.4 76 | 3.88 85 | 7.78 10 | 10.2 14 | 3.01 10 | 18.7 52 | 18.1 38 | 18.4 59 | 16.5 69 | 22.4 71 | 14.6 78 | 28.8 35 | 32.7 35 | 12.1 13 | 18.9 48 | 26.7 48 | 6.18 20 | 25.2 35 | 38.4 38 | 7.59 15 | 23.6 64 | 29.6 63 | 8.07 17 |
Classic++ [32] | 45.2 | 9.48 48 | 14.9 50 | 1.80 40 | 8.59 37 | 11.0 43 | 4.61 38 | 13.7 11 | 15.0 6 | 9.57 19 | 14.4 32 | 19.0 34 | 8.76 17 | 29.9 55 | 33.9 55 | 13.6 45 | 20.2 71 | 28.7 72 | 6.87 49 | 27.4 54 | 42.0 54 | 9.63 54 | 23.8 70 | 29.9 71 | 8.34 60 |
Layers++ [37] | 45.3 | 8.93 23 | 14.0 29 | 1.76 29 | 6.74 1 | 8.61 1 | 2.71 4 | 18.3 50 | 25.8 77 | 19.3 63 | 15.3 52 | 20.8 59 | 11.3 47 | 33.1 87 | 37.6 87 | 19.8 87 | 21.6 87 | 30.6 87 | 8.73 83 | 24.4 26 | 37.4 27 | 7.81 22 | 21.6 20 | 27.1 20 | 8.09 20 |
Complementary OF [21] | 45.9 | 11.4 78 | 18.1 80 | 1.70 15 | 9.23 65 | 12.1 87 | 4.19 29 | 31.6 83 | 19.0 44 | 23.6 81 | 19.5 84 | 26.5 84 | 6.72 4 | 28.1 29 | 31.8 28 | 14.6 54 | 17.3 12 | 24.4 12 | 6.38 32 | 26.1 48 | 39.0 42 | 8.92 40 | 22.3 32 | 27.9 30 | 7.57 8 |
Efficient-NL [60] | 46.5 | 8.71 11 | 13.5 11 | 1.68 8 | 8.66 40 | 11.2 54 | 3.65 16 | 22.5 67 | 20.0 51 | 19.9 66 | 14.3 30 | 19.3 37 | 11.0 43 | 30.5 70 | 34.7 74 | 15.0 59 | 20.1 69 | 28.4 69 | 6.27 26 | 28.5 64 | 43.7 66 | 8.92 40 | 23.8 70 | 29.9 71 | 6.66 4 |
NL-TV-NCC [25] | 47.0 | 9.19 39 | 14.3 37 | 2.18 70 | 9.02 53 | 11.6 75 | 4.13 27 | 14.8 22 | 16.7 25 | 10.9 27 | 20.8 85 | 28.1 85 | 8.19 13 | 26.5 12 | 30.0 12 | 13.1 43 | 18.9 48 | 26.7 48 | 6.43 36 | 26.6 52 | 40.4 50 | 15.1 79 | 23.7 69 | 29.7 69 | 8.29 53 |
Nguyen [33] | 47.0 | 9.83 60 | 15.2 58 | 1.73 18 | 9.59 77 | 11.0 43 | 5.65 78 | 15.3 24 | 20.5 54 | 10.3 22 | 14.6 38 | 18.8 31 | 12.1 67 | 28.8 35 | 32.7 35 | 12.2 21 | 19.4 61 | 27.4 62 | 8.01 77 | 29.7 74 | 45.5 74 | 8.29 34 | 21.2 13 | 26.6 13 | 8.34 60 |
FESL [75] | 48.1 | 9.09 31 | 13.9 24 | 1.74 24 | 7.90 14 | 10.3 16 | 3.35 13 | 16.5 32 | 21.9 61 | 12.0 32 | 15.1 49 | 20.3 54 | 11.4 51 | 30.8 79 | 35.0 79 | 15.4 79 | 19.6 64 | 27.8 66 | 6.48 38 | 27.8 57 | 42.6 58 | 7.75 20 | 23.9 73 | 30.0 75 | 8.39 66 |
Sparse-NonSparse [56] | 49.3 | 9.18 37 | 14.3 37 | 1.73 18 | 8.14 24 | 10.6 30 | 3.31 12 | 16.6 34 | 22.9 66 | 13.8 44 | 14.8 41 | 19.8 50 | 11.3 47 | 30.5 70 | 34.6 68 | 15.0 59 | 20.1 69 | 28.5 70 | 7.48 65 | 28.5 64 | 43.7 66 | 9.49 49 | 23.5 61 | 29.5 62 | 8.24 40 |
Occlusion-TV-L1 [63] | 50.1 | 10.1 62 | 15.9 64 | 2.43 76 | 9.36 69 | 11.8 85 | 5.01 51 | 12.7 1 | 14.7 4 | 7.22 5 | 17.0 72 | 22.7 74 | 11.4 51 | 28.6 33 | 32.5 33 | 12.0 10 | 18.7 41 | 26.5 44 | 7.48 65 | 25.2 35 | 37.7 31 | 10.0 61 | 24.3 78 | 30.3 78 | 9.33 79 |
TI-DOFE [24] | 50.2 | 9.80 58 | 15.2 58 | 2.80 81 | 9.94 83 | 11.4 63 | 5.62 76 | 15.5 26 | 15.7 14 | 10.5 26 | 17.0 72 | 21.7 68 | 10.6 36 | 27.1 18 | 30.8 18 | 12.1 13 | 20.9 81 | 29.6 82 | 6.99 53 | 24.0 22 | 36.3 19 | 8.92 40 | 24.3 78 | 28.1 34 | 12.5 86 |
ACK-Prior [27] | 50.3 | 9.81 59 | 15.1 56 | 2.07 67 | 8.01 20 | 10.4 22 | 3.86 21 | 25.1 75 | 19.1 45 | 22.0 77 | 15.1 49 | 20.1 52 | 10.1 32 | 30.4 65 | 34.4 64 | 15.4 79 | 19.1 55 | 26.9 54 | 7.57 69 | 25.8 44 | 39.3 47 | 19.5 84 | 22.3 32 | 27.9 30 | 7.73 9 |
SCR [74] | 50.5 | 8.86 18 | 13.7 15 | 1.76 29 | 8.19 28 | 10.6 30 | 5.19 59 | 21.8 65 | 28.1 81 | 20.8 72 | 14.5 35 | 19.6 44 | 11.5 54 | 30.5 70 | 34.6 68 | 15.3 67 | 18.9 48 | 26.7 48 | 6.99 53 | 28.6 67 | 43.8 68 | 9.76 57 | 23.5 61 | 29.6 63 | 7.80 12 |
LSM [39] | 50.5 | 9.10 34 | 14.2 34 | 1.73 18 | 8.33 32 | 10.9 40 | 3.40 14 | 16.6 34 | 22.7 65 | 12.2 35 | 15.0 48 | 20.3 54 | 11.0 43 | 30.5 70 | 34.7 74 | 15.1 61 | 20.7 79 | 29.4 79 | 6.17 19 | 28.1 61 | 43.0 61 | 11.5 69 | 23.8 70 | 29.9 71 | 8.27 48 |
CostFilter [40] | 50.6 | 10.8 72 | 17.0 73 | 1.80 40 | 7.90 14 | 10.3 16 | 2.66 1 | 24.6 74 | 27.7 80 | 21.9 76 | 18.7 79 | 25.4 83 | 13.7 74 | 27.5 22 | 31.1 21 | 12.6 34 | 18.2 31 | 25.8 33 | 5.87 6 | 28.9 71 | 44.2 71 | 9.34 47 | 24.4 80 | 30.7 80 | 8.20 37 |
Ramp [62] | 51.3 | 9.22 40 | 14.3 37 | 1.73 18 | 8.19 28 | 10.7 35 | 4.24 31 | 21.9 66 | 28.8 84 | 21.1 75 | 14.2 25 | 19.2 36 | 11.6 57 | 30.6 76 | 34.8 77 | 14.8 58 | 20.4 75 | 29.0 76 | 7.40 63 | 28.0 60 | 42.9 60 | 7.57 14 | 23.0 44 | 28.9 45 | 8.28 51 |
IAOF2 [51] | 52.9 | 10.7 71 | 16.6 71 | 2.36 73 | 9.40 70 | 11.6 75 | 5.33 66 | 17.4 43 | 18.0 36 | 12.4 38 | 14.1 24 | 18.2 23 | 9.32 23 | 30.3 64 | 34.4 64 | 14.0 50 | 20.5 77 | 29.1 78 | 8.20 79 | 25.2 35 | 38.3 36 | 8.49 37 | 23.1 46 | 29.1 50 | 8.24 40 |
Classic+NL [31] | 53.1 | 8.97 27 | 13.9 24 | 1.79 37 | 8.11 23 | 10.5 27 | 4.01 25 | 20.8 63 | 28.3 82 | 19.9 66 | 14.3 30 | 19.3 37 | 11.5 54 | 30.7 78 | 34.8 77 | 14.6 54 | 20.3 73 | 28.8 73 | 7.40 63 | 28.3 62 | 43.4 62 | 11.9 70 | 23.5 61 | 29.6 63 | 8.25 44 |
TV-L1-improved [17] | 53.2 | 9.53 49 | 14.9 50 | 1.99 60 | 9.46 72 | 11.7 82 | 5.17 57 | 22.6 68 | 14.8 5 | 20.1 69 | 13.4 12 | 17.8 17 | 8.05 12 | 30.2 59 | 34.3 60 | 11.9 6 | 19.6 64 | 27.7 65 | 8.09 78 | 29.9 77 | 45.8 77 | 9.73 56 | 23.4 55 | 29.3 56 | 8.42 71 |
TriangleFlow [30] | 53.4 | 9.59 51 | 14.8 48 | 2.06 66 | 9.07 56 | 11.4 63 | 5.47 71 | 19.2 54 | 20.2 52 | 13.9 45 | 13.6 16 | 18.2 23 | 8.31 14 | 30.0 56 | 34.1 58 | 9.31 1 | 17.8 19 | 25.2 22 | 7.56 68 | 30.8 81 | 47.2 82 | 13.9 75 | 25.5 87 | 31.9 88 | 11.3 85 |
Dynamic MRF [7] | 53.4 | 10.1 62 | 15.9 64 | 1.81 43 | 8.42 33 | 10.8 37 | 4.73 43 | 19.5 56 | 19.1 45 | 12.2 35 | 15.6 58 | 19.3 37 | 12.8 73 | 27.2 19 | 30.8 18 | 15.2 66 | 18.6 39 | 26.3 40 | 7.28 60 | 28.8 70 | 44.1 70 | 12.4 72 | 24.6 81 | 30.7 80 | 9.73 81 |
IAOF [50] | 53.9 | 11.1 76 | 16.6 71 | 5.32 87 | 10.6 88 | 12.3 88 | 5.87 80 | 23.3 70 | 24.2 70 | 19.4 64 | 15.4 55 | 19.7 47 | 12.0 66 | 28.9 39 | 32.8 39 | 12.1 13 | 18.8 44 | 26.6 45 | 7.26 59 | 25.6 41 | 39.1 44 | 7.35 6 | 22.1 27 | 27.8 28 | 8.26 46 |
Adaptive [20] | 54.1 | 11.0 74 | 17.3 75 | 1.89 49 | 9.41 71 | 11.6 75 | 5.19 59 | 14.8 22 | 17.1 29 | 11.1 30 | 15.7 61 | 21.1 62 | 12.1 67 | 31.1 83 | 35.3 83 | 12.0 10 | 18.8 44 | 26.6 45 | 8.00 76 | 27.8 57 | 42.3 55 | 8.01 27 | 22.6 35 | 28.4 36 | 8.63 73 |
FOLKI [16] | 54.4 | 10.6 70 | 16.5 70 | 2.43 76 | 9.94 83 | 11.2 54 | 6.70 84 | 19.6 57 | 21.6 59 | 19.9 66 | 18.3 78 | 19.4 41 | 17.3 85 | 28.0 27 | 31.7 26 | 13.6 45 | 19.1 55 | 27.1 61 | 10.9 89 | 24.2 23 | 36.9 24 | 17.3 82 | 21.3 15 | 26.7 14 | 8.10 22 |
LocallyOriented [52] | 54.7 | 10.1 62 | 15.7 63 | 1.79 37 | 9.46 72 | 11.6 75 | 5.28 62 | 23.1 69 | 24.2 70 | 20.9 74 | 19.3 83 | 23.2 76 | 7.35 7 | 30.4 65 | 34.6 68 | 12.6 34 | 18.9 48 | 26.8 53 | 6.27 26 | 25.7 43 | 38.6 40 | 7.89 25 | 23.6 64 | 29.6 63 | 8.19 34 |
SILK [87] | 55.2 | 9.72 55 | 15.1 56 | 2.69 79 | 10.2 86 | 11.4 63 | 7.82 87 | 39.2 89 | 32.9 88 | 28.5 87 | 14.6 38 | 18.4 26 | 9.73 28 | 29.0 43 | 32.9 43 | 10.4 3 | 21.2 84 | 30.0 85 | 7.00 55 | 24.5 27 | 37.5 28 | 8.03 29 | 23.1 46 | 28.9 45 | 8.31 54 |
GraphCuts [14] | 56.2 | 11.7 79 | 17.8 78 | 2.02 61 | 8.15 25 | 10.5 27 | 4.65 40 | 25.3 76 | 15.2 8 | 19.4 64 | 14.9 43 | 19.6 44 | 11.9 63 | 29.8 51 | 33.8 51 | 17.8 85 | 19.6 64 | 27.8 66 | 6.50 40 | 28.6 67 | 43.9 69 | 11.1 67 | 24.0 75 | 30.2 76 | 8.15 29 |
Shiralkar [42] | 57.3 | 12.0 82 | 18.8 82 | 1.72 17 | 9.11 60 | 11.1 49 | 5.14 56 | 21.2 64 | 16.6 23 | 13.7 43 | 19.2 82 | 24.3 82 | 10.6 36 | 29.7 48 | 33.7 48 | 12.8 39 | 18.0 25 | 25.4 26 | 7.19 58 | 29.4 72 | 44.9 72 | 10.4 64 | 25.1 85 | 31.5 85 | 9.03 78 |
Epistemic [84] | 57.5 | 12.3 83 | 19.5 83 | 1.66 6 | 8.65 39 | 11.4 63 | 2.88 9 | 19.7 58 | 21.0 57 | 15.1 49 | 15.4 55 | 20.9 60 | 14.4 77 | 29.7 48 | 33.7 48 | 14.5 52 | 18.6 39 | 26.3 40 | 7.67 71 | 31.9 84 | 49.0 85 | 20.5 86 | 24.2 77 | 30.4 79 | 8.18 32 |
SLK [47] | 57.6 | 9.63 52 | 15.0 53 | 1.90 52 | 9.14 62 | 10.3 16 | 5.63 77 | 34.7 85 | 19.7 50 | 22.4 79 | 18.9 80 | 24.2 81 | 20.4 89 | 29.8 51 | 33.8 51 | 12.2 21 | 18.1 27 | 25.5 27 | 6.93 50 | 31.9 84 | 48.8 84 | 9.12 44 | 22.8 40 | 28.5 39 | 14.2 89 |
Learning Flow [11] | 58.1 | 8.99 29 | 14.1 31 | 1.85 48 | 9.10 59 | 11.3 60 | 4.99 49 | 40.2 90 | 42.5 90 | 31.6 90 | 14.9 43 | 17.2 12 | 12.2 70 | 30.8 79 | 35.0 79 | 15.1 61 | 18.7 41 | 26.4 42 | 7.58 70 | 25.1 34 | 38.3 36 | 11.4 68 | 25.5 87 | 31.7 86 | 8.24 40 |
Adaptive flow [45] | 58.9 | 10.3 65 | 14.8 48 | 2.37 74 | 9.87 82 | 11.5 72 | 5.57 75 | 18.0 47 | 17.9 35 | 17.1 56 | 16.4 68 | 20.0 51 | 14.8 80 | 32.3 85 | 36.7 85 | 16.6 84 | 21.1 83 | 29.8 83 | 8.41 81 | 23.8 19 | 36.4 20 | 13.1 73 | 21.7 22 | 27.1 20 | 7.17 6 |
EP-PM [83] | 59.0 | 10.4 66 | 16.2 68 | 2.97 82 | 8.62 38 | 11.3 60 | 2.76 7 | 29.0 79 | 27.4 79 | 22.2 78 | 16.8 70 | 22.6 73 | 10.8 39 | 25.8 11 | 29.2 10 | 12.1 13 | 20.2 71 | 28.6 71 | 6.49 39 | 29.8 76 | 45.8 77 | 18.0 83 | 24.0 75 | 30.2 76 | 8.72 76 |
FC-2Layers-FF [77] | 59.3 | 9.71 54 | 14.9 50 | 2.11 68 | 7.51 8 | 9.66 8 | 4.67 41 | 20.5 62 | 25.1 76 | 20.2 70 | 15.6 58 | 21.1 62 | 11.9 63 | 30.5 70 | 34.6 68 | 15.3 67 | 20.8 80 | 29.4 79 | 7.31 61 | 29.7 74 | 45.6 76 | 9.76 57 | 23.6 64 | 29.7 69 | 8.22 39 |
Correlation Flow [79] | 61.5 | 9.75 56 | 15.3 61 | 1.84 46 | 9.28 67 | 11.6 75 | 5.17 57 | 17.5 44 | 18.9 42 | 15.2 50 | 16.1 66 | 21.7 68 | 11.3 47 | 30.2 59 | 34.3 60 | 12.5 32 | 21.2 84 | 29.9 84 | 8.24 80 | 31.3 83 | 47.8 83 | 9.82 60 | 24.9 84 | 31.3 84 | 6.61 3 |
PGAM+LK [55] | 62.1 | 11.9 81 | 18.0 79 | 7.26 90 | 9.48 74 | 10.8 37 | 7.62 86 | 31.5 82 | 39.9 89 | 31.4 89 | 19.0 81 | 23.6 79 | 16.3 84 | 29.1 44 | 33.0 44 | 12.6 34 | 18.4 34 | 26.0 35 | 6.80 48 | 25.5 40 | 39.0 42 | 14.8 77 | 22.6 35 | 28.4 36 | 8.41 70 |
HBpMotionGpu [43] | 62.7 | 12.7 84 | 19.5 83 | 2.69 79 | 9.65 79 | 11.7 82 | 5.48 73 | 20.0 61 | 23.3 68 | 17.0 54 | 17.6 76 | 23.4 77 | 10.6 36 | 30.8 79 | 35.0 79 | 25.1 90 | 20.4 75 | 28.9 75 | 7.95 74 | 22.0 1 | 33.7 3 | 7.44 9 | 23.2 50 | 29.1 50 | 8.40 67 |
Rannacher [23] | 64.9 | 11.1 76 | 17.5 77 | 1.89 49 | 9.59 77 | 11.8 85 | 5.28 62 | 24.3 73 | 18.0 36 | 20.8 72 | 15.9 63 | 21.2 65 | 11.6 57 | 30.4 65 | 34.5 66 | 12.3 28 | 19.7 67 | 27.9 68 | 7.98 75 | 29.6 73 | 45.3 73 | 9.57 52 | 24.7 82 | 31.0 82 | 8.19 34 |
StereoFlow [44] | 65.0 | 14.9 87 | 22.2 87 | 3.28 83 | 10.0 85 | 12.7 90 | 4.99 49 | 16.8 37 | 18.9 42 | 12.1 34 | 15.2 51 | 20.4 56 | 10.4 34 | 33.4 88 | 37.9 88 | 20.8 88 | 23.8 89 | 33.5 89 | 8.41 81 | 25.3 38 | 38.8 41 | 7.81 22 | 23.6 64 | 29.6 63 | 8.67 75 |
Direct ZNCC [66] | 65.7 | 9.30 42 | 14.2 34 | 1.82 44 | 9.28 67 | 11.6 75 | 5.47 71 | 19.9 60 | 24.7 73 | 19.2 62 | 22.2 86 | 30.1 88 | 16.2 83 | 30.2 59 | 34.3 60 | 12.7 37 | 20.6 78 | 29.0 76 | 8.73 83 | 30.9 82 | 47.0 81 | 10.2 62 | 24.8 83 | 31.1 83 | 7.18 7 |
SegOF [10] | 66.1 | 11.8 80 | 18.2 81 | 5.53 88 | 8.88 48 | 11.4 63 | 4.62 39 | 31.1 81 | 20.5 54 | 23.7 82 | 25.8 89 | 34.8 90 | 18.2 87 | 30.2 59 | 34.2 59 | 15.3 67 | 19.1 55 | 27.0 56 | 7.08 56 | 32.5 86 | 49.7 86 | 16.8 81 | 22.8 40 | 28.6 41 | 8.08 19 |
SPSA-learn [13] | 66.4 | 15.1 88 | 22.9 88 | 1.93 55 | 9.08 58 | 11.0 43 | 5.42 69 | 33.0 84 | 24.8 74 | 23.8 83 | 17.6 76 | 22.4 71 | 12.1 67 | 29.3 47 | 33.2 47 | 15.1 61 | 17.8 19 | 25.1 20 | 6.73 46 | 37.7 89 | 57.7 89 | 25.5 90 | 25.4 86 | 31.8 87 | 8.33 57 |
SimpleFlow [49] | 66.8 | 9.15 35 | 14.3 37 | 1.73 18 | 9.05 55 | 11.4 63 | 5.35 67 | 36.0 87 | 32.6 87 | 29.4 88 | 14.9 43 | 20.2 53 | 11.2 46 | 30.6 76 | 34.7 74 | 15.1 61 | 22.6 88 | 32.0 88 | 9.11 85 | 34.7 88 | 53.2 88 | 13.8 74 | 23.9 73 | 29.9 71 | 8.33 57 |
GroupFlow [9] | 75.0 | 15.6 89 | 23.3 89 | 3.31 84 | 9.20 64 | 11.4 63 | 6.26 82 | 30.9 80 | 22.4 63 | 18.9 61 | 25.4 88 | 30.0 87 | 21.2 90 | 32.4 86 | 36.7 85 | 15.3 67 | 20.9 81 | 29.4 79 | 7.71 72 | 29.9 77 | 45.5 74 | 9.50 50 | 23.3 54 | 29.1 50 | 10.6 84 |
Pyramid LK [2] | 79.9 | 14.0 86 | 21.7 86 | 4.34 86 | 13.7 89 | 11.5 72 | 9.94 88 | 37.6 88 | 26.8 78 | 24.6 84 | 25.9 90 | 29.3 86 | 18.7 88 | 35.0 89 | 39.7 89 | 13.3 44 | 19.9 68 | 24.8 14 | 9.57 87 | 33.3 87 | 51.1 87 | 10.7 66 | 26.0 89 | 32.4 89 | 13.0 87 |
Periodicity [86] | 88.8 | 18.1 90 | 27.0 90 | 6.22 89 | 17.4 90 | 12.4 89 | 10.2 89 | 35.2 86 | 30.7 86 | 27.8 86 | 24.1 87 | 31.6 89 | 17.5 86 | 37.6 90 | 42.6 90 | 18.8 86 | 27.7 90 | 39.3 90 | 11.2 90 | 38.6 90 | 58.9 90 | 22.9 88 | 27.3 90 | 33.2 90 | 14.3 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |