Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R2.5 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 7.6 | 13.4 3 | 36.1 5 | 1.56 1 | 24.2 1 | 35.7 4 | 2.60 3 | 18.4 15 | 30.4 4 | 1.43 2 | 59.2 13 | 68.4 30 | 41.6 10 | 79.1 8 | 87.3 2 | 43.1 15 | 36.4 8 | 66.6 9 | 25.0 13 | 31.7 6 | 63.5 4 | 4.66 12 | 38.9 5 | 78.4 5 | 3.01 4 |
NN-field [73] | 9.9 | 13.5 7 | 36.9 15 | 1.67 9 | 24.2 1 | 35.4 3 | 2.54 1 | 18.7 24 | 30.6 6 | 1.52 9 | 59.3 21 | 68.5 33 | 41.7 15 | 79.1 8 | 87.3 2 | 43.2 27 | 36.4 8 | 66.2 2 | 25.0 13 | 31.6 2 | 63.6 6 | 4.64 8 | 38.9 5 | 78.1 3 | 3.05 10 |
MDP-Flow2 [70] | 11.0 | 13.3 1 | 35.1 1 | 1.62 4 | 24.6 9 | 36.5 10 | 2.63 8 | 18.5 16 | 30.5 5 | 1.42 1 | 59.0 5 | 67.8 19 | 41.4 4 | 79.1 8 | 87.3 2 | 43.4 45 | 36.5 13 | 66.4 5 | 25.0 13 | 32.0 27 | 63.9 12 | 4.64 8 | 39.3 26 | 78.7 10 | 3.08 12 |
Layers++ [37] | 11.7 | 14.0 26 | 37.5 24 | 1.91 34 | 24.3 4 | 35.3 2 | 2.75 16 | 18.3 14 | 31.0 9 | 1.56 13 | 59.2 13 | 67.5 9 | 41.7 15 | 79.2 21 | 87.4 7 | 43.1 15 | 36.4 8 | 66.5 8 | 25.0 13 | 31.6 2 | 63.2 2 | 4.60 1 | 38.7 2 | 77.7 2 | 3.12 21 |
COFM [59] | 12.1 | 13.6 11 | 36.0 4 | 1.89 31 | 24.6 9 | 36.4 9 | 2.71 13 | 18.5 16 | 30.3 2 | 1.59 16 | 58.8 1 | 66.8 3 | 41.1 1 | 79.0 4 | 87.4 7 | 42.6 5 | 35.8 2 | 67.2 35 | 24.1 2 | 31.2 1 | 61.6 1 | 4.89 59 | 38.5 1 | 78.1 3 | 3.34 55 |
Sparse-NonSparse [56] | 12.6 | 13.8 18 | 37.3 20 | 1.81 20 | 24.4 6 | 36.0 6 | 2.61 4 | 18.0 9 | 31.2 13 | 1.52 9 | 59.0 5 | 67.1 5 | 42.0 29 | 79.2 21 | 87.4 7 | 43.1 15 | 36.7 24 | 66.7 14 | 25.3 38 | 31.7 6 | 63.6 6 | 4.63 5 | 38.9 5 | 78.5 6 | 3.08 12 |
nLayers [57] | 13.5 | 13.9 23 | 36.7 12 | 1.85 26 | 24.5 7 | 36.1 7 | 2.76 18 | 17.7 3 | 30.0 1 | 1.44 3 | 59.2 13 | 67.6 12 | 41.6 10 | 79.3 38 | 87.5 27 | 43.3 34 | 36.4 8 | 66.8 19 | 25.1 21 | 31.7 6 | 63.2 2 | 4.72 25 | 38.7 2 | 77.6 1 | 3.03 7 |
LSM [39] | 15.5 | 13.9 23 | 38.0 32 | 1.78 19 | 24.6 9 | 36.5 10 | 2.61 4 | 18.1 11 | 32.0 24 | 1.55 12 | 59.2 13 | 67.6 12 | 42.1 32 | 79.2 21 | 87.4 7 | 43.1 15 | 36.7 24 | 66.9 21 | 25.3 38 | 31.7 6 | 63.6 6 | 4.65 10 | 38.9 5 | 78.6 8 | 3.07 11 |
OFLADF [82] | 16.2 | 13.5 7 | 36.1 5 | 1.62 4 | 24.3 4 | 35.8 5 | 2.62 7 | 18.7 24 | 31.5 17 | 1.47 4 | 59.1 8 | 67.8 19 | 41.2 2 | 79.3 38 | 87.4 7 | 43.4 45 | 36.6 18 | 67.4 47 | 25.0 13 | 31.9 20 | 64.3 19 | 4.79 45 | 38.9 5 | 78.7 10 | 3.10 16 |
Epistemic [84] | 18.0 | 13.4 3 | 36.1 5 | 1.72 12 | 24.6 9 | 36.8 16 | 2.57 2 | 18.9 28 | 32.9 36 | 1.69 21 | 59.1 8 | 67.8 19 | 41.4 4 | 79.2 21 | 87.4 7 | 43.6 60 | 36.5 13 | 66.3 3 | 25.1 21 | 32.0 27 | 64.8 35 | 4.76 40 | 39.1 16 | 78.7 10 | 3.10 16 |
IROF++ [58] | 18.0 | 13.8 18 | 37.8 28 | 1.72 12 | 24.6 9 | 36.6 14 | 2.61 4 | 18.6 21 | 31.3 15 | 1.64 20 | 58.8 1 | 66.7 2 | 41.8 20 | 79.0 4 | 87.3 2 | 42.7 7 | 36.5 13 | 66.6 9 | 25.0 13 | 32.0 27 | 65.0 40 | 4.74 35 | 39.5 39 | 79.2 28 | 3.30 52 |
SCR [74] | 18.3 | 14.0 26 | 38.0 32 | 1.77 17 | 24.5 7 | 36.2 8 | 2.68 11 | 18.0 9 | 31.2 13 | 1.56 13 | 59.2 13 | 67.5 9 | 41.9 25 | 79.3 38 | 87.5 27 | 43.2 27 | 36.8 33 | 67.3 42 | 25.2 28 | 31.7 6 | 63.9 12 | 4.65 10 | 39.1 16 | 78.8 14 | 3.01 4 |
ADF [67] | 18.6 | 13.3 1 | 35.1 1 | 1.74 14 | 24.9 20 | 37.3 20 | 2.78 22 | 18.2 12 | 31.9 20 | 1.61 18 | 59.1 8 | 67.6 12 | 41.6 10 | 79.3 38 | 87.5 27 | 43.4 45 | 36.2 6 | 66.6 9 | 24.5 5 | 32.0 27 | 64.5 26 | 4.75 37 | 39.3 26 | 79.1 26 | 3.10 16 |
Ramp [62] | 20.1 | 14.1 36 | 38.7 47 | 1.92 37 | 24.6 9 | 36.6 14 | 2.69 12 | 17.9 7 | 31.0 9 | 1.47 4 | 58.9 3 | 67.0 4 | 41.9 25 | 79.2 21 | 87.5 27 | 43.1 15 | 37.0 43 | 67.4 47 | 25.5 47 | 31.6 2 | 63.5 4 | 4.63 5 | 39.1 16 | 78.9 17 | 3.19 32 |
Levin3 [90] | 21.4 | 14.2 41 | 38.7 47 | 1.85 26 | 24.8 17 | 37.0 17 | 2.73 15 | 17.6 2 | 31.0 9 | 1.53 11 | 59.1 8 | 67.2 6 | 42.2 40 | 79.2 21 | 87.4 7 | 43.0 10 | 37.0 43 | 67.2 35 | 25.4 46 | 31.8 15 | 63.9 12 | 4.68 19 | 39.2 22 | 78.9 17 | 3.16 28 |
TV-L1-MCT [64] | 21.5 | 14.5 57 | 39.7 72 | 1.86 29 | 25.2 22 | 37.8 23 | 2.78 22 | 17.3 1 | 31.1 12 | 1.59 16 | 58.9 3 | 66.6 1 | 41.6 10 | 79.1 8 | 87.4 7 | 42.9 9 | 36.8 33 | 66.4 5 | 25.6 51 | 31.8 15 | 64.0 16 | 4.73 29 | 39.1 16 | 79.0 21 | 3.20 38 |
FC-2Layers-FF [77] | 22.1 | 14.0 26 | 38.6 43 | 1.84 23 | 24.2 1 | 35.1 1 | 2.82 29 | 17.9 7 | 31.3 15 | 1.51 7 | 59.3 21 | 67.7 16 | 42.1 32 | 79.3 38 | 87.6 47 | 43.3 34 | 36.7 24 | 67.4 47 | 25.3 38 | 31.6 2 | 63.6 6 | 4.67 15 | 39.1 16 | 78.7 10 | 3.19 32 |
Classic+NL [31] | 22.5 | 14.2 41 | 38.8 51 | 1.98 39 | 24.6 9 | 36.5 10 | 2.65 9 | 17.7 3 | 30.9 8 | 1.51 7 | 59.2 13 | 67.5 9 | 42.2 40 | 79.2 21 | 87.5 27 | 43.3 34 | 37.0 43 | 67.1 30 | 25.5 47 | 31.7 6 | 63.6 6 | 4.67 15 | 39.2 22 | 79.0 21 | 3.18 30 |
LME [72] | 25.2 | 13.5 7 | 36.1 5 | 1.62 4 | 25.3 25 | 37.8 23 | 3.44 56 | 19.0 31 | 32.8 34 | 1.63 19 | 59.0 5 | 67.8 19 | 41.5 7 | 79.7 77 | 87.9 74 | 44.4 78 | 36.5 13 | 67.0 25 | 24.9 12 | 32.0 27 | 64.2 18 | 4.66 12 | 39.0 12 | 78.6 8 | 3.09 14 |
FESL [75] | 27.3 | 14.4 53 | 39.1 60 | 1.83 21 | 25.0 21 | 37.4 21 | 2.76 18 | 18.2 12 | 31.6 18 | 1.70 22 | 59.7 32 | 68.5 33 | 41.7 15 | 79.3 38 | 87.6 47 | 43.3 34 | 36.9 38 | 67.9 67 | 25.2 28 | 31.8 15 | 63.8 11 | 4.61 3 | 39.3 26 | 78.8 14 | 3.04 8 |
PMF [76] | 29.8 | 13.7 13 | 37.1 17 | 1.66 8 | 25.5 31 | 39.3 38 | 2.71 13 | 19.0 31 | 34.9 64 | 1.74 29 | 59.4 23 | 68.4 30 | 41.8 20 | 79.4 57 | 87.6 47 | 43.3 34 | 37.3 59 | 66.9 21 | 26.2 71 | 31.9 20 | 64.3 19 | 4.73 29 | 39.3 26 | 78.8 14 | 2.93 1 |
Efficient-NL [60] | 30.3 | 14.3 48 | 38.7 47 | 1.77 17 | 25.2 22 | 37.6 22 | 2.76 18 | 19.0 31 | 31.8 19 | 2.08 51 | 59.8 37 | 68.7 42 | 41.4 4 | 79.1 8 | 87.4 7 | 43.0 10 | 36.9 38 | 68.4 75 | 24.6 6 | 32.1 37 | 64.7 33 | 4.69 20 | 40.1 62 | 79.8 50 | 3.14 23 |
MDP-Flow [26] | 30.4 | 13.4 3 | 36.1 5 | 1.67 9 | 24.8 17 | 37.2 19 | 2.79 25 | 18.8 27 | 32.0 24 | 1.70 22 | 59.8 37 | 68.9 50 | 42.1 32 | 79.3 38 | 87.6 47 | 43.5 51 | 36.7 24 | 67.7 62 | 25.2 28 | 32.5 60 | 65.5 56 | 4.77 43 | 39.1 16 | 79.0 21 | 3.09 14 |
SuperFlow [89] | 31.0 | 13.8 18 | 36.2 10 | 2.27 56 | 26.3 47 | 38.7 34 | 4.39 64 | 19.1 37 | 33.1 40 | 1.99 46 | 59.6 28 | 67.7 16 | 42.2 40 | 79.4 57 | 87.5 27 | 43.7 71 | 36.1 5 | 65.9 1 | 24.8 10 | 31.7 6 | 64.5 26 | 4.80 50 | 38.9 5 | 78.9 17 | 3.19 32 |
TC-Flow [46] | 31.6 | 13.7 13 | 36.9 15 | 1.91 34 | 25.3 25 | 38.5 29 | 3.05 42 | 19.3 51 | 34.1 54 | 1.73 25 | 59.2 13 | 67.8 19 | 42.2 40 | 79.3 38 | 87.5 27 | 43.5 51 | 37.1 48 | 68.0 68 | 25.6 51 | 31.9 20 | 64.3 19 | 4.71 22 | 39.0 12 | 79.0 21 | 3.13 22 |
Second-order prior [8] | 32.0 | 14.0 26 | 37.1 17 | 2.11 44 | 26.2 44 | 39.3 38 | 2.93 35 | 19.4 57 | 35.1 66 | 2.16 61 | 59.4 23 | 67.8 19 | 41.8 20 | 79.1 8 | 87.3 2 | 43.1 15 | 36.5 13 | 66.7 14 | 25.0 13 | 32.3 51 | 65.4 53 | 4.74 35 | 39.5 39 | 79.6 43 | 3.19 32 |
IROF-TV [53] | 32.5 | 14.0 26 | 38.1 35 | 1.99 40 | 24.7 16 | 36.5 10 | 2.65 9 | 19.1 37 | 34.2 55 | 1.78 30 | 59.1 8 | 67.4 8 | 42.4 50 | 79.4 57 | 87.7 63 | 43.6 60 | 36.0 3 | 66.4 5 | 24.4 4 | 32.1 37 | 64.6 29 | 4.75 37 | 39.8 52 | 79.9 53 | 3.35 56 |
EP-PM [83] | 33.0 | 13.4 3 | 36.6 11 | 1.61 2 | 25.5 31 | 39.3 38 | 2.76 18 | 19.4 57 | 35.7 71 | 1.99 46 | 59.6 28 | 69.3 57 | 41.9 25 | 79.2 21 | 87.4 7 | 43.1 15 | 37.0 43 | 67.5 54 | 25.3 38 | 32.8 69 | 65.0 40 | 4.85 55 | 39.4 33 | 79.0 21 | 3.04 8 |
Aniso. Huber-L1 [22] | 34.7 | 14.3 48 | 38.5 41 | 2.17 47 | 26.6 50 | 39.5 46 | 3.21 48 | 19.2 44 | 32.5 33 | 1.83 37 | 59.7 32 | 68.7 42 | 41.9 25 | 79.2 21 | 87.4 7 | 43.2 27 | 36.3 7 | 67.1 30 | 24.6 6 | 32.2 47 | 64.9 38 | 4.71 22 | 39.7 47 | 79.6 43 | 3.24 45 |
OFH [38] | 34.7 | 14.1 36 | 38.2 38 | 2.03 43 | 25.6 36 | 38.4 27 | 3.01 39 | 19.4 57 | 35.1 66 | 1.79 31 | 59.5 26 | 68.8 46 | 42.3 46 | 79.1 8 | 87.4 7 | 43.1 15 | 36.7 24 | 67.6 58 | 25.2 28 | 32.1 37 | 65.1 46 | 4.79 45 | 39.2 22 | 79.2 28 | 3.15 24 |
SimpleFlow [49] | 35.0 | 14.1 36 | 38.9 57 | 1.92 37 | 25.5 31 | 37.9 25 | 2.85 31 | 19.0 31 | 32.3 29 | 2.26 66 | 59.2 13 | 67.3 7 | 42.4 50 | 79.2 21 | 87.5 27 | 43.2 27 | 36.7 24 | 67.6 58 | 25.1 21 | 32.0 27 | 66.1 66 | 5.29 78 | 39.3 26 | 79.2 28 | 3.15 24 |
DPOF [18] | 35.5 | 14.2 41 | 39.1 60 | 2.19 51 | 24.8 17 | 37.0 17 | 2.80 26 | 19.3 51 | 31.9 20 | 2.01 48 | 60.2 52 | 69.5 65 | 42.3 46 | 79.1 8 | 87.4 7 | 43.1 15 | 36.7 24 | 67.1 30 | 24.6 6 | 32.4 56 | 65.3 52 | 4.81 52 | 39.5 39 | 79.5 38 | 3.18 30 |
Complementary OF [21] | 35.5 | 13.7 13 | 37.8 28 | 1.71 11 | 25.2 22 | 38.6 32 | 2.81 27 | 19.8 71 | 33.7 44 | 2.38 69 | 59.9 43 | 69.2 56 | 42.8 60 | 79.2 21 | 87.5 27 | 43.1 15 | 36.6 18 | 67.4 47 | 25.2 28 | 32.3 51 | 65.4 53 | 4.79 45 | 38.8 4 | 78.9 17 | 3.29 50 |
CostFilter [40] | 35.7 | 13.6 11 | 37.4 22 | 1.63 7 | 25.5 31 | 39.7 48 | 2.75 16 | 19.0 31 | 36.0 74 | 1.79 31 | 59.4 23 | 68.8 46 | 42.0 29 | 79.4 57 | 87.6 47 | 43.7 71 | 38.6 78 | 67.1 30 | 28.1 84 | 31.9 20 | 64.6 29 | 4.81 52 | 39.0 12 | 78.5 6 | 3.00 2 |
Brox et al. [5] | 36.0 | 14.0 26 | 37.4 22 | 1.90 32 | 26.4 48 | 40.1 56 | 3.08 43 | 19.3 51 | 35.0 65 | 1.97 43 | 59.7 32 | 68.2 27 | 41.7 15 | 79.4 57 | 87.6 47 | 43.6 60 | 36.6 18 | 66.9 21 | 25.1 21 | 31.9 20 | 64.8 35 | 4.73 29 | 39.4 33 | 79.5 38 | 3.15 24 |
Sparse Occlusion [54] | 36.0 | 14.2 41 | 38.6 43 | 1.99 40 | 25.8 38 | 39.2 37 | 2.78 22 | 19.3 51 | 32.3 29 | 1.80 35 | 59.8 37 | 68.8 46 | 41.7 15 | 79.3 38 | 87.5 27 | 43.2 27 | 37.1 48 | 68.4 75 | 25.3 38 | 32.1 37 | 64.4 25 | 4.60 1 | 39.7 47 | 79.6 43 | 3.15 24 |
Deep-Matching [85] | 36.0 | 13.7 13 | 35.5 3 | 2.14 45 | 26.0 39 | 38.5 29 | 3.85 58 | 19.2 44 | 33.8 48 | 1.79 31 | 59.8 37 | 67.9 25 | 42.3 46 | 79.4 57 | 87.5 27 | 43.8 74 | 37.3 59 | 66.3 3 | 26.3 74 | 31.8 15 | 64.7 33 | 4.62 4 | 39.3 26 | 79.3 32 | 3.23 43 |
TC/T-Flow [80] | 36.6 | 14.3 48 | 38.8 51 | 1.84 23 | 25.3 25 | 38.6 32 | 2.81 27 | 18.9 28 | 32.4 32 | 1.58 15 | 59.9 43 | 69.5 65 | 42.1 32 | 79.3 38 | 87.5 27 | 43.5 51 | 37.1 48 | 68.0 68 | 25.2 28 | 32.1 37 | 65.2 50 | 4.81 52 | 39.2 22 | 79.4 35 | 3.00 2 |
ComplOF-FED-GPU [35] | 37.0 | 14.0 26 | 38.0 32 | 1.91 34 | 25.3 25 | 38.5 29 | 2.90 33 | 20.2 75 | 34.6 60 | 2.16 61 | 59.5 26 | 68.5 33 | 42.5 55 | 79.2 21 | 87.4 7 | 43.2 27 | 36.6 18 | 67.4 47 | 25.0 13 | 32.2 47 | 65.4 53 | 4.75 37 | 39.7 47 | 79.8 50 | 3.19 32 |
GraphCuts [14] | 38.3 | 15.1 70 | 39.3 64 | 2.68 66 | 26.4 48 | 39.4 43 | 4.50 67 | 19.2 44 | 30.7 7 | 2.69 74 | 60.7 63 | 68.6 38 | 42.8 60 | 79.0 4 | 87.4 7 | 42.5 4 | 35.6 1 | 66.7 14 | 23.7 1 | 32.0 27 | 65.0 40 | 5.04 67 | 39.0 12 | 79.2 28 | 3.48 70 |
Classic++ [32] | 38.5 | 14.0 26 | 38.1 35 | 2.17 47 | 25.7 37 | 38.8 35 | 2.96 36 | 19.3 51 | 33.9 50 | 1.93 40 | 59.7 32 | 67.9 25 | 42.8 60 | 79.2 21 | 87.5 27 | 43.3 34 | 37.4 63 | 67.0 25 | 26.6 75 | 31.8 15 | 64.3 19 | 4.78 44 | 39.4 33 | 79.5 38 | 3.36 57 |
Fusion [6] | 38.6 | 13.8 18 | 38.4 40 | 1.84 23 | 25.3 25 | 38.1 26 | 2.88 32 | 19.1 37 | 32.2 28 | 1.90 39 | 60.9 66 | 69.8 68 | 41.8 20 | 79.1 8 | 87.9 74 | 42.1 2 | 36.0 3 | 67.8 64 | 24.1 2 | 32.7 67 | 66.3 69 | 4.88 58 | 39.5 39 | 80.4 71 | 3.26 48 |
ALD-Flow [68] | 38.7 | 14.1 36 | 37.9 31 | 2.17 47 | 25.4 30 | 38.4 27 | 3.14 45 | 19.1 37 | 33.9 50 | 1.73 25 | 59.6 28 | 69.0 53 | 42.6 57 | 79.4 57 | 87.6 47 | 43.6 60 | 37.0 43 | 67.5 54 | 25.6 51 | 31.7 6 | 64.0 16 | 4.69 20 | 39.4 33 | 79.5 38 | 3.20 38 |
p-harmonic [29] | 39.6 | 13.5 7 | 36.7 12 | 1.85 26 | 26.7 55 | 39.9 52 | 3.25 50 | 19.4 57 | 35.2 68 | 2.10 53 | 60.1 50 | 68.7 42 | 42.2 40 | 79.3 38 | 87.5 27 | 43.3 34 | 36.7 24 | 66.7 14 | 25.3 38 | 32.6 63 | 65.8 60 | 4.76 40 | 39.4 33 | 79.5 38 | 3.17 29 |
FastOF [78] | 41.1 | 14.7 61 | 38.6 43 | 2.26 55 | 26.7 55 | 39.4 43 | 4.42 65 | 19.8 71 | 36.1 76 | 2.10 53 | 60.3 55 | 69.3 57 | 41.2 2 | 79.2 21 | 87.4 7 | 43.4 45 | 37.1 48 | 66.6 9 | 25.7 58 | 32.0 27 | 64.6 29 | 4.66 12 | 39.5 39 | 79.4 35 | 3.11 20 |
Shiralkar [42] | 42.7 | 14.2 41 | 39.0 59 | 2.02 42 | 26.8 57 | 40.3 59 | 2.98 37 | 18.5 16 | 38.0 84 | 2.48 72 | 60.1 50 | 67.7 16 | 41.8 20 | 78.8 1 | 87.2 1 | 42.3 3 | 37.7 67 | 67.2 35 | 26.2 71 | 33.2 76 | 67.1 73 | 4.94 63 | 39.4 33 | 79.3 32 | 3.10 16 |
SIOF [69] | 43.7 | 14.7 61 | 39.5 70 | 2.23 53 | 27.1 61 | 40.3 59 | 4.25 62 | 19.1 37 | 32.9 36 | 1.82 36 | 59.8 37 | 68.6 38 | 42.1 32 | 79.1 8 | 87.4 7 | 43.0 10 | 37.1 48 | 67.1 30 | 25.5 47 | 32.4 56 | 64.9 38 | 4.79 45 | 40.1 62 | 79.9 53 | 3.40 62 |
CLG-TV [48] | 44.2 | 14.3 48 | 38.8 51 | 2.17 47 | 26.6 50 | 39.8 50 | 3.24 49 | 19.5 63 | 33.9 50 | 2.11 56 | 60.0 46 | 69.0 53 | 42.4 50 | 79.3 38 | 87.6 47 | 43.5 51 | 36.6 18 | 66.9 21 | 25.1 21 | 32.1 37 | 65.1 46 | 4.71 22 | 39.9 53 | 80.0 57 | 3.20 38 |
F-TV-L1 [15] | 46.9 | 15.0 66 | 39.3 64 | 2.88 72 | 27.2 63 | 40.2 58 | 3.69 57 | 19.2 44 | 34.5 59 | 2.19 63 | 59.7 32 | 68.4 30 | 42.8 60 | 78.9 2 | 87.4 7 | 42.7 7 | 37.3 59 | 67.0 25 | 25.6 51 | 32.1 37 | 64.5 26 | 4.89 59 | 40.1 62 | 80.0 57 | 3.42 66 |
Local-TV-L1 [65] | 47.0 | 14.9 65 | 37.3 20 | 3.21 76 | 27.3 64 | 39.5 46 | 4.67 68 | 18.9 28 | 32.3 29 | 1.70 22 | 61.3 74 | 68.6 38 | 47.1 83 | 79.3 38 | 87.6 47 | 43.6 60 | 39.0 81 | 66.7 14 | 28.9 87 | 31.7 6 | 64.3 19 | 4.79 45 | 39.3 26 | 79.1 26 | 3.41 65 |
IAOF [50] | 47.3 | 15.5 76 | 39.2 63 | 2.93 74 | 29.4 77 | 43.0 79 | 5.18 74 | 17.8 5 | 33.0 39 | 2.04 50 | 60.8 65 | 68.9 50 | 42.2 40 | 79.2 21 | 87.4 7 | 43.3 34 | 36.8 33 | 67.2 35 | 25.1 21 | 32.7 67 | 65.6 59 | 4.67 15 | 40.0 56 | 80.0 57 | 3.20 38 |
TCOF [71] | 48.5 | 14.4 53 | 39.3 64 | 1.83 21 | 27.3 64 | 40.9 67 | 3.35 52 | 18.7 24 | 32.1 26 | 1.50 6 | 60.2 52 | 70.2 73 | 42.1 32 | 79.3 38 | 87.6 47 | 43.2 27 | 36.9 38 | 68.5 77 | 24.8 10 | 33.3 77 | 65.8 60 | 4.72 25 | 41.2 82 | 81.4 82 | 3.46 68 |
Adaptive [20] | 49.2 | 14.5 57 | 39.6 71 | 2.31 58 | 27.1 61 | 40.4 62 | 3.35 52 | 18.6 21 | 33.7 44 | 1.98 44 | 59.6 28 | 68.2 27 | 42.4 50 | 79.4 57 | 87.6 47 | 43.4 45 | 37.1 48 | 67.5 54 | 25.7 58 | 32.4 56 | 64.8 35 | 4.73 29 | 40.0 56 | 80.1 61 | 3.38 60 |
SPSA-learn [13] | 50.8 | 14.8 64 | 37.8 28 | 2.72 68 | 27.6 66 | 40.1 56 | 4.71 69 | 20.5 77 | 33.7 44 | 2.97 78 | 60.4 57 | 67.6 12 | 41.5 7 | 79.3 38 | 87.5 27 | 43.5 51 | 36.8 33 | 67.2 35 | 25.2 28 | 33.4 79 | 70.8 90 | 6.21 90 | 39.7 47 | 79.6 43 | 3.19 32 |
LDOF [28] | 51.0 | 15.0 66 | 38.8 51 | 2.92 73 | 28.0 70 | 41.1 69 | 5.03 71 | 19.7 69 | 34.8 63 | 2.15 59 | 60.0 46 | 68.9 50 | 42.6 57 | 79.4 57 | 87.6 47 | 43.5 51 | 36.9 38 | 66.8 19 | 25.5 47 | 31.9 20 | 65.1 46 | 4.73 29 | 39.5 39 | 79.6 43 | 3.23 43 |
CRTflow [88] | 51.4 | 14.4 53 | 38.9 57 | 2.38 60 | 26.0 39 | 39.0 36 | 3.14 45 | 20.2 75 | 36.2 78 | 2.37 68 | 60.5 60 | 69.5 65 | 44.1 74 | 79.3 38 | 87.5 27 | 43.4 45 | 37.1 48 | 67.3 42 | 25.7 58 | 32.0 27 | 64.6 29 | 4.85 55 | 39.6 45 | 79.6 43 | 3.45 67 |
Occlusion-TV-L1 [63] | 51.7 | 14.3 48 | 39.1 60 | 2.21 52 | 26.6 50 | 40.0 54 | 3.14 45 | 19.2 44 | 34.2 55 | 2.15 59 | 60.0 46 | 68.5 33 | 42.8 60 | 79.3 38 | 87.5 27 | 43.6 60 | 37.5 64 | 67.0 25 | 26.2 71 | 32.9 72 | 65.1 46 | 5.16 74 | 40.0 56 | 79.8 50 | 3.30 52 |
CBF [12] | 51.9 | 13.7 13 | 37.2 19 | 2.15 46 | 26.0 39 | 39.4 43 | 3.28 51 | 19.1 37 | 32.1 26 | 1.79 31 | 61.0 69 | 70.0 72 | 45.8 78 | 79.6 75 | 87.8 72 | 44.9 81 | 36.8 33 | 67.4 47 | 25.2 28 | 32.2 47 | 65.5 56 | 5.22 76 | 40.0 56 | 80.2 66 | 3.99 84 |
Modified CLG [34] | 51.9 | 14.1 36 | 37.6 25 | 2.33 59 | 28.5 74 | 41.4 72 | 5.68 75 | 19.6 66 | 35.8 73 | 2.31 67 | 60.2 52 | 68.6 38 | 42.1 32 | 79.4 57 | 87.5 27 | 43.5 51 | 36.7 24 | 67.2 35 | 25.2 28 | 32.3 51 | 66.0 64 | 4.76 40 | 40.2 66 | 80.4 71 | 3.40 62 |
HBpMotionGpu [43] | 52.0 | 15.8 79 | 40.2 75 | 3.66 80 | 29.5 78 | 42.8 78 | 6.27 79 | 18.5 16 | 31.9 20 | 1.73 25 | 61.3 74 | 69.9 69 | 43.9 73 | 79.1 8 | 87.6 47 | 43.0 10 | 37.6 66 | 67.6 58 | 25.9 65 | 32.0 27 | 64.3 19 | 4.67 15 | 40.0 56 | 79.9 53 | 3.75 79 |
BlockOverlap [61] | 54.5 | 15.1 70 | 37.6 25 | 3.31 77 | 27.7 68 | 39.3 38 | 5.73 76 | 18.6 21 | 30.3 2 | 2.09 52 | 60.9 66 | 68.2 27 | 47.1 83 | 80.2 83 | 87.9 74 | 46.5 85 | 39.0 81 | 67.3 42 | 28.4 85 | 31.9 20 | 63.9 12 | 5.09 70 | 39.7 47 | 79.3 32 | 3.55 73 |
TriangleFlow [30] | 54.7 | 14.7 61 | 40.0 74 | 2.29 57 | 26.6 50 | 40.8 65 | 3.03 41 | 19.4 57 | 33.3 42 | 2.10 53 | 60.4 57 | 69.9 69 | 42.8 60 | 79.0 4 | 87.4 7 | 42.6 5 | 37.7 67 | 68.3 74 | 25.3 38 | 33.1 75 | 67.8 78 | 5.24 77 | 40.4 73 | 80.6 75 | 3.32 54 |
2D-CLG [1] | 54.8 | 14.5 57 | 37.6 25 | 2.76 69 | 29.8 80 | 42.4 75 | 6.69 83 | 19.7 69 | 35.2 68 | 2.74 76 | 60.7 63 | 68.7 42 | 41.5 7 | 79.4 57 | 87.7 63 | 43.5 51 | 36.6 18 | 67.0 25 | 25.1 21 | 32.5 60 | 66.7 71 | 4.90 61 | 40.2 66 | 80.1 61 | 3.25 46 |
SegOF [10] | 55.4 | 14.2 41 | 36.8 14 | 2.54 63 | 27.0 60 | 40.0 54 | 4.18 61 | 21.1 81 | 36.1 76 | 3.15 82 | 60.5 60 | 70.7 81 | 41.6 10 | 79.4 57 | 87.6 47 | 43.6 60 | 36.9 38 | 68.2 73 | 25.2 28 | 32.5 60 | 68.0 81 | 5.31 80 | 39.6 45 | 79.4 35 | 3.22 42 |
ACK-Prior [27] | 55.6 | 13.8 18 | 38.1 35 | 1.74 14 | 25.5 31 | 39.3 38 | 2.82 29 | 19.6 66 | 33.8 48 | 2.45 71 | 60.5 60 | 70.3 74 | 42.3 46 | 80.2 83 | 88.0 79 | 45.8 84 | 38.2 73 | 67.8 64 | 26.9 79 | 32.6 63 | 66.2 68 | 5.35 81 | 38.9 5 | 79.7 49 | 3.60 77 |
Nguyen [33] | 55.7 | 15.6 77 | 38.5 41 | 3.62 79 | 30.1 82 | 43.2 80 | 6.04 77 | 19.6 66 | 36.3 79 | 2.25 65 | 61.1 71 | 69.4 62 | 42.0 29 | 79.2 21 | 87.5 27 | 43.1 15 | 36.4 8 | 67.2 35 | 24.7 9 | 34.3 89 | 67.4 76 | 5.00 64 | 40.2 66 | 80.3 68 | 3.29 50 |
IAOF2 [51] | 56.1 | 15.6 77 | 41.3 78 | 2.58 65 | 27.6 66 | 41.4 72 | 4.29 63 | 17.8 5 | 33.6 43 | 1.94 41 | 61.2 73 | 70.8 82 | 42.8 60 | 79.4 57 | 87.7 63 | 43.3 34 | 37.2 56 | 67.5 54 | 25.6 51 | 32.3 51 | 65.0 40 | 4.63 5 | 40.6 77 | 80.4 71 | 3.40 62 |
TV-L1-improved [17] | 56.3 | 14.2 41 | 38.8 51 | 2.25 54 | 26.9 58 | 40.3 59 | 3.40 55 | 19.5 63 | 33.9 50 | 2.44 70 | 59.9 43 | 69.0 53 | 42.7 59 | 79.4 57 | 87.7 63 | 43.5 51 | 37.2 56 | 67.6 58 | 25.8 61 | 32.1 37 | 66.1 66 | 5.05 68 | 39.9 53 | 80.0 57 | 3.46 68 |
Correlation Flow [79] | 56.5 | 14.0 26 | 38.3 39 | 1.61 2 | 26.2 44 | 39.8 50 | 2.98 37 | 19.1 37 | 31.9 20 | 1.73 25 | 60.4 57 | 69.4 62 | 43.6 71 | 80.2 83 | 87.9 74 | 47.8 88 | 38.0 72 | 68.7 80 | 26.0 68 | 33.4 79 | 67.2 74 | 5.29 78 | 40.1 62 | 80.3 68 | 3.39 61 |
Dynamic MRF [7] | 57.1 | 13.9 23 | 38.6 43 | 1.90 32 | 26.1 42 | 40.4 62 | 3.08 43 | 20.0 74 | 37.7 82 | 2.73 75 | 61.3 74 | 69.3 57 | 44.6 75 | 79.1 8 | 87.6 47 | 43.0 10 | 37.7 67 | 68.0 68 | 25.9 65 | 32.6 63 | 67.2 74 | 5.08 69 | 40.4 73 | 80.5 74 | 3.49 71 |
Direct ZNCC [66] | 57.9 | 14.0 26 | 38.7 47 | 1.74 14 | 26.2 44 | 39.9 52 | 2.90 33 | 19.3 51 | 32.8 34 | 2.02 49 | 60.3 55 | 69.9 69 | 43.3 69 | 79.9 81 | 87.8 72 | 46.7 86 | 37.8 71 | 68.5 77 | 25.8 61 | 33.4 79 | 67.4 76 | 5.11 72 | 40.0 56 | 80.2 66 | 3.28 49 |
Rannacher [23] | 58.6 | 14.4 53 | 39.3 64 | 2.38 60 | 26.9 58 | 40.4 62 | 3.36 54 | 19.5 63 | 34.6 60 | 2.58 73 | 59.8 37 | 68.8 46 | 42.8 60 | 79.4 57 | 87.7 63 | 43.6 60 | 37.2 56 | 67.8 64 | 25.8 61 | 32.2 47 | 66.0 64 | 5.02 65 | 39.9 53 | 79.9 53 | 3.56 74 |
Black & Anandan [4] | 59.0 | 15.3 73 | 38.8 51 | 2.96 75 | 28.4 72 | 40.9 67 | 4.78 70 | 20.5 77 | 35.2 68 | 2.74 76 | 60.9 66 | 69.3 57 | 42.1 32 | 79.4 57 | 87.7 63 | 43.6 60 | 37.1 48 | 66.6 9 | 25.6 51 | 32.9 72 | 65.9 63 | 4.72 25 | 40.3 69 | 80.3 68 | 3.25 46 |
LocallyOriented [52] | 61.0 | 15.0 66 | 40.3 76 | 2.53 62 | 27.7 68 | 41.3 70 | 3.86 59 | 19.4 57 | 34.4 57 | 1.95 42 | 61.1 71 | 70.6 78 | 43.3 69 | 79.2 21 | 87.5 27 | 43.3 34 | 39.1 85 | 68.1 71 | 27.6 82 | 32.9 72 | 65.8 60 | 4.72 25 | 40.6 77 | 80.6 75 | 3.37 59 |
Filter Flow [19] | 64.5 | 15.0 66 | 39.4 69 | 2.78 70 | 28.4 72 | 40.8 65 | 6.31 80 | 18.5 16 | 32.9 36 | 2.14 57 | 61.7 77 | 69.3 57 | 45.3 77 | 79.7 77 | 88.0 79 | 44.5 79 | 37.3 59 | 67.7 62 | 26.1 70 | 32.1 37 | 65.2 50 | 4.93 62 | 40.3 69 | 80.7 78 | 3.97 83 |
StereoFlow [44] | 65.2 | 22.8 90 | 51.1 90 | 4.80 82 | 36.2 89 | 51.1 90 | 6.57 82 | 19.2 44 | 34.6 60 | 1.89 38 | 60.0 46 | 68.5 33 | 42.4 50 | 80.3 86 | 89.1 89 | 43.9 75 | 39.0 81 | 74.1 90 | 25.3 38 | 32.1 37 | 65.0 40 | 4.73 29 | 40.3 69 | 80.9 79 | 3.36 57 |
Ad-TV-NDC [36] | 67.3 | 17.2 82 | 39.9 73 | 5.26 84 | 29.6 79 | 42.1 74 | 6.18 78 | 19.2 44 | 33.7 44 | 1.98 44 | 62.4 79 | 70.3 74 | 45.2 76 | 79.6 75 | 87.9 74 | 43.9 75 | 38.3 75 | 67.3 42 | 27.2 81 | 32.3 51 | 65.5 56 | 4.80 50 | 40.3 69 | 80.1 61 | 3.58 76 |
Bartels [41] | 68.7 | 14.6 60 | 39.3 64 | 2.80 71 | 26.1 42 | 39.7 48 | 4.45 66 | 19.0 31 | 33.2 41 | 2.14 57 | 62.1 78 | 70.9 83 | 48.9 85 | 80.7 88 | 88.1 81 | 49.2 89 | 43.7 89 | 69.0 83 | 34.8 89 | 32.4 56 | 65.0 40 | 5.76 87 | 40.4 73 | 80.1 61 | 4.26 86 |
TI-DOFE [24] | 70.9 | 17.9 84 | 43.0 82 | 5.41 85 | 32.3 85 | 46.2 87 | 7.98 86 | 20.5 77 | 38.1 85 | 2.97 78 | 63.1 83 | 70.6 78 | 43.8 72 | 79.1 8 | 87.6 47 | 43.1 15 | 37.7 67 | 67.4 47 | 25.8 61 | 33.4 79 | 67.8 78 | 5.09 70 | 41.6 85 | 81.5 84 | 3.68 78 |
Horn & Schunck [3] | 71.5 | 15.3 73 | 40.4 77 | 2.69 67 | 29.0 75 | 42.7 76 | 5.10 72 | 21.1 81 | 37.9 83 | 3.33 83 | 62.5 80 | 70.3 74 | 43.0 68 | 79.3 38 | 87.7 63 | 43.6 60 | 37.5 64 | 67.3 42 | 25.9 65 | 33.9 88 | 68.5 82 | 5.03 66 | 41.2 82 | 81.2 81 | 3.57 75 |
GroupFlow [9] | 72.8 | 16.8 81 | 43.4 83 | 3.43 78 | 29.1 76 | 43.9 82 | 5.11 73 | 22.2 86 | 39.3 86 | 3.53 84 | 61.0 69 | 70.6 78 | 42.5 55 | 79.7 77 | 88.1 81 | 44.0 77 | 39.0 81 | 69.4 86 | 26.8 78 | 32.8 69 | 66.8 72 | 4.87 57 | 40.4 73 | 80.1 61 | 3.01 4 |
SLK [47] | 75.2 | 17.4 83 | 43.9 85 | 4.90 83 | 30.5 83 | 44.0 83 | 7.18 84 | 22.5 87 | 39.8 87 | 4.15 88 | 64.5 85 | 70.5 77 | 46.7 81 | 78.9 2 | 87.7 63 | 41.6 1 | 38.5 77 | 68.8 81 | 26.0 68 | 33.8 86 | 70.1 89 | 5.50 84 | 41.6 85 | 81.4 82 | 3.91 81 |
NL-TV-NCC [25] | 75.4 | 15.1 70 | 41.6 79 | 1.86 29 | 26.6 50 | 41.3 70 | 3.02 40 | 20.8 80 | 35.7 71 | 2.24 64 | 63.2 84 | 73.9 86 | 45.9 79 | 81.3 90 | 88.7 88 | 49.9 90 | 38.6 78 | 69.8 88 | 25.6 51 | 37.6 90 | 69.5 86 | 5.62 85 | 42.4 89 | 82.1 87 | 4.00 85 |
SILK [87] | 75.4 | 16.3 80 | 42.0 80 | 4.01 81 | 29.9 81 | 43.5 81 | 6.44 81 | 21.6 84 | 37.4 81 | 3.55 85 | 62.6 81 | 69.4 62 | 47.0 82 | 79.3 38 | 87.7 63 | 43.6 60 | 39.9 87 | 68.1 71 | 29.2 88 | 32.8 69 | 67.8 78 | 5.14 73 | 40.6 77 | 80.6 75 | 3.52 72 |
Learning Flow [11] | 78.8 | 15.3 73 | 42.7 81 | 2.55 64 | 28.0 70 | 42.7 76 | 3.95 60 | 21.1 81 | 37.0 80 | 3.03 81 | 63.0 82 | 73.3 85 | 46.2 80 | 80.0 82 | 88.2 86 | 45.1 82 | 38.2 73 | 68.6 79 | 26.7 76 | 33.8 86 | 68.5 82 | 5.21 75 | 41.9 88 | 82.3 88 | 3.95 82 |
Adaptive flow [45] | 80.3 | 19.6 86 | 44.1 86 | 6.76 86 | 32.8 86 | 45.7 86 | 10.2 88 | 19.8 71 | 34.4 57 | 3.02 80 | 64.7 86 | 72.1 84 | 49.4 86 | 80.3 86 | 88.6 87 | 45.6 83 | 38.3 75 | 69.2 84 | 26.7 76 | 32.6 63 | 66.5 70 | 5.45 83 | 41.0 80 | 81.1 80 | 3.75 79 |
Pyramid LK [2] | 82.6 | 21.2 89 | 43.7 84 | 10.7 90 | 33.1 88 | 45.1 85 | 11.9 89 | 27.3 89 | 36.0 74 | 6.46 89 | 70.7 90 | 78.5 90 | 57.7 90 | 79.5 73 | 88.1 81 | 43.3 34 | 38.6 78 | 68.8 81 | 27.0 80 | 33.5 84 | 68.8 84 | 6.00 88 | 41.0 80 | 81.8 85 | 4.31 88 |
PGAM+LK [55] | 84.9 | 19.4 85 | 46.4 88 | 6.81 87 | 30.9 84 | 44.8 84 | 7.52 85 | 22.7 88 | 40.9 89 | 3.99 86 | 66.6 88 | 73.9 86 | 52.4 88 | 79.7 77 | 88.1 81 | 44.5 79 | 40.2 88 | 69.7 87 | 28.8 86 | 33.3 77 | 69.3 85 | 5.42 82 | 41.4 84 | 81.8 85 | 4.36 89 |
FOLKI [16] | 85.0 | 20.9 87 | 46.0 87 | 9.48 89 | 32.8 86 | 47.4 88 | 8.75 87 | 21.6 84 | 40.7 88 | 4.10 87 | 67.2 89 | 74.2 88 | 53.7 89 | 79.5 73 | 88.1 81 | 43.7 71 | 39.2 86 | 69.2 84 | 27.9 83 | 33.4 79 | 69.5 86 | 5.65 86 | 41.7 87 | 82.3 88 | 4.28 87 |
Periodicity [86] | 88.9 | 21.0 88 | 47.0 89 | 9.32 88 | 38.1 90 | 48.1 89 | 14.7 90 | 29.8 90 | 47.9 90 | 9.27 90 | 66.0 87 | 77.1 89 | 50.7 87 | 80.8 89 | 89.3 90 | 46.8 87 | 45.1 90 | 70.6 89 | 35.5 90 | 33.5 84 | 69.6 88 | 6.07 89 | 43.5 90 | 84.0 90 | 6.51 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |