Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R5.0 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 8.1 | 4.89 2 | 14.4 3 | 0.12 2 | 8.58 8 | 16.9 8 | 0.39 3 | 5.95 4 | 13.6 3 | 0.28 2 | 17.7 2 | 26.7 8 | 5.32 20 | 42.9 4 | 57.6 2 | 5.13 9 | 10.6 13 | 40.1 17 | 0.92 13 | 9.75 11 | 41.0 9 | 0.43 6 | 21.6 22 | 51.9 19 | 0.46 5 |
NN-field [73] | 11.2 | 5.14 11 | 16.1 32 | 0.13 3 | 8.21 3 | 15.7 3 | 0.38 2 | 6.39 26 | 13.6 3 | 0.30 3 | 18.4 23 | 28.7 46 | 5.33 24 | 42.9 4 | 57.6 2 | 5.08 7 | 10.7 18 | 40.2 21 | 0.94 18 | 9.62 2 | 40.5 3 | 0.44 9 | 21.2 1 | 51.2 3 | 0.45 1 |
ComplexFlow [81] | 11.4 | 5.11 9 | 15.7 17 | 0.11 1 | 8.18 2 | 15.8 4 | 0.39 3 | 6.01 7 | 13.5 2 | 0.27 1 | 18.3 22 | 28.3 35 | 5.29 17 | 43.0 11 | 57.6 2 | 5.11 8 | 10.8 28 | 40.9 39 | 1.01 31 | 9.67 4 | 40.7 4 | 0.46 18 | 21.2 1 | 51.2 3 | 0.46 5 |
Layers++ [37] | 14.0 | 5.25 16 | 15.9 22 | 0.17 21 | 8.27 4 | 15.5 2 | 0.37 1 | 6.16 14 | 14.3 7 | 0.38 23 | 18.0 12 | 26.9 12 | 5.32 20 | 43.1 19 | 57.9 15 | 5.24 27 | 10.7 18 | 40.6 33 | 0.97 26 | 9.70 5 | 40.7 4 | 0.39 1 | 21.3 6 | 51.3 5 | 0.48 22 |
COFM [59] | 16.2 | 5.08 7 | 15.1 8 | 0.19 31 | 8.86 13 | 17.4 11 | 0.48 14 | 6.37 24 | 14.2 6 | 0.40 27 | 17.7 2 | 26.2 3 | 5.11 2 | 42.9 4 | 57.8 6 | 5.02 5 | 10.9 34 | 41.6 58 | 1.11 47 | 9.24 1 | 38.8 1 | 0.50 47 | 21.5 14 | 51.9 19 | 0.46 5 |
Sparse-NonSparse [56] | 17.0 | 5.31 25 | 16.3 37 | 0.17 21 | 8.74 10 | 17.2 9 | 0.48 14 | 6.19 16 | 14.7 14 | 0.34 10 | 17.9 9 | 26.3 4 | 5.23 12 | 43.1 19 | 57.8 6 | 5.25 30 | 11.0 43 | 41.2 45 | 1.04 37 | 9.71 6 | 40.9 6 | 0.46 18 | 21.2 1 | 51.3 5 | 0.47 10 |
IROF++ [58] | 17.1 | 5.37 34 | 16.8 48 | 0.14 6 | 8.87 15 | 17.4 11 | 0.45 9 | 6.41 31 | 14.6 10 | 0.43 32 | 17.5 1 | 25.8 1 | 5.22 10 | 42.9 4 | 57.8 6 | 5.19 17 | 10.5 5 | 39.4 8 | 0.87 6 | 10.0 32 | 42.4 36 | 0.47 30 | 21.4 11 | 51.5 8 | 0.50 40 |
nLayers [57] | 17.2 | 5.26 18 | 15.8 20 | 0.16 18 | 8.54 7 | 16.6 7 | 0.45 9 | 5.89 2 | 13.1 1 | 0.30 3 | 18.1 15 | 27.1 16 | 5.35 30 | 43.3 36 | 58.0 22 | 5.36 52 | 10.8 28 | 40.9 39 | 1.11 47 | 9.65 3 | 40.1 2 | 0.48 34 | 21.2 1 | 51.1 1 | 0.45 1 |
TV-L1-MCT [64] | 18.2 | 5.74 69 | 18.1 75 | 0.18 26 | 9.50 26 | 19.1 25 | 0.58 27 | 5.73 1 | 14.5 9 | 0.38 23 | 17.8 5 | 26.0 2 | 5.28 16 | 43.0 11 | 57.9 15 | 5.22 21 | 10.4 3 | 39.1 5 | 0.94 18 | 9.78 14 | 41.1 12 | 0.44 9 | 21.2 1 | 51.1 1 | 0.48 22 |
Epistemic [84] | 20.0 | 5.15 12 | 16.1 32 | 0.14 6 | 8.86 13 | 17.9 19 | 0.41 6 | 6.38 25 | 15.4 31 | 0.33 9 | 17.8 5 | 27.0 15 | 5.15 5 | 43.2 29 | 58.0 22 | 5.24 27 | 10.6 13 | 39.8 12 | 0.94 18 | 10.0 32 | 42.7 48 | 0.57 61 | 21.5 14 | 51.8 17 | 0.47 10 |
ADF [67] | 20.4 | 4.85 1 | 14.0 1 | 0.14 6 | 9.18 21 | 18.5 23 | 0.62 31 | 6.06 10 | 15.0 23 | 0.35 14 | 17.7 2 | 26.5 7 | 5.21 6 | 43.3 36 | 58.2 40 | 5.38 56 | 10.5 5 | 39.9 14 | 0.85 5 | 10.0 32 | 42.1 30 | 0.49 41 | 21.8 35 | 52.6 40 | 0.47 10 |
LSM [39] | 23.6 | 5.49 48 | 17.4 64 | 0.18 26 | 8.93 16 | 17.7 16 | 0.48 14 | 6.32 19 | 15.4 31 | 0.35 14 | 18.1 15 | 27.1 16 | 5.22 10 | 43.1 19 | 57.9 15 | 5.28 40 | 11.0 43 | 41.3 48 | 1.03 36 | 9.72 7 | 40.9 6 | 0.46 18 | 21.4 11 | 51.7 12 | 0.48 22 |
Ramp [62] | 24.1 | 5.46 45 | 17.1 54 | 0.18 26 | 8.84 12 | 17.4 11 | 0.58 27 | 6.14 12 | 14.7 14 | 0.34 10 | 17.8 5 | 26.4 6 | 5.23 12 | 43.2 29 | 58.0 22 | 5.27 36 | 11.2 59 | 42.0 63 | 1.15 53 | 9.72 7 | 40.9 6 | 0.42 3 | 21.6 22 | 52.1 23 | 0.48 22 |
Levin3 [90] | 24.2 | 5.55 57 | 17.3 57 | 0.15 14 | 9.06 18 | 17.8 17 | 0.57 24 | 5.97 5 | 14.6 10 | 0.36 17 | 17.9 9 | 26.3 4 | 5.46 47 | 43.0 11 | 57.8 6 | 5.14 10 | 11.1 56 | 41.6 58 | 1.04 37 | 9.83 18 | 41.4 16 | 0.48 34 | 21.6 22 | 52.1 23 | 0.47 10 |
Deep-Matching [85] | 24.2 | 5.08 7 | 14.5 4 | 0.20 36 | 10.0 35 | 19.7 31 | 0.86 50 | 6.39 26 | 16.4 46 | 0.39 26 | 18.8 40 | 27.7 23 | 5.34 26 | 43.4 49 | 58.0 22 | 5.40 62 | 10.3 2 | 38.2 2 | 1.00 30 | 9.83 18 | 41.8 22 | 0.41 2 | 21.3 6 | 51.4 7 | 0.47 10 |
SuperFlow [89] | 24.4 | 4.99 4 | 14.3 2 | 0.22 45 | 10.3 42 | 19.9 34 | 0.90 54 | 6.61 42 | 15.5 34 | 0.51 43 | 18.5 27 | 27.2 19 | 5.52 52 | 43.3 36 | 58.1 32 | 5.37 54 | 10.1 1 | 38.0 1 | 0.73 1 | 9.73 10 | 41.4 16 | 0.46 18 | 21.3 6 | 51.5 8 | 0.46 5 |
LME [72] | 24.8 | 5.13 10 | 15.8 20 | 0.14 6 | 9.15 20 | 18.4 22 | 0.51 17 | 6.32 19 | 15.7 35 | 0.34 10 | 17.9 9 | 27.1 16 | 5.34 26 | 43.8 75 | 58.8 73 | 5.79 84 | 10.8 28 | 41.2 45 | 0.93 15 | 9.86 20 | 41.3 14 | 0.43 6 | 21.3 6 | 51.5 8 | 0.47 10 |
Classic+NL [31] | 26.0 | 5.56 58 | 17.4 64 | 0.22 45 | 8.99 17 | 17.6 15 | 0.54 20 | 6.02 8 | 14.7 14 | 0.36 17 | 18.1 15 | 26.8 9 | 5.41 38 | 43.1 19 | 58.0 22 | 5.23 24 | 11.1 56 | 41.5 53 | 1.06 44 | 9.72 7 | 41.0 9 | 0.46 18 | 21.6 22 | 52.0 21 | 0.47 10 |
SCR [74] | 26.5 | 5.52 52 | 17.3 57 | 0.19 31 | 8.82 11 | 17.3 10 | 0.51 17 | 6.16 14 | 14.6 10 | 0.37 21 | 18.1 15 | 26.8 9 | 5.41 38 | 43.2 29 | 58.1 32 | 5.34 47 | 11.0 43 | 41.5 53 | 1.01 31 | 9.82 17 | 41.4 16 | 0.49 41 | 21.5 14 | 51.8 17 | 0.47 10 |
FC-2Layers-FF [77] | 27.8 | 5.40 39 | 17.0 53 | 0.17 21 | 8.15 1 | 15.3 1 | 0.42 7 | 6.14 12 | 14.9 18 | 0.35 14 | 18.1 15 | 27.2 19 | 5.31 19 | 43.3 36 | 58.2 40 | 5.36 52 | 11.2 59 | 42.2 65 | 1.20 60 | 9.75 11 | 41.0 9 | 0.49 41 | 21.7 31 | 52.1 23 | 0.48 22 |
OFLADF [82] | 28.0 | 5.16 13 | 15.9 22 | 0.14 6 | 8.28 5 | 16.1 5 | 0.40 5 | 6.34 23 | 14.9 18 | 0.30 3 | 18.0 12 | 27.3 21 | 5.11 2 | 43.3 36 | 58.1 32 | 5.39 57 | 11.2 59 | 42.4 66 | 1.21 61 | 10.1 39 | 42.4 36 | 0.60 67 | 21.9 44 | 52.6 40 | 0.45 1 |
Brox et al. [5] | 28.8 | 5.33 29 | 15.4 11 | 0.19 31 | 10.2 38 | 20.1 37 | 0.64 35 | 6.61 42 | 17.2 62 | 0.46 37 | 18.7 35 | 28.2 31 | 5.21 6 | 43.4 49 | 58.1 32 | 5.27 36 | 10.7 18 | 40.1 17 | 0.99 27 | 9.90 22 | 42.0 27 | 0.45 14 | 21.6 22 | 52.1 23 | 0.47 10 |
MDP-Flow [26] | 29.0 | 5.03 5 | 15.4 11 | 0.14 6 | 8.68 9 | 17.4 11 | 0.47 13 | 5.97 5 | 14.3 7 | 0.32 7 | 18.9 46 | 28.5 41 | 5.50 50 | 43.2 29 | 58.0 22 | 5.39 57 | 11.2 59 | 42.6 69 | 1.31 70 | 10.3 51 | 43.1 55 | 0.49 41 | 21.4 11 | 51.7 12 | 0.47 10 |
ALD-Flow [68] | 29.7 | 5.37 34 | 16.1 32 | 0.23 49 | 9.53 27 | 19.2 26 | 0.57 24 | 6.51 34 | 16.7 53 | 0.34 10 | 18.2 21 | 27.9 25 | 5.32 20 | 43.4 49 | 58.3 54 | 5.46 70 | 10.7 18 | 39.9 14 | 0.99 27 | 9.76 13 | 41.2 13 | 0.44 9 | 21.8 35 | 52.7 45 | 0.47 10 |
Second-order prior [8] | 30.8 | 5.29 22 | 15.3 10 | 0.27 61 | 10.8 48 | 21.1 50 | 0.78 44 | 7.14 63 | 17.8 68 | 0.62 62 | 18.6 31 | 28.3 35 | 5.21 6 | 42.9 4 | 57.7 5 | 5.16 13 | 10.5 5 | 39.6 10 | 0.93 15 | 10.2 46 | 42.8 50 | 0.44 9 | 21.6 22 | 52.3 30 | 0.49 31 |
IROF-TV [53] | 31.5 | 5.35 33 | 16.6 42 | 0.21 39 | 9.10 19 | 17.8 17 | 0.57 24 | 6.61 42 | 16.8 55 | 0.44 34 | 17.8 5 | 26.9 12 | 5.37 33 | 43.5 60 | 58.4 60 | 5.50 74 | 10.5 5 | 40.1 17 | 0.90 11 | 9.98 30 | 42.2 32 | 0.46 18 | 21.6 22 | 52.1 23 | 0.51 48 |
DPOF [18] | 33.1 | 5.51 51 | 17.9 73 | 0.22 45 | 8.45 6 | 16.5 6 | 0.43 8 | 6.87 52 | 15.1 27 | 0.59 55 | 18.9 46 | 29.5 60 | 5.43 43 | 42.9 4 | 57.8 6 | 5.05 6 | 11.0 43 | 40.9 39 | 0.84 4 | 10.3 51 | 42.5 42 | 0.45 14 | 21.9 44 | 52.8 48 | 0.48 22 |
Aniso. Huber-L1 [22] | 33.5 | 5.41 40 | 16.0 28 | 0.23 49 | 11.2 56 | 21.1 50 | 0.90 54 | 6.72 47 | 15.4 31 | 0.46 37 | 18.5 27 | 28.1 30 | 5.39 37 | 43.0 11 | 57.8 6 | 5.23 24 | 10.5 5 | 40.1 17 | 0.81 2 | 10.2 46 | 42.6 45 | 0.46 18 | 21.9 44 | 52.7 45 | 0.52 56 |
TC-Flow [46] | 34.0 | 5.19 15 | 15.9 22 | 0.21 39 | 9.57 28 | 19.6 30 | 0.63 32 | 6.78 50 | 17.0 60 | 0.36 17 | 18.1 15 | 27.4 22 | 5.61 56 | 43.3 36 | 58.2 40 | 5.46 70 | 11.0 43 | 41.6 58 | 1.18 56 | 9.93 25 | 41.7 21 | 0.45 14 | 21.5 14 | 52.0 21 | 0.49 31 |
ComplOF-FED-GPU [35] | 34.8 | 5.30 24 | 16.1 32 | 0.19 31 | 9.39 24 | 19.3 27 | 0.58 27 | 7.21 66 | 16.9 57 | 0.66 64 | 18.4 23 | 28.6 44 | 5.32 20 | 43.1 19 | 58.0 22 | 5.27 36 | 10.8 28 | 40.9 39 | 0.99 27 | 10.1 39 | 42.8 50 | 0.47 30 | 21.8 35 | 52.3 30 | 0.50 40 |
PMF [76] | 36.0 | 5.32 26 | 16.6 42 | 0.14 6 | 9.67 32 | 19.9 34 | 0.45 9 | 6.89 57 | 18.2 71 | 0.49 40 | 18.4 23 | 27.9 25 | 5.21 6 | 43.5 60 | 58.4 60 | 5.22 21 | 11.0 43 | 40.5 31 | 1.27 67 | 9.86 20 | 41.8 22 | 0.46 18 | 22.1 55 | 53.1 57 | 0.50 40 |
FESL [75] | 36.2 | 5.65 65 | 17.3 57 | 0.17 21 | 9.18 21 | 18.3 20 | 0.55 22 | 6.22 17 | 15.0 23 | 0.44 34 | 18.8 40 | 28.4 37 | 5.38 34 | 43.4 49 | 58.2 40 | 5.41 64 | 11.3 64 | 42.8 72 | 1.19 58 | 9.92 23 | 41.5 19 | 0.42 3 | 21.8 35 | 52.3 30 | 0.48 22 |
CLG-TV [48] | 37.6 | 5.32 26 | 15.7 17 | 0.26 58 | 11.0 53 | 21.2 53 | 0.83 49 | 6.75 49 | 16.6 50 | 0.56 49 | 18.9 46 | 28.4 37 | 5.50 50 | 43.3 36 | 58.1 32 | 5.25 30 | 10.5 5 | 39.8 12 | 0.87 6 | 10.1 39 | 42.5 42 | 0.44 9 | 22.0 50 | 53.1 57 | 0.51 48 |
FastOF [78] | 37.7 | 5.79 70 | 17.4 64 | 0.24 53 | 10.8 48 | 20.8 47 | 0.87 52 | 6.87 52 | 18.4 73 | 0.43 32 | 19.5 60 | 29.7 62 | 5.06 1 | 43.0 11 | 57.9 15 | 5.31 42 | 10.5 5 | 39.1 5 | 0.88 9 | 9.98 30 | 42.2 32 | 0.48 34 | 21.7 31 | 52.4 36 | 0.50 40 |
Local-TV-L1 [65] | 37.9 | 5.29 22 | 14.6 5 | 0.35 76 | 11.5 62 | 21.1 50 | 1.23 73 | 6.39 26 | 14.9 18 | 0.37 21 | 19.0 50 | 27.9 25 | 6.64 78 | 43.3 36 | 58.3 54 | 5.33 44 | 10.9 34 | 39.0 3 | 1.58 86 | 9.79 15 | 41.6 20 | 0.48 34 | 21.3 6 | 51.5 8 | 0.53 63 |
Classic++ [32] | 38.2 | 5.33 29 | 16.0 28 | 0.28 62 | 10.2 38 | 20.3 41 | 0.69 38 | 6.87 52 | 16.6 50 | 0.50 41 | 18.7 35 | 27.7 23 | 5.64 58 | 43.2 29 | 58.0 22 | 5.26 33 | 11.0 43 | 40.7 36 | 1.34 72 | 9.93 25 | 41.9 24 | 0.47 30 | 21.7 31 | 52.4 36 | 0.50 40 |
EP-PM [83] | 38.7 | 5.34 31 | 17.3 57 | 0.13 3 | 9.73 34 | 20.1 37 | 0.53 19 | 7.33 72 | 18.7 77 | 0.63 63 | 18.5 27 | 29.1 58 | 5.33 24 | 43.1 19 | 58.0 22 | 5.20 19 | 11.0 43 | 41.4 50 | 0.96 25 | 10.3 51 | 42.3 35 | 0.56 60 | 21.8 35 | 52.4 36 | 0.49 31 |
SIOF [69] | 38.9 | 5.64 63 | 16.5 40 | 0.28 62 | 11.3 58 | 21.6 57 | 0.91 56 | 6.32 19 | 15.9 39 | 0.42 28 | 18.7 35 | 28.4 37 | 5.36 32 | 43.0 11 | 57.9 15 | 5.17 14 | 10.7 18 | 40.2 21 | 0.95 22 | 10.1 39 | 42.4 36 | 0.50 47 | 22.2 62 | 53.2 59 | 0.53 63 |
LDOF [28] | 39.5 | 5.53 55 | 15.6 16 | 0.32 72 | 11.1 55 | 20.3 41 | 1.45 83 | 6.89 57 | 17.3 64 | 0.59 55 | 19.0 50 | 28.9 49 | 5.63 57 | 43.4 49 | 58.2 40 | 5.40 62 | 10.4 3 | 39.0 3 | 0.83 3 | 9.92 23 | 42.4 36 | 0.46 18 | 21.6 22 | 52.3 30 | 0.46 5 |
OFH [38] | 40.2 | 5.49 48 | 16.6 42 | 0.25 56 | 10.3 42 | 20.2 40 | 0.77 43 | 6.88 55 | 17.8 68 | 0.36 17 | 18.4 23 | 28.9 49 | 5.24 14 | 43.1 19 | 58.0 22 | 5.26 33 | 10.9 34 | 41.5 53 | 1.18 56 | 10.3 51 | 43.0 53 | 0.58 63 | 21.6 22 | 52.1 23 | 0.50 40 |
F-TV-L1 [15] | 40.4 | 5.56 58 | 16.0 28 | 0.36 79 | 11.4 60 | 21.5 56 | 0.94 58 | 6.88 55 | 17.0 60 | 0.66 64 | 18.7 35 | 27.9 25 | 5.79 67 | 42.6 1 | 57.8 6 | 5.01 4 | 10.6 13 | 39.3 7 | 1.02 33 | 10.0 32 | 41.9 24 | 0.55 58 | 22.0 50 | 52.8 48 | 0.51 48 |
p-harmonic [29] | 40.4 | 5.17 14 | 15.5 14 | 0.16 18 | 11.2 56 | 21.4 54 | 0.94 58 | 6.55 36 | 17.4 66 | 0.55 48 | 19.2 57 | 28.6 44 | 5.45 46 | 43.3 36 | 58.2 40 | 5.27 36 | 10.7 18 | 40.2 21 | 1.04 37 | 10.4 58 | 43.4 59 | 0.50 47 | 21.8 35 | 52.6 40 | 0.49 31 |
Complementary OF [21] | 40.5 | 5.28 21 | 16.7 46 | 0.15 14 | 9.39 24 | 19.5 28 | 0.58 27 | 7.53 75 | 16.3 43 | 1.10 80 | 18.7 35 | 29.0 53 | 5.35 30 | 43.2 29 | 58.2 40 | 5.26 33 | 10.9 34 | 41.2 45 | 1.16 55 | 10.3 51 | 43.4 59 | 0.55 58 | 21.5 14 | 52.2 29 | 0.51 48 |
CostFilter [40] | 40.6 | 5.44 43 | 17.7 70 | 0.13 3 | 9.64 30 | 20.1 37 | 0.45 9 | 6.96 60 | 19.1 79 | 0.47 39 | 18.5 27 | 28.9 49 | 5.13 4 | 43.6 69 | 58.5 65 | 5.32 43 | 11.1 56 | 40.5 31 | 1.48 82 | 9.94 28 | 42.1 30 | 0.45 14 | 21.8 35 | 52.6 40 | 0.49 31 |
TC/T-Flow [80] | 40.7 | 5.73 67 | 17.3 57 | 0.22 45 | 9.66 31 | 19.7 31 | 0.63 32 | 6.24 18 | 14.9 18 | 0.32 7 | 18.6 31 | 28.7 46 | 5.38 34 | 43.5 60 | 58.4 60 | 5.50 74 | 11.0 43 | 41.4 50 | 0.89 10 | 10.2 46 | 43.0 53 | 0.58 63 | 21.9 44 | 53.0 56 | 0.45 1 |
Efficient-NL [60] | 40.8 | 5.54 56 | 17.1 54 | 0.16 18 | 9.60 29 | 18.9 24 | 0.56 23 | 6.99 61 | 15.1 27 | 0.75 68 | 18.8 40 | 28.2 31 | 5.26 15 | 43.1 19 | 57.9 15 | 5.25 30 | 11.6 73 | 43.4 80 | 1.04 37 | 10.1 39 | 42.5 42 | 0.48 34 | 22.6 72 | 53.8 69 | 0.48 22 |
CBF [12] | 41.2 | 4.98 3 | 14.8 7 | 0.18 26 | 10.2 38 | 19.9 34 | 0.71 39 | 6.63 46 | 15.2 30 | 0.42 28 | 19.0 50 | 28.5 41 | 6.39 77 | 43.4 49 | 58.3 54 | 5.49 73 | 10.7 18 | 40.4 27 | 0.95 22 | 10.1 39 | 42.6 45 | 0.50 47 | 22.3 66 | 53.5 67 | 0.53 63 |
GraphCuts [14] | 41.5 | 5.98 77 | 17.5 68 | 0.24 53 | 10.0 35 | 19.5 28 | 0.76 42 | 8.24 82 | 14.6 10 | 1.06 76 | 19.7 62 | 29.0 53 | 5.69 60 | 42.9 4 | 57.9 15 | 4.97 2 | 10.5 5 | 40.3 24 | 0.87 6 | 10.0 32 | 42.4 36 | 0.58 63 | 22.1 55 | 53.2 59 | 0.51 48 |
BlockOverlap [61] | 43.4 | 5.34 31 | 14.6 5 | 0.41 83 | 11.4 60 | 20.6 44 | 1.42 81 | 6.49 32 | 14.1 5 | 0.61 60 | 18.9 46 | 26.9 12 | 7.34 83 | 44.2 82 | 58.9 75 | 5.91 85 | 11.0 43 | 39.9 14 | 1.39 78 | 9.81 16 | 41.3 14 | 0.46 18 | 21.5 14 | 51.7 12 | 0.51 48 |
Sparse Occlusion [54] | 44.0 | 5.43 42 | 16.8 48 | 0.23 49 | 10.3 42 | 20.8 47 | 0.63 32 | 6.51 34 | 15.0 23 | 0.44 34 | 19.0 50 | 29.0 53 | 5.42 41 | 43.4 49 | 58.2 40 | 5.41 64 | 11.3 64 | 42.9 74 | 1.14 51 | 10.1 39 | 42.2 32 | 0.42 3 | 22.1 55 | 53.2 59 | 0.49 31 |
CRTflow [88] | 44.7 | 5.48 47 | 16.5 40 | 0.34 75 | 10.7 46 | 20.7 45 | 0.86 50 | 7.25 68 | 18.6 76 | 0.60 59 | 18.8 40 | 28.8 48 | 5.98 70 | 43.4 49 | 58.2 40 | 5.43 67 | 10.7 18 | 40.4 27 | 0.95 22 | 9.93 25 | 42.0 27 | 0.49 41 | 21.7 31 | 52.3 30 | 0.49 31 |
SimpleFlow [49] | 46.2 | 5.52 52 | 17.5 68 | 0.18 26 | 10.2 38 | 19.7 31 | 0.73 40 | 7.32 71 | 15.8 37 | 1.05 75 | 18.0 12 | 26.8 9 | 5.44 44 | 43.3 36 | 58.1 32 | 5.33 44 | 11.3 64 | 42.9 74 | 1.22 64 | 10.3 51 | 44.6 70 | 1.04 87 | 21.8 35 | 52.6 40 | 0.47 10 |
IAOF [50] | 46.8 | 5.97 76 | 16.8 48 | 0.29 67 | 14.1 84 | 24.8 84 | 1.41 80 | 6.05 9 | 16.2 41 | 0.61 60 | 20.1 69 | 29.5 60 | 5.47 49 | 43.0 11 | 57.8 6 | 5.19 17 | 10.7 18 | 40.3 24 | 0.94 18 | 10.4 58 | 43.3 57 | 0.46 18 | 22.0 50 | 52.8 48 | 0.54 72 |
Modified CLG [34] | 47.0 | 5.05 6 | 15.1 8 | 0.19 31 | 12.3 73 | 22.2 67 | 1.30 75 | 6.81 51 | 18.3 72 | 0.66 64 | 19.3 59 | 29.7 62 | 5.34 26 | 43.4 49 | 58.2 40 | 5.29 41 | 10.8 28 | 40.6 33 | 1.15 53 | 10.2 46 | 43.6 61 | 0.47 30 | 21.9 44 | 52.7 45 | 0.53 63 |
Occlusion-TV-L1 [63] | 48.5 | 5.32 26 | 16.2 36 | 0.28 62 | 11.3 58 | 21.9 62 | 0.96 61 | 6.60 41 | 16.9 57 | 0.58 53 | 19.1 55 | 28.9 49 | 5.72 62 | 43.4 49 | 58.2 40 | 5.24 27 | 10.9 34 | 40.3 24 | 1.26 66 | 10.9 73 | 42.6 45 | 0.81 82 | 21.8 35 | 52.4 36 | 0.49 31 |
Shiralkar [42] | 50.1 | 5.73 67 | 18.1 75 | 0.21 39 | 11.6 63 | 22.0 63 | 0.88 53 | 6.74 48 | 19.9 81 | 0.73 67 | 20.3 71 | 30.1 67 | 5.46 47 | 42.6 1 | 57.5 1 | 4.99 3 | 11.3 64 | 41.5 53 | 1.35 74 | 11.0 75 | 44.9 72 | 0.67 71 | 21.5 14 | 51.7 12 | 0.48 22 |
Adaptive [20] | 50.4 | 5.50 50 | 16.7 46 | 0.30 68 | 11.8 67 | 22.2 67 | 1.02 65 | 6.58 39 | 16.5 49 | 0.53 45 | 18.6 31 | 28.0 29 | 5.60 55 | 43.5 60 | 58.3 54 | 5.21 20 | 11.0 43 | 41.3 48 | 1.09 46 | 10.4 58 | 42.8 50 | 0.46 18 | 22.2 62 | 53.5 67 | 0.54 72 |
HBpMotionGpu [43] | 50.5 | 5.80 72 | 16.3 37 | 0.42 84 | 13.1 77 | 23.8 79 | 1.34 76 | 6.32 19 | 14.9 18 | 0.38 23 | 19.9 63 | 30.4 70 | 5.80 68 | 43.1 19 | 58.3 54 | 5.39 57 | 11.3 64 | 41.0 43 | 1.21 61 | 9.94 28 | 41.9 24 | 0.43 6 | 22.1 55 | 52.9 53 | 0.53 63 |
TCOF [71] | 50.8 | 5.56 58 | 16.8 48 | 0.17 21 | 11.8 67 | 22.1 65 | 1.02 65 | 6.09 11 | 15.0 23 | 0.30 3 | 19.0 50 | 29.4 59 | 5.67 59 | 43.4 49 | 58.3 54 | 5.17 14 | 11.4 69 | 43.1 77 | 1.02 33 | 11.0 75 | 43.9 63 | 0.48 34 | 23.1 82 | 55.1 83 | 0.52 56 |
Fusion [6] | 51.0 | 5.37 34 | 16.9 52 | 0.21 39 | 9.33 23 | 18.3 20 | 0.54 20 | 6.39 26 | 15.1 27 | 0.54 46 | 20.0 67 | 29.8 65 | 5.41 38 | 43.5 60 | 59.2 79 | 5.14 10 | 11.5 71 | 43.7 82 | 1.21 61 | 10.5 65 | 44.1 65 | 0.52 53 | 23.1 82 | 55.4 84 | 0.52 56 |
Nguyen [33] | 52.8 | 5.63 62 | 15.9 22 | 0.23 49 | 13.8 81 | 23.8 79 | 1.37 78 | 6.89 57 | 18.7 77 | 0.59 55 | 20.8 76 | 30.8 73 | 5.44 44 | 43.1 19 | 58.1 32 | 5.14 10 | 10.6 13 | 40.4 27 | 0.93 15 | 11.9 88 | 45.9 80 | 0.73 77 | 22.0 50 | 52.8 48 | 0.52 56 |
TV-L1-improved [17] | 53.8 | 5.26 18 | 16.0 28 | 0.28 62 | 11.6 63 | 22.0 63 | 1.06 68 | 7.21 66 | 16.3 43 | 0.79 70 | 18.8 40 | 28.5 41 | 5.70 61 | 43.5 60 | 58.5 65 | 5.22 21 | 11.0 43 | 41.5 53 | 1.05 42 | 10.4 58 | 44.6 70 | 0.74 80 | 22.1 55 | 53.2 59 | 0.53 63 |
2D-CLG [1] | 54.0 | 5.27 20 | 15.7 17 | 0.21 39 | 13.1 77 | 22.8 72 | 1.37 78 | 7.29 69 | 17.3 64 | 0.94 73 | 20.3 71 | 30.2 68 | 5.34 26 | 43.5 60 | 58.4 60 | 5.37 54 | 10.8 28 | 40.7 36 | 1.22 64 | 10.5 65 | 44.3 68 | 0.59 66 | 22.0 50 | 52.3 30 | 0.50 40 |
SPSA-learn [13] | 55.1 | 5.45 44 | 15.4 11 | 0.25 56 | 11.6 63 | 21.4 54 | 1.15 72 | 7.65 77 | 16.6 50 | 1.26 82 | 20.1 69 | 28.2 31 | 5.30 18 | 43.3 36 | 58.2 40 | 5.42 66 | 10.9 34 | 41.0 43 | 1.14 51 | 11.6 86 | 50.4 90 | 1.71 90 | 22.2 62 | 53.3 66 | 0.49 31 |
SegOF [10] | 55.2 | 5.25 16 | 15.9 22 | 0.20 36 | 10.9 52 | 20.8 47 | 0.82 46 | 8.07 81 | 18.4 73 | 1.18 81 | 20.0 67 | 32.3 80 | 5.52 52 | 43.3 36 | 58.2 40 | 5.35 50 | 11.4 69 | 43.1 77 | 1.38 77 | 10.7 68 | 46.3 81 | 0.96 85 | 21.5 14 | 51.7 12 | 0.53 63 |
TriangleFlow [30] | 56.1 | 5.85 74 | 18.2 77 | 0.26 58 | 11.0 53 | 21.8 59 | 0.79 45 | 7.17 64 | 16.3 43 | 0.58 53 | 19.6 61 | 30.7 72 | 5.74 64 | 42.8 3 | 57.8 6 | 4.95 1 | 11.6 73 | 42.8 72 | 1.05 42 | 10.8 70 | 45.8 78 | 0.73 77 | 22.8 76 | 54.3 78 | 0.51 48 |
Rannacher [23] | 56.5 | 5.39 37 | 16.6 42 | 0.30 68 | 11.6 63 | 22.2 67 | 1.01 63 | 7.17 64 | 16.9 57 | 0.92 72 | 18.6 31 | 28.4 37 | 5.74 64 | 43.6 69 | 58.5 65 | 5.33 44 | 11.0 43 | 41.6 58 | 1.11 47 | 10.4 58 | 44.3 68 | 0.72 76 | 21.9 44 | 52.8 48 | 0.54 72 |
Black & Anandan [4] | 57.1 | 5.71 66 | 15.5 14 | 0.35 76 | 12.7 75 | 22.3 71 | 1.12 70 | 7.89 79 | 18.1 70 | 1.06 76 | 20.5 75 | 30.3 69 | 5.42 41 | 43.6 69 | 58.6 70 | 5.35 50 | 10.6 13 | 39.7 11 | 0.91 12 | 10.9 73 | 44.1 65 | 0.50 47 | 22.2 62 | 52.9 53 | 0.53 63 |
Ad-TV-NDC [36] | 58.2 | 6.08 78 | 15.9 22 | 0.60 85 | 13.0 76 | 22.8 72 | 1.36 77 | 6.55 36 | 16.4 46 | 0.56 49 | 20.9 77 | 30.6 71 | 6.29 75 | 44.1 78 | 59.0 77 | 5.43 67 | 10.7 18 | 39.4 8 | 1.11 47 | 10.4 58 | 43.3 57 | 0.51 52 | 22.1 55 | 52.9 53 | 0.53 63 |
IAOF2 [51] | 59.5 | 6.17 79 | 18.3 78 | 0.30 68 | 12.0 69 | 23.3 77 | 0.93 57 | 5.90 3 | 16.1 40 | 0.42 28 | 20.4 74 | 31.2 78 | 5.75 66 | 43.7 74 | 58.9 75 | 5.39 57 | 11.2 59 | 42.0 63 | 1.08 45 | 10.3 51 | 42.7 48 | 0.48 34 | 22.7 73 | 54.2 76 | 0.52 56 |
Correlation Flow [79] | 59.9 | 5.61 61 | 17.8 72 | 0.15 14 | 10.8 48 | 21.7 58 | 0.82 46 | 6.40 30 | 14.8 17 | 0.42 28 | 19.1 55 | 29.0 53 | 6.04 73 | 43.9 76 | 58.6 70 | 6.05 87 | 12.0 82 | 43.9 84 | 1.29 69 | 11.0 75 | 45.3 74 | 0.70 75 | 22.5 69 | 54.1 74 | 0.51 48 |
Filter Flow [19] | 60.0 | 5.64 63 | 16.4 39 | 0.32 72 | 12.2 72 | 22.2 67 | 1.08 69 | 6.61 42 | 16.2 41 | 0.57 51 | 20.3 71 | 29.0 53 | 6.32 76 | 44.1 78 | 59.1 78 | 5.74 81 | 10.9 34 | 40.7 36 | 1.04 37 | 10.2 46 | 43.2 56 | 0.54 56 | 22.7 73 | 54.3 78 | 0.54 72 |
Bartels [41] | 60.7 | 5.52 52 | 17.2 56 | 0.40 82 | 10.0 35 | 20.7 45 | 0.94 58 | 6.50 33 | 15.8 37 | 0.54 46 | 19.9 63 | 30.0 66 | 7.79 84 | 44.8 86 | 59.2 79 | 6.72 89 | 12.8 88 | 42.4 66 | 3.06 90 | 10.0 32 | 42.0 27 | 0.54 56 | 22.1 55 | 53.2 59 | 0.54 72 |
Direct ZNCC [66] | 61.1 | 5.41 40 | 17.3 57 | 0.14 6 | 10.8 48 | 21.8 59 | 0.82 46 | 6.58 39 | 15.7 35 | 0.57 51 | 19.2 57 | 29.7 62 | 6.02 72 | 43.6 69 | 58.5 65 | 5.74 81 | 11.9 79 | 43.7 82 | 1.34 72 | 11.1 78 | 45.7 77 | 0.73 77 | 22.4 67 | 53.9 70 | 0.55 77 |
LocallyOriented [52] | 62.5 | 5.79 70 | 17.9 73 | 0.26 58 | 12.1 71 | 23.2 76 | 1.01 63 | 7.05 62 | 17.6 67 | 0.51 43 | 19.9 63 | 30.9 74 | 5.72 62 | 43.3 36 | 58.2 40 | 5.23 24 | 11.9 79 | 42.6 69 | 1.52 85 | 10.8 70 | 44.0 64 | 0.53 54 | 22.5 69 | 54.0 72 | 0.52 56 |
Dynamic MRF [7] | 62.9 | 5.39 37 | 17.4 64 | 0.20 36 | 10.5 45 | 21.8 59 | 0.74 41 | 7.60 76 | 20.3 85 | 0.99 74 | 21.3 79 | 31.1 76 | 7.06 81 | 43.0 11 | 58.1 32 | 5.34 47 | 11.6 73 | 43.0 76 | 1.49 83 | 10.7 68 | 45.8 78 | 0.85 83 | 22.5 69 | 53.2 59 | 0.55 77 |
ACK-Prior [27] | 64.9 | 5.46 45 | 17.7 70 | 0.15 14 | 9.70 33 | 20.3 41 | 0.67 36 | 7.76 78 | 16.4 46 | 1.08 78 | 19.9 63 | 31.0 75 | 6.01 71 | 44.7 85 | 59.6 83 | 5.78 83 | 12.1 83 | 44.2 86 | 1.33 71 | 10.6 67 | 44.2 67 | 0.53 54 | 23.4 86 | 56.1 87 | 0.52 56 |
StereoFlow [44] | 66.5 | 10.4 90 | 27.1 90 | 0.35 76 | 16.3 89 | 28.4 90 | 1.03 67 | 6.55 36 | 16.8 55 | 0.50 41 | 18.8 40 | 28.2 31 | 5.38 34 | 45.7 89 | 62.1 89 | 5.58 78 | 13.6 89 | 50.3 90 | 1.28 68 | 10.0 32 | 42.4 36 | 0.49 41 | 23.0 78 | 55.5 85 | 0.56 81 |
TI-DOFE [24] | 67.1 | 6.39 81 | 18.7 80 | 0.36 79 | 14.8 85 | 25.5 87 | 1.66 84 | 7.45 74 | 20.2 83 | 0.78 69 | 22.8 85 | 32.5 81 | 6.04 73 | 43.2 29 | 58.4 60 | 5.17 14 | 10.9 34 | 40.4 27 | 0.92 13 | 11.2 80 | 45.6 76 | 0.65 70 | 23.2 84 | 54.2 76 | 0.65 86 |
Horn & Schunck [3] | 67.2 | 5.81 73 | 17.3 57 | 0.21 39 | 13.1 77 | 23.5 78 | 1.26 74 | 8.03 80 | 19.7 80 | 1.08 78 | 22.6 83 | 32.7 82 | 5.59 54 | 43.6 69 | 58.7 72 | 5.39 57 | 10.9 34 | 40.6 33 | 1.02 33 | 11.7 87 | 46.5 82 | 0.60 67 | 22.8 76 | 53.9 70 | 0.55 77 |
NL-TV-NCC [25] | 75.0 | 6.44 82 | 20.3 83 | 0.24 53 | 10.7 46 | 22.1 65 | 0.68 37 | 7.38 73 | 17.2 62 | 0.59 55 | 22.2 82 | 34.7 86 | 6.82 79 | 45.5 88 | 60.2 87 | 6.68 88 | 12.3 86 | 44.6 88 | 1.19 58 | 14.4 90 | 48.1 87 | 0.67 71 | 24.0 89 | 56.4 88 | 0.55 77 |
Adaptive flow [45] | 75.8 | 7.18 86 | 19.2 81 | 0.69 86 | 15.0 86 | 25.0 85 | 2.11 87 | 7.29 69 | 16.7 53 | 0.87 71 | 22.6 83 | 31.3 79 | 7.85 86 | 44.8 86 | 60.2 87 | 5.63 79 | 11.7 78 | 43.4 80 | 1.36 76 | 10.4 58 | 43.7 62 | 0.57 61 | 23.0 78 | 54.7 81 | 0.50 40 |
SILK [87] | 76.1 | 6.21 80 | 19.3 82 | 0.39 81 | 13.8 81 | 24.0 81 | 1.73 85 | 8.85 85 | 20.2 83 | 1.41 84 | 21.8 80 | 31.1 76 | 7.10 82 | 43.5 60 | 58.5 65 | 5.45 69 | 11.9 79 | 41.4 50 | 2.03 88 | 10.8 70 | 45.5 75 | 0.77 81 | 22.4 67 | 53.2 59 | 0.60 83 |
GroupFlow [9] | 78.3 | 7.04 84 | 22.5 87 | 0.28 62 | 12.5 74 | 24.0 81 | 1.13 71 | 9.10 86 | 22.0 87 | 1.45 85 | 21.0 78 | 33.6 84 | 5.93 69 | 44.1 78 | 59.3 81 | 5.50 74 | 12.2 84 | 44.4 87 | 1.42 80 | 11.1 78 | 45.2 73 | 0.61 69 | 22.7 73 | 54.1 74 | 0.56 81 |
Learning Flow [11] | 78.5 | 5.91 75 | 18.6 79 | 0.30 68 | 12.0 69 | 22.9 74 | 1.00 62 | 8.30 83 | 20.0 82 | 1.33 83 | 21.9 81 | 32.9 83 | 6.94 80 | 44.5 84 | 59.7 85 | 5.97 86 | 11.5 71 | 42.6 69 | 1.35 74 | 11.3 81 | 46.8 83 | 0.69 74 | 23.7 87 | 55.9 86 | 0.62 84 |
SLK [47] | 79.7 | 6.55 83 | 21.1 85 | 0.32 72 | 13.5 80 | 23.1 75 | 1.44 82 | 9.16 87 | 21.2 86 | 1.49 88 | 24.9 86 | 34.2 85 | 7.81 85 | 43.5 60 | 58.8 73 | 5.34 47 | 12.2 84 | 43.1 77 | 1.45 81 | 11.9 88 | 48.9 89 | 0.96 85 | 23.0 78 | 54.0 72 | 0.64 85 |
FOLKI [16] | 83.6 | 7.10 85 | 21.1 85 | 0.94 89 | 15.3 87 | 25.5 87 | 2.28 88 | 8.49 84 | 22.2 88 | 1.47 87 | 26.3 88 | 35.2 87 | 10.6 89 | 44.0 77 | 59.6 83 | 5.54 77 | 11.6 73 | 41.8 62 | 1.49 83 | 11.4 83 | 47.7 86 | 0.90 84 | 23.3 85 | 54.9 82 | 0.67 87 |
PGAM+LK [55] | 84.3 | 7.51 88 | 23.5 89 | 0.73 87 | 13.8 81 | 24.2 83 | 1.92 86 | 9.44 88 | 22.7 89 | 1.45 85 | 26.4 89 | 36.9 88 | 10.5 88 | 44.1 78 | 59.5 82 | 5.72 80 | 12.4 87 | 44.0 85 | 1.75 87 | 11.3 81 | 47.0 84 | 0.68 73 | 23.0 78 | 54.5 80 | 0.76 88 |
Pyramid LK [2] | 84.5 | 7.19 87 | 21.0 84 | 0.93 88 | 16.2 88 | 25.1 86 | 2.91 89 | 14.0 89 | 18.5 75 | 2.57 89 | 32.5 90 | 46.2 90 | 13.7 90 | 44.2 82 | 60.1 86 | 5.48 72 | 11.6 73 | 42.5 68 | 1.40 79 | 11.4 83 | 47.2 85 | 1.28 89 | 23.7 87 | 56.7 89 | 1.08 89 |
Periodicity [86] | 89.0 | 8.05 89 | 23.2 88 | 1.34 90 | 20.5 90 | 27.4 89 | 3.39 90 | 15.2 90 | 30.5 90 | 4.22 90 | 26.2 87 | 43.5 89 | 9.47 87 | 46.4 90 | 62.7 90 | 6.92 90 | 13.7 90 | 44.6 88 | 2.88 89 | 11.4 83 | 48.3 88 | 1.18 88 | 25.7 90 | 59.2 90 | 1.29 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |