Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R10.0 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 8.1 | 1.29 2 | 4.46 5 | 0.01 3 | 2.18 8 | 6.04 8 | 0.06 2 | 1.11 1 | 4.13 5 | 0.14 5 | 3.08 1 | 6.86 3 | 0.36 2 | 13.5 1 | 22.1 1 | 1.01 20 | 4.96 22 | 20.4 21 | 0.18 24 | 4.31 3 | 24.0 4 | 0.07 9 | 8.94 13 | 22.6 12 | 0.20 20 |
NN-field [73] | 16.0 | 1.45 21 | 5.41 32 | 0.01 3 | 1.87 4 | 5.01 4 | 0.06 2 | 1.51 44 | 3.94 2 | 0.16 15 | 3.78 40 | 8.92 56 | 0.41 17 | 13.6 4 | 22.2 4 | 1.00 11 | 5.05 33 | 20.7 29 | 0.20 31 | 4.27 2 | 23.7 2 | 0.07 9 | 8.85 8 | 22.4 6 | 0.19 5 |
ComplexFlow [81] | 16.1 | 1.41 13 | 5.16 21 | 0.01 3 | 1.85 2 | 5.00 3 | 0.07 4 | 1.12 2 | 4.05 3 | 0.14 5 | 3.68 32 | 8.61 48 | 0.42 22 | 13.6 4 | 22.3 5 | 1.00 11 | 5.21 47 | 21.4 46 | 0.24 43 | 4.35 4 | 24.1 5 | 0.11 45 | 8.85 8 | 22.4 6 | 0.19 5 |
SuperFlow [89] | 16.6 | 1.30 3 | 4.40 3 | 0.01 3 | 3.28 41 | 8.24 39 | 0.30 48 | 1.46 37 | 4.37 8 | 0.23 44 | 3.62 27 | 7.44 14 | 0.46 35 | 13.7 7 | 22.4 10 | 0.99 7 | 4.56 2 | 18.7 2 | 0.08 1 | 4.44 12 | 24.7 13 | 0.09 29 | 8.83 6 | 22.4 6 | 0.17 1 |
Deep-Matching [85] | 17.0 | 1.38 10 | 4.63 9 | 0.00 1 | 3.10 37 | 8.14 36 | 0.21 36 | 1.24 4 | 4.97 20 | 0.14 5 | 4.05 55 | 8.14 34 | 0.50 50 | 13.8 17 | 22.4 10 | 1.03 36 | 4.42 1 | 18.2 1 | 0.08 1 | 4.40 8 | 24.6 12 | 0.06 2 | 8.67 2 | 21.9 2 | 0.20 20 |
IROF++ [58] | 18.6 | 1.54 37 | 5.77 48 | 0.01 3 | 2.35 11 | 6.39 10 | 0.10 13 | 1.50 42 | 5.04 23 | 0.25 49 | 3.10 2 | 6.75 1 | 0.39 6 | 13.7 7 | 22.4 10 | 1.16 63 | 4.66 4 | 19.2 4 | 0.11 4 | 4.55 29 | 25.1 26 | 0.10 37 | 8.84 7 | 22.4 6 | 0.19 5 |
Local-TV-L1 [65] | 21.0 | 1.34 6 | 4.39 2 | 0.02 48 | 4.19 62 | 9.42 52 | 0.37 62 | 1.34 15 | 4.34 7 | 0.15 11 | 3.61 26 | 7.78 25 | 0.44 31 | 13.8 17 | 22.5 17 | 1.04 38 | 4.71 7 | 19.5 9 | 0.16 16 | 4.40 8 | 24.5 10 | 0.07 9 | 8.70 4 | 22.0 3 | 0.20 20 |
Brox et al. [5] | 21.9 | 1.43 17 | 4.82 11 | 0.01 3 | 2.95 32 | 7.80 30 | 0.18 29 | 1.40 29 | 5.17 35 | 0.16 15 | 3.73 35 | 7.70 22 | 0.45 33 | 13.7 7 | 22.4 10 | 1.00 11 | 5.04 31 | 20.6 26 | 0.27 51 | 4.52 23 | 25.1 26 | 0.09 29 | 8.87 10 | 22.4 6 | 0.19 5 |
CBF [12] | 22.6 | 1.28 1 | 4.40 3 | 0.01 3 | 3.24 40 | 8.20 38 | 0.25 40 | 1.59 49 | 4.63 10 | 0.18 24 | 3.60 25 | 7.61 19 | 0.49 44 | 13.8 17 | 22.5 17 | 0.99 7 | 4.89 16 | 20.2 17 | 0.18 24 | 4.56 30 | 25.3 38 | 0.07 9 | 9.21 34 | 23.3 36 | 0.18 2 |
Layers++ [37] | 22.8 | 1.44 20 | 5.17 22 | 0.01 3 | 1.83 1 | 4.87 1 | 0.05 1 | 1.32 13 | 4.86 17 | 0.22 40 | 3.34 10 | 7.36 11 | 0.43 28 | 13.8 17 | 22.6 30 | 1.13 56 | 5.37 60 | 22.0 59 | 0.24 43 | 4.39 7 | 24.3 7 | 0.05 1 | 9.00 17 | 22.7 16 | 0.22 67 |
nLayers [57] | 22.8 | 1.51 30 | 5.46 34 | 0.01 3 | 2.17 7 | 5.91 7 | 0.08 9 | 1.24 4 | 3.88 1 | 0.18 24 | 3.47 20 | 7.71 23 | 0.40 10 | 13.9 34 | 22.7 41 | 1.18 68 | 5.25 48 | 21.6 50 | 0.31 61 | 4.35 4 | 23.8 3 | 0.09 29 | 8.99 16 | 22.7 16 | 0.19 5 |
ALD-Flow [68] | 22.8 | 1.53 34 | 5.62 41 | 0.01 3 | 2.86 30 | 7.94 31 | 0.16 21 | 1.29 8 | 5.15 32 | 0.12 2 | 3.34 10 | 7.68 21 | 0.38 5 | 14.0 52 | 22.8 51 | 1.15 61 | 4.71 7 | 19.2 4 | 0.11 4 | 4.41 10 | 24.4 8 | 0.06 2 | 9.30 45 | 23.5 46 | 0.20 20 |
Aniso. Huber-L1 [22] | 23.6 | 1.43 17 | 5.00 16 | 0.01 3 | 4.12 59 | 9.46 55 | 0.36 57 | 1.60 51 | 4.77 12 | 0.17 19 | 3.69 33 | 7.99 28 | 0.43 28 | 13.7 7 | 22.3 5 | 1.00 11 | 4.90 18 | 20.1 15 | 0.12 6 | 4.62 42 | 25.2 30 | 0.07 9 | 8.95 14 | 22.6 12 | 0.20 20 |
LME [72] | 24.0 | 1.39 11 | 5.10 19 | 0.01 3 | 2.49 18 | 6.95 21 | 0.10 13 | 1.35 19 | 5.64 54 | 0.15 11 | 3.29 5 | 7.55 17 | 0.39 6 | 14.1 68 | 23.0 71 | 1.26 88 | 5.13 40 | 21.1 42 | 0.19 29 | 4.37 6 | 24.2 6 | 0.06 2 | 8.89 11 | 22.5 11 | 0.19 5 |
CLG-TV [48] | 25.0 | 1.35 8 | 4.56 7 | 0.02 48 | 3.84 50 | 9.35 48 | 0.29 45 | 1.38 24 | 5.11 27 | 0.18 24 | 3.71 34 | 7.93 26 | 0.50 50 | 13.8 17 | 22.4 10 | 1.00 11 | 4.74 10 | 19.5 9 | 0.13 8 | 4.59 37 | 25.2 30 | 0.07 9 | 9.08 25 | 22.9 23 | 0.20 20 |
Epistemic [84] | 25.4 | 1.54 37 | 6.05 60 | 0.01 3 | 2.33 10 | 6.57 15 | 0.07 4 | 1.31 12 | 4.82 15 | 0.16 15 | 3.35 14 | 7.66 20 | 0.37 4 | 13.9 34 | 22.6 30 | 1.13 56 | 4.93 19 | 20.3 19 | 0.20 31 | 4.61 40 | 25.7 48 | 0.13 57 | 9.06 24 | 22.9 23 | 0.20 20 |
ADF [67] | 25.8 | 1.30 3 | 4.49 6 | 0.01 3 | 2.62 22 | 7.38 24 | 0.20 35 | 1.39 26 | 5.07 25 | 0.13 3 | 3.14 3 | 7.00 4 | 0.39 6 | 13.9 34 | 22.7 41 | 1.19 72 | 5.02 29 | 20.7 29 | 0.17 18 | 4.59 37 | 25.2 30 | 0.10 37 | 9.37 55 | 23.7 56 | 0.20 20 |
TV-L1-MCT [64] | 26.2 | 1.70 71 | 6.35 69 | 0.02 48 | 2.90 31 | 7.98 34 | 0.17 24 | 1.39 26 | 5.19 37 | 0.20 34 | 3.32 9 | 7.10 7 | 0.45 33 | 13.9 34 | 22.6 30 | 1.17 66 | 4.67 5 | 19.3 7 | 0.15 13 | 4.44 12 | 24.4 8 | 0.08 22 | 8.67 2 | 22.0 3 | 0.19 5 |
COFM [59] | 26.8 | 1.49 27 | 5.57 37 | 0.01 3 | 2.37 12 | 6.48 12 | 0.11 16 | 1.30 9 | 4.84 16 | 0.23 44 | 3.29 5 | 7.33 9 | 0.40 10 | 13.8 17 | 22.5 17 | 1.02 28 | 5.52 68 | 22.7 70 | 0.39 77 | 4.04 1 | 22.5 1 | 0.11 45 | 9.33 48 | 23.6 50 | 0.20 20 |
SIOF [69] | 27.8 | 1.53 34 | 5.38 30 | 0.01 3 | 4.17 60 | 10.1 66 | 0.31 50 | 1.40 29 | 5.38 43 | 0.14 5 | 3.62 27 | 7.99 28 | 0.61 68 | 13.5 1 | 22.1 1 | 0.98 4 | 4.87 14 | 20.1 15 | 0.13 8 | 4.49 21 | 24.9 19 | 0.08 22 | 9.34 50 | 23.6 50 | 0.20 20 |
Levin3 [90] | 27.9 | 1.59 51 | 5.85 50 | 0.01 3 | 2.53 20 | 6.82 18 | 0.17 24 | 1.34 15 | 5.02 22 | 0.19 30 | 3.30 8 | 7.04 5 | 0.41 17 | 13.8 17 | 22.5 17 | 1.01 20 | 5.34 56 | 21.7 52 | 0.23 39 | 4.56 30 | 25.1 26 | 0.12 54 | 9.24 39 | 23.3 36 | 0.20 20 |
Sparse-NonSparse [56] | 28.3 | 1.54 37 | 5.67 44 | 0.02 48 | 2.38 13 | 6.47 11 | 0.12 17 | 1.42 34 | 5.13 29 | 0.17 19 | 3.42 16 | 7.36 11 | 0.42 22 | 13.8 17 | 22.5 17 | 1.18 68 | 5.29 51 | 21.7 52 | 0.23 39 | 4.43 11 | 24.5 10 | 0.10 37 | 9.11 28 | 23.0 29 | 0.20 20 |
IROF-TV [53] | 29.5 | 1.51 30 | 5.64 42 | 0.02 48 | 2.60 21 | 6.84 19 | 0.16 21 | 1.34 15 | 5.38 43 | 0.18 24 | 3.29 5 | 7.49 16 | 0.42 22 | 14.0 52 | 22.8 51 | 1.21 78 | 5.05 33 | 20.8 33 | 0.20 31 | 4.52 23 | 25.2 30 | 0.07 9 | 8.82 5 | 22.3 5 | 0.21 52 |
BlockOverlap [61] | 29.9 | 1.34 6 | 4.33 1 | 0.02 48 | 4.04 57 | 9.04 46 | 0.48 76 | 1.36 21 | 4.31 6 | 0.32 62 | 3.43 18 | 6.81 2 | 0.71 74 | 14.0 52 | 22.8 51 | 1.04 38 | 4.89 16 | 20.0 14 | 0.22 37 | 4.44 12 | 24.7 13 | 0.11 45 | 8.64 1 | 21.8 1 | 0.20 20 |
F-TV-L1 [15] | 30.0 | 1.54 37 | 5.24 25 | 0.02 48 | 4.11 58 | 9.73 60 | 0.32 53 | 1.50 42 | 5.44 46 | 0.23 44 | 3.76 39 | 8.03 30 | 0.47 39 | 13.5 1 | 22.1 1 | 0.94 1 | 4.71 7 | 19.4 8 | 0.17 18 | 4.61 40 | 25.3 38 | 0.13 57 | 8.92 12 | 22.6 12 | 0.19 5 |
Ramp [62] | 30.8 | 1.57 47 | 5.75 47 | 0.01 3 | 2.38 13 | 6.51 13 | 0.19 30 | 1.41 32 | 5.11 27 | 0.17 19 | 3.26 4 | 7.09 6 | 0.41 17 | 13.9 34 | 22.6 30 | 1.15 61 | 5.51 67 | 22.5 66 | 0.32 66 | 4.48 17 | 24.7 13 | 0.07 9 | 9.33 48 | 23.6 50 | 0.20 20 |
Classic++ [32] | 31.3 | 1.46 23 | 5.27 26 | 0.01 3 | 3.38 42 | 8.81 43 | 0.25 40 | 1.47 39 | 5.14 31 | 0.17 19 | 3.93 53 | 8.15 35 | 0.46 35 | 13.8 17 | 22.6 30 | 1.00 11 | 5.16 41 | 21.2 43 | 0.25 47 | 4.59 37 | 25.2 30 | 0.08 22 | 9.17 32 | 23.2 33 | 0.20 20 |
Second-order prior [8] | 31.8 | 1.39 11 | 4.88 12 | 0.02 48 | 3.85 52 | 9.45 54 | 0.27 43 | 1.83 60 | 5.99 64 | 0.26 51 | 3.83 46 | 8.56 46 | 0.49 44 | 13.6 4 | 22.3 5 | 1.01 20 | 4.82 13 | 19.9 13 | 0.18 24 | 4.67 46 | 25.6 44 | 0.06 2 | 9.03 21 | 22.8 20 | 0.20 20 |
FastOF [78] | 32.3 | 1.77 75 | 6.45 72 | 0.01 3 | 3.76 49 | 9.15 47 | 0.29 45 | 1.59 49 | 6.42 69 | 0.15 11 | 4.35 62 | 9.48 66 | 0.40 10 | 13.7 7 | 22.3 5 | 1.18 68 | 4.60 3 | 18.9 3 | 0.09 3 | 4.50 22 | 24.9 19 | 0.08 22 | 9.04 22 | 22.9 23 | 0.20 20 |
MDP-Flow [26] | 32.4 | 1.35 8 | 4.97 15 | 0.02 48 | 2.22 9 | 6.25 9 | 0.09 12 | 1.20 3 | 4.07 4 | 0.14 5 | 3.89 49 | 8.34 41 | 0.48 41 | 13.8 17 | 22.5 17 | 1.24 86 | 5.74 77 | 23.6 78 | 0.50 89 | 4.63 44 | 25.6 44 | 0.11 45 | 8.97 15 | 22.7 16 | 0.19 5 |
Classic+NL [31] | 32.7 | 1.62 59 | 5.98 57 | 0.02 48 | 2.48 16 | 6.65 16 | 0.17 24 | 1.41 32 | 5.13 29 | 0.19 30 | 3.37 15 | 7.27 8 | 0.44 31 | 13.9 34 | 22.6 30 | 1.12 55 | 5.34 56 | 21.8 55 | 0.22 37 | 4.48 17 | 24.8 17 | 0.09 29 | 9.27 43 | 23.4 41 | 0.19 5 |
LDOF [28] | 32.7 | 1.45 21 | 4.81 10 | 0.02 48 | 3.10 37 | 7.33 23 | 0.56 85 | 1.58 48 | 5.39 45 | 0.22 40 | 3.92 52 | 8.47 44 | 0.63 70 | 13.8 17 | 22.5 17 | 1.02 28 | 4.68 6 | 19.2 4 | 0.13 8 | 4.48 17 | 25.0 23 | 0.10 37 | 9.01 18 | 22.8 20 | 0.22 67 |
ComplOF-FED-GPU [35] | 33.9 | 1.56 44 | 5.92 52 | 0.02 48 | 2.71 25 | 7.63 27 | 0.17 24 | 1.95 65 | 5.09 26 | 0.39 69 | 3.63 29 | 8.64 50 | 0.40 10 | 13.7 7 | 22.5 17 | 1.13 56 | 4.98 24 | 20.5 25 | 0.17 18 | 4.70 48 | 25.7 48 | 0.07 9 | 9.31 46 | 23.4 41 | 0.19 5 |
LSM [39] | 34.3 | 1.64 65 | 6.31 68 | 0.01 3 | 2.48 16 | 6.79 17 | 0.12 17 | 1.51 44 | 5.55 51 | 0.17 19 | 3.59 24 | 7.98 27 | 0.41 17 | 13.9 34 | 22.6 30 | 1.19 72 | 5.36 59 | 21.9 57 | 0.25 47 | 4.47 15 | 24.7 13 | 0.10 37 | 9.23 36 | 23.3 36 | 0.20 20 |
CRTflow [88] | 34.5 | 1.50 29 | 5.48 35 | 0.02 48 | 3.87 53 | 9.40 51 | 0.36 57 | 1.62 53 | 6.22 66 | 0.24 47 | 3.55 21 | 7.76 24 | 0.43 28 | 13.9 34 | 22.7 41 | 1.21 78 | 4.77 12 | 19.6 11 | 0.14 11 | 4.53 25 | 25.2 30 | 0.07 9 | 9.04 22 | 22.9 23 | 0.20 20 |
SCR [74] | 35.4 | 1.59 51 | 5.94 54 | 0.02 48 | 2.41 15 | 6.53 14 | 0.15 20 | 1.42 34 | 5.06 24 | 0.20 34 | 3.43 18 | 7.35 10 | 0.42 22 | 13.9 34 | 22.7 41 | 1.19 72 | 5.35 58 | 21.9 57 | 0.23 39 | 4.56 30 | 25.1 26 | 0.12 54 | 9.24 39 | 23.3 36 | 0.20 20 |
p-harmonic [29] | 35.8 | 1.42 14 | 4.96 14 | 0.01 3 | 4.00 55 | 9.50 56 | 0.39 66 | 1.38 24 | 5.68 56 | 0.19 30 | 4.20 60 | 8.58 47 | 0.49 44 | 13.9 34 | 22.6 30 | 1.01 20 | 4.93 19 | 20.3 19 | 0.21 34 | 4.81 56 | 26.1 54 | 0.11 45 | 9.12 30 | 23.1 30 | 0.20 20 |
DPOF [18] | 36.6 | 1.64 65 | 6.52 78 | 0.04 86 | 1.98 5 | 5.37 5 | 0.07 4 | 1.83 60 | 4.75 11 | 0.34 64 | 3.75 38 | 8.80 55 | 0.48 41 | 13.7 7 | 22.3 5 | 1.01 20 | 5.16 41 | 21.0 37 | 0.14 11 | 4.67 46 | 25.3 38 | 0.06 2 | 9.31 46 | 23.5 46 | 0.22 67 |
TC-Flow [46] | 36.8 | 1.51 30 | 5.70 46 | 0.01 3 | 2.97 34 | 8.31 40 | 0.21 36 | 1.46 37 | 5.35 41 | 0.11 1 | 3.63 29 | 8.10 32 | 0.58 65 | 14.0 52 | 22.8 51 | 1.21 78 | 5.10 37 | 21.0 37 | 0.29 56 | 4.53 25 | 25.0 23 | 0.07 9 | 9.19 33 | 23.3 36 | 0.21 52 |
Occlusion-TV-L1 [63] | 37.4 | 1.43 17 | 5.20 24 | 0.01 3 | 4.18 61 | 10.3 68 | 0.37 62 | 1.34 15 | 5.35 41 | 0.27 54 | 4.19 59 | 9.14 61 | 0.56 61 | 13.7 7 | 22.4 10 | 0.97 2 | 4.99 26 | 20.6 26 | 0.33 68 | 5.12 71 | 25.4 41 | 0.27 81 | 9.01 18 | 22.7 16 | 0.19 5 |
OFLADF [82] | 37.5 | 1.48 25 | 5.49 36 | 0.01 3 | 2.00 6 | 5.50 6 | 0.07 4 | 1.30 9 | 4.97 20 | 0.15 11 | 3.34 10 | 7.40 13 | 0.40 10 | 14.0 52 | 22.8 51 | 1.21 78 | 5.56 70 | 22.8 72 | 0.41 79 | 4.83 57 | 26.3 58 | 0.17 70 | 9.73 69 | 24.5 70 | 0.20 20 |
FC-2Layers-FF [77] | 38.8 | 1.56 44 | 5.94 54 | 0.02 48 | 1.86 3 | 4.90 2 | 0.08 9 | 1.39 26 | 5.29 40 | 0.20 34 | 3.34 10 | 7.46 15 | 0.40 10 | 13.9 34 | 22.8 51 | 1.20 75 | 5.56 70 | 22.9 73 | 0.37 74 | 4.53 25 | 24.9 19 | 0.11 45 | 9.35 52 | 23.6 50 | 0.22 67 |
TC/T-Flow [80] | 40.0 | 1.69 70 | 6.24 65 | 0.02 48 | 2.98 35 | 8.17 37 | 0.19 30 | 1.27 6 | 4.78 13 | 0.13 3 | 3.58 23 | 8.26 38 | 0.36 2 | 14.1 68 | 23.0 71 | 1.23 84 | 5.03 30 | 20.6 26 | 0.12 6 | 4.85 59 | 26.3 58 | 0.16 68 | 9.40 57 | 23.8 59 | 0.19 5 |
OFH [38] | 41.4 | 1.56 44 | 5.79 49 | 0.01 3 | 3.55 45 | 8.78 42 | 0.30 48 | 1.62 53 | 6.44 70 | 0.16 15 | 3.57 22 | 8.52 45 | 0.39 6 | 13.8 17 | 22.6 30 | 1.16 63 | 5.18 43 | 21.3 44 | 0.31 61 | 4.94 62 | 26.6 61 | 0.15 63 | 9.36 53 | 23.6 50 | 0.19 5 |
Ad-TV-NDC [36] | 41.7 | 1.63 62 | 4.88 12 | 0.03 82 | 5.06 77 | 10.3 68 | 0.36 57 | 1.45 36 | 5.55 51 | 0.20 34 | 4.53 67 | 9.15 62 | 0.57 63 | 14.1 68 | 22.9 65 | 0.99 7 | 4.74 10 | 19.6 11 | 0.16 16 | 4.80 55 | 25.8 51 | 0.06 2 | 9.02 20 | 22.8 20 | 0.19 5 |
PMF [76] | 43.3 | 1.59 51 | 6.16 64 | 0.01 3 | 2.73 26 | 7.62 26 | 0.07 4 | 1.65 57 | 6.90 76 | 0.28 56 | 3.74 36 | 8.38 42 | 0.40 10 | 14.1 68 | 23.0 71 | 1.02 28 | 5.10 37 | 20.9 36 | 0.19 29 | 4.56 30 | 25.4 41 | 0.09 29 | 9.84 74 | 24.9 79 | 0.22 67 |
TCOF [71] | 43.5 | 1.54 37 | 5.59 39 | 0.01 3 | 4.46 67 | 10.4 70 | 0.43 72 | 1.28 7 | 5.15 32 | 0.14 5 | 3.63 29 | 8.04 31 | 0.42 22 | 13.9 34 | 22.7 41 | 0.98 4 | 5.41 61 | 22.3 63 | 0.24 43 | 5.00 66 | 26.7 62 | 0.09 29 | 9.76 70 | 24.6 73 | 0.24 83 |
Sparse Occlusion [54] | 43.5 | 1.51 30 | 5.58 38 | 0.02 48 | 3.51 44 | 9.43 53 | 0.19 30 | 1.37 23 | 4.95 19 | 0.18 24 | 3.80 42 | 8.33 39 | 0.49 44 | 13.9 34 | 22.7 41 | 1.20 75 | 5.58 72 | 22.9 73 | 0.37 74 | 4.73 50 | 25.8 51 | 0.07 9 | 9.38 56 | 23.7 56 | 0.20 20 |
Modified CLG [34] | 44.3 | 1.31 5 | 4.60 8 | 0.01 3 | 4.56 72 | 9.63 58 | 0.50 80 | 1.63 55 | 6.45 72 | 0.33 63 | 4.14 58 | 9.05 57 | 0.62 69 | 13.9 34 | 22.6 30 | 1.02 28 | 5.08 36 | 20.8 33 | 0.31 61 | 4.65 45 | 25.9 53 | 0.09 29 | 9.08 25 | 22.9 23 | 0.22 67 |
HBpMotionGpu [43] | 45.0 | 1.64 65 | 5.67 44 | 0.02 48 | 5.07 78 | 11.0 81 | 0.48 76 | 1.33 14 | 4.89 18 | 0.22 40 | 4.40 63 | 9.95 72 | 0.52 55 | 13.8 17 | 22.6 30 | 1.17 66 | 5.30 53 | 21.4 46 | 0.29 56 | 4.48 17 | 24.9 19 | 0.06 2 | 9.23 36 | 23.2 33 | 0.21 52 |
CostFilter [40] | 45.6 | 1.77 75 | 7.36 83 | 0.01 3 | 2.66 23 | 7.51 25 | 0.08 9 | 1.82 59 | 7.88 85 | 0.29 59 | 4.00 54 | 9.50 67 | 0.31 1 | 14.2 76 | 23.1 76 | 1.07 47 | 4.98 24 | 20.4 21 | 0.17 18 | 4.62 42 | 25.6 44 | 0.08 22 | 9.65 63 | 24.4 67 | 0.21 52 |
Bartels [41] | 45.8 | 1.59 51 | 6.24 65 | 0.03 82 | 3.20 39 | 8.92 45 | 0.31 50 | 1.40 29 | 5.17 35 | 0.25 49 | 4.09 56 | 9.05 57 | 0.86 82 | 14.1 68 | 22.9 65 | 0.97 2 | 5.43 64 | 22.2 62 | 0.25 47 | 4.47 15 | 24.8 17 | 0.10 37 | 9.15 31 | 23.1 30 | 0.20 20 |
Adaptive [20] | 46.1 | 1.48 25 | 5.33 29 | 0.02 48 | 4.48 68 | 10.6 76 | 0.43 72 | 1.53 46 | 5.50 49 | 0.18 24 | 3.84 47 | 8.33 39 | 0.54 58 | 13.9 34 | 22.7 41 | 1.00 11 | 5.20 46 | 21.4 46 | 0.28 55 | 4.89 60 | 26.1 54 | 0.07 9 | 9.41 58 | 23.8 59 | 0.21 52 |
Efficient-NL [60] | 47.8 | 1.53 34 | 5.60 40 | 0.01 3 | 2.98 35 | 7.94 31 | 0.16 21 | 2.05 67 | 5.45 48 | 0.56 75 | 3.82 45 | 8.12 33 | 0.42 22 | 13.8 17 | 22.5 17 | 1.18 68 | 5.69 75 | 23.2 77 | 0.32 66 | 4.75 52 | 26.1 54 | 0.11 45 | 9.94 80 | 24.8 76 | 0.22 67 |
2D-CLG [1] | 48.0 | 1.42 14 | 5.09 18 | 0.01 3 | 4.91 75 | 9.82 63 | 0.48 76 | 2.21 73 | 5.62 53 | 0.57 76 | 5.05 73 | 9.90 71 | 0.80 80 | 13.8 17 | 22.5 17 | 1.09 51 | 5.07 35 | 21.0 37 | 0.42 81 | 4.89 60 | 26.7 62 | 0.13 57 | 9.11 28 | 22.6 12 | 0.20 20 |
Nguyen [33] | 48.0 | 1.55 43 | 5.02 17 | 0.00 1 | 5.69 83 | 10.8 78 | 0.48 76 | 1.63 55 | 6.70 74 | 0.28 56 | 5.35 78 | 10.5 77 | 0.77 79 | 13.8 17 | 22.5 17 | 1.01 20 | 4.99 26 | 20.7 29 | 0.18 24 | 5.44 83 | 28.2 76 | 0.21 75 | 9.08 25 | 22.9 23 | 0.20 20 |
Filter Flow [19] | 48.2 | 1.54 37 | 5.28 27 | 0.01 3 | 4.52 71 | 9.97 64 | 0.35 56 | 1.61 52 | 5.53 50 | 0.20 34 | 4.55 68 | 8.61 48 | 0.46 35 | 14.3 77 | 23.2 77 | 1.08 49 | 5.10 37 | 21.0 37 | 0.21 34 | 4.76 54 | 26.1 54 | 0.11 45 | 9.65 63 | 24.3 66 | 0.20 20 |
EP-PM [83] | 48.5 | 1.68 69 | 7.02 79 | 0.02 48 | 2.84 29 | 8.08 35 | 0.10 13 | 2.13 71 | 7.82 84 | 0.36 65 | 3.87 48 | 9.12 59 | 0.49 44 | 13.9 34 | 22.7 41 | 1.04 38 | 5.27 49 | 21.6 50 | 0.17 18 | 4.56 30 | 25.2 30 | 0.15 63 | 9.34 50 | 23.6 50 | 0.22 67 |
IAOF [50] | 48.8 | 1.79 77 | 5.85 50 | 0.02 48 | 6.44 88 | 12.4 89 | 0.55 83 | 1.84 63 | 5.77 61 | 0.36 65 | 4.78 71 | 9.12 59 | 0.75 78 | 13.7 7 | 22.4 10 | 1.01 20 | 5.01 28 | 20.7 29 | 0.15 13 | 4.73 50 | 25.7 48 | 0.09 29 | 9.29 44 | 23.4 41 | 0.20 20 |
Black & Anandan [4] | 49.6 | 1.63 62 | 5.12 20 | 0.01 3 | 5.17 80 | 10.5 73 | 0.41 70 | 2.30 75 | 6.36 68 | 0.47 71 | 5.20 76 | 9.84 70 | 0.49 44 | 14.0 52 | 22.9 65 | 1.02 28 | 4.88 15 | 20.2 17 | 0.18 24 | 5.10 70 | 27.0 67 | 0.08 22 | 9.23 36 | 23.1 30 | 0.21 52 |
TV-L1-improved [17] | 49.7 | 1.42 14 | 5.19 23 | 0.01 3 | 4.41 65 | 10.4 70 | 0.40 67 | 2.10 68 | 5.27 39 | 0.50 72 | 3.89 49 | 8.46 43 | 0.52 55 | 14.0 52 | 22.8 51 | 1.00 11 | 5.33 55 | 22.0 59 | 0.25 47 | 4.96 64 | 27.5 72 | 0.23 79 | 9.26 41 | 23.4 41 | 0.21 52 |
FESL [75] | 49.7 | 1.63 62 | 5.93 53 | 0.02 48 | 2.50 19 | 6.86 20 | 0.14 19 | 1.49 41 | 5.44 46 | 0.26 51 | 3.80 42 | 8.16 36 | 0.50 50 | 14.1 68 | 22.9 65 | 1.21 78 | 5.60 74 | 22.9 73 | 0.40 78 | 4.58 35 | 25.0 23 | 0.08 22 | 9.50 59 | 24.0 63 | 0.22 67 |
GraphCuts [14] | 50.1 | 1.90 82 | 6.51 77 | 0.02 48 | 2.96 33 | 7.63 27 | 0.22 38 | 3.79 88 | 5.16 34 | 0.64 78 | 4.49 66 | 9.24 64 | 0.55 60 | 13.9 34 | 22.7 41 | 0.99 7 | 5.04 31 | 20.8 33 | 0.21 34 | 4.53 25 | 25.2 30 | 0.15 63 | 9.88 78 | 24.9 79 | 0.21 52 |
Complementary OF [21] | 51.0 | 1.61 57 | 6.47 74 | 0.01 3 | 2.74 27 | 7.75 29 | 0.19 30 | 2.67 81 | 5.71 57 | 0.89 88 | 3.74 36 | 8.76 52 | 0.41 17 | 13.9 34 | 22.7 41 | 1.14 60 | 5.19 44 | 21.4 46 | 0.31 61 | 4.98 65 | 26.9 66 | 0.13 57 | 9.78 72 | 24.8 76 | 0.21 52 |
Fusion [6] | 51.7 | 1.46 23 | 5.40 31 | 0.02 48 | 2.70 24 | 6.97 22 | 0.17 24 | 1.30 9 | 4.55 9 | 0.29 59 | 4.32 61 | 8.77 53 | 0.46 35 | 14.3 77 | 23.5 78 | 1.02 28 | 5.93 83 | 24.4 83 | 0.47 85 | 4.83 57 | 26.7 62 | 0.12 54 | 10.4 85 | 26.1 84 | 0.22 67 |
Rannacher [23] | 53.6 | 1.49 27 | 5.66 43 | 0.01 3 | 4.49 69 | 10.6 76 | 0.40 67 | 2.19 72 | 5.77 61 | 0.52 74 | 3.79 41 | 8.65 51 | 0.53 57 | 14.0 52 | 22.8 51 | 1.02 28 | 5.29 51 | 21.8 55 | 0.27 51 | 4.95 63 | 27.4 70 | 0.21 75 | 9.26 41 | 23.4 41 | 0.22 67 |
SimpleFlow [49] | 56.4 | 1.60 56 | 6.00 58 | 0.01 3 | 3.50 43 | 8.63 41 | 0.32 53 | 2.53 77 | 6.06 65 | 0.79 81 | 3.42 16 | 7.56 18 | 0.48 41 | 14.0 52 | 22.8 51 | 1.20 75 | 5.77 78 | 23.7 79 | 0.43 83 | 5.01 67 | 28.0 74 | 0.42 87 | 9.68 66 | 24.5 70 | 0.20 20 |
LocallyOriented [52] | 57.1 | 1.61 57 | 6.13 63 | 0.01 3 | 4.64 73 | 10.9 79 | 0.40 67 | 1.83 60 | 6.44 70 | 0.26 51 | 4.45 65 | 10.2 76 | 0.47 39 | 14.0 52 | 22.8 51 | 1.01 20 | 5.58 72 | 22.6 68 | 0.27 51 | 5.18 74 | 26.8 65 | 0.15 63 | 9.66 65 | 24.4 67 | 0.20 20 |
Horn & Schunck [3] | 57.2 | 1.62 59 | 5.42 33 | 0.01 3 | 5.40 82 | 10.9 79 | 0.44 75 | 2.27 74 | 6.97 77 | 0.45 70 | 6.35 85 | 11.5 82 | 0.65 72 | 14.1 68 | 23.0 71 | 1.06 44 | 4.95 21 | 20.4 21 | 0.17 18 | 5.51 84 | 28.2 76 | 0.14 61 | 9.57 61 | 23.7 56 | 0.18 2 |
TriangleFlow [30] | 57.4 | 1.73 73 | 6.50 75 | 0.02 48 | 3.84 50 | 9.51 57 | 0.31 50 | 1.78 58 | 5.71 57 | 0.27 54 | 4.43 64 | 10.1 74 | 0.57 63 | 13.7 7 | 22.5 17 | 0.98 4 | 5.69 75 | 22.9 73 | 0.23 39 | 5.16 72 | 28.3 78 | 0.21 75 | 10.1 81 | 25.4 81 | 0.21 52 |
Shiralkar [42] | 59.0 | 1.85 79 | 7.19 80 | 0.01 3 | 4.31 64 | 9.75 61 | 0.37 62 | 2.10 68 | 7.58 80 | 0.36 65 | 5.54 79 | 11.4 81 | 0.63 70 | 13.8 17 | 22.5 17 | 1.07 47 | 5.46 65 | 22.4 64 | 0.34 69 | 5.32 79 | 27.8 73 | 0.20 74 | 9.36 53 | 23.5 46 | 0.20 20 |
TI-DOFE [24] | 60.6 | 1.76 74 | 6.02 59 | 0.01 3 | 6.21 87 | 11.7 87 | 0.51 82 | 1.97 66 | 7.23 79 | 0.28 56 | 6.30 84 | 11.3 80 | 0.85 81 | 14.0 52 | 22.8 51 | 1.02 28 | 4.96 22 | 20.4 21 | 0.15 13 | 5.21 75 | 27.1 69 | 0.15 63 | 9.86 76 | 23.8 59 | 0.26 87 |
Correlation Flow [79] | 61.0 | 1.71 72 | 6.50 75 | 0.02 48 | 4.00 55 | 10.2 67 | 0.36 57 | 1.35 19 | 4.81 14 | 0.19 30 | 3.90 51 | 8.77 53 | 0.50 50 | 14.0 52 | 22.9 65 | 1.05 43 | 6.25 89 | 24.8 88 | 0.43 83 | 5.22 76 | 28.1 75 | 0.19 73 | 9.80 73 | 24.7 75 | 0.23 80 |
SPSA-learn [13] | 61.3 | 1.59 51 | 5.32 28 | 0.01 3 | 4.23 63 | 9.36 49 | 0.42 71 | 2.54 79 | 6.27 67 | 0.80 82 | 5.24 77 | 9.44 65 | 0.73 75 | 14.0 52 | 22.8 51 | 1.03 36 | 5.27 49 | 21.7 52 | 0.31 61 | 5.93 89 | 33.0 90 | 0.86 90 | 10.4 85 | 26.2 86 | 0.20 20 |
IAOF2 [51] | 62.3 | 1.81 78 | 6.46 73 | 0.02 48 | 4.65 74 | 11.3 85 | 0.36 57 | 1.57 47 | 5.79 63 | 0.21 39 | 4.61 70 | 10.0 73 | 0.56 61 | 14.4 79 | 23.5 78 | 1.16 63 | 5.48 66 | 22.6 68 | 0.29 56 | 4.75 52 | 25.6 44 | 0.11 45 | 9.57 61 | 24.1 64 | 0.21 52 |
StereoFlow [44] | 63.1 | 4.05 90 | 12.8 90 | 0.02 48 | 5.34 81 | 12.0 88 | 0.29 45 | 1.36 21 | 5.65 55 | 0.22 40 | 3.80 42 | 8.17 37 | 0.50 50 | 16.7 89 | 27.3 89 | 1.13 56 | 7.27 90 | 29.7 90 | 0.42 81 | 4.58 35 | 25.5 43 | 0.10 37 | 10.3 82 | 26.1 84 | 0.21 52 |
Direct ZNCC [66] | 63.4 | 1.57 47 | 5.95 56 | 0.02 48 | 3.96 54 | 10.0 65 | 0.37 62 | 1.47 39 | 5.23 38 | 0.24 47 | 4.13 57 | 9.58 68 | 0.58 65 | 14.0 52 | 22.9 65 | 1.04 38 | 6.16 86 | 24.7 87 | 0.48 86 | 5.33 80 | 28.6 81 | 0.24 80 | 9.71 67 | 24.5 70 | 0.24 83 |
SegOF [10] | 64.5 | 1.57 47 | 6.05 60 | 0.02 48 | 3.63 47 | 8.91 44 | 0.24 39 | 2.71 82 | 6.79 75 | 0.74 80 | 4.81 72 | 11.7 83 | 0.73 75 | 14.0 52 | 22.8 51 | 1.22 83 | 5.52 68 | 22.7 70 | 0.48 86 | 5.17 73 | 28.7 82 | 0.33 84 | 9.21 34 | 23.2 33 | 0.23 80 |
ACK-Prior [27] | 67.4 | 1.64 65 | 6.39 71 | 0.02 48 | 2.81 28 | 7.97 33 | 0.19 30 | 2.53 77 | 5.74 59 | 0.63 77 | 4.56 69 | 10.1 74 | 1.09 84 | 14.7 84 | 24.0 85 | 1.27 89 | 6.04 84 | 24.5 85 | 0.29 56 | 5.04 69 | 27.4 70 | 0.10 37 | 11.0 88 | 27.7 88 | 0.22 67 |
SILK [87] | 67.6 | 1.86 80 | 7.35 82 | 0.01 3 | 5.84 84 | 11.2 82 | 0.60 86 | 3.00 84 | 7.69 81 | 0.83 84 | 5.68 81 | 10.6 78 | 0.69 73 | 14.1 68 | 23.0 71 | 1.00 11 | 5.31 54 | 21.3 44 | 0.36 71 | 5.02 68 | 27.0 67 | 0.28 82 | 9.50 59 | 23.5 46 | 0.24 83 |
Adaptive flow [45] | 68.7 | 2.02 83 | 6.27 67 | 0.03 82 | 5.93 85 | 11.2 82 | 0.55 83 | 1.87 64 | 5.74 59 | 0.37 68 | 5.16 74 | 9.21 63 | 0.73 75 | 14.7 84 | 24.0 85 | 1.04 38 | 5.89 80 | 24.3 82 | 0.37 74 | 4.72 49 | 26.3 58 | 0.14 61 | 9.84 74 | 24.8 76 | 0.18 2 |
Dynamic MRF [7] | 69.0 | 1.58 50 | 6.37 70 | 0.02 48 | 3.55 45 | 9.67 59 | 0.27 43 | 2.35 76 | 7.75 83 | 0.50 72 | 5.74 82 | 10.9 79 | 1.06 83 | 14.0 52 | 22.8 51 | 1.23 84 | 5.90 81 | 24.1 81 | 0.51 90 | 5.28 78 | 28.7 82 | 0.34 85 | 9.71 67 | 23.9 62 | 0.21 52 |
Learning Flow [11] | 70.2 | 1.62 59 | 6.12 62 | 0.02 48 | 4.43 66 | 10.4 70 | 0.33 55 | 2.86 83 | 7.92 86 | 0.82 83 | 5.19 75 | 9.72 69 | 0.59 67 | 14.6 82 | 23.8 83 | 1.10 52 | 5.42 62 | 22.4 64 | 0.27 51 | 5.24 77 | 28.3 78 | 0.17 70 | 10.3 82 | 25.4 81 | 0.23 80 |
NL-TV-NCC [25] | 72.1 | 2.10 85 | 7.63 84 | 0.03 82 | 3.63 47 | 9.77 62 | 0.25 40 | 2.10 68 | 6.55 73 | 0.29 59 | 5.56 80 | 12.2 85 | 0.54 58 | 14.5 80 | 23.5 78 | 1.08 49 | 6.15 85 | 24.4 83 | 0.36 71 | 6.66 90 | 29.8 87 | 0.16 68 | 10.3 82 | 25.8 83 | 0.21 52 |
FOLKI [16] | 72.4 | 1.88 81 | 7.22 81 | 0.02 48 | 6.20 86 | 11.2 82 | 0.86 88 | 2.60 80 | 9.02 87 | 0.64 78 | 7.81 86 | 12.1 84 | 1.70 88 | 14.6 82 | 23.7 81 | 1.06 44 | 5.19 44 | 21.0 37 | 0.24 43 | 5.43 82 | 28.9 85 | 0.32 83 | 9.77 71 | 24.1 64 | 0.21 52 |
SLK [47] | 74.5 | 2.08 84 | 8.23 86 | 0.01 3 | 5.10 79 | 9.38 50 | 0.50 80 | 3.21 85 | 7.73 82 | 0.83 84 | 8.10 88 | 14.2 87 | 1.61 87 | 14.5 80 | 23.7 81 | 1.06 44 | 5.77 78 | 22.5 66 | 0.36 71 | 5.84 88 | 30.6 88 | 0.36 86 | 9.87 77 | 24.4 67 | 0.22 67 |
PGAM+LK [55] | 80.8 | 2.35 87 | 9.74 87 | 0.05 89 | 5.04 76 | 10.5 73 | 0.66 87 | 3.38 86 | 9.68 88 | 0.84 86 | 7.99 87 | 14.6 88 | 1.24 86 | 14.7 84 | 23.8 83 | 1.10 52 | 5.92 82 | 23.9 80 | 0.35 70 | 5.33 80 | 28.5 80 | 0.17 70 | 9.88 78 | 24.6 73 | 0.32 88 |
Pyramid LK [2] | 82.8 | 2.13 86 | 8.10 85 | 0.04 86 | 7.17 89 | 11.5 86 | 0.99 90 | 6.22 89 | 6.97 77 | 1.21 89 | 13.9 90 | 24.7 90 | 2.97 90 | 15.7 88 | 25.7 88 | 1.11 54 | 5.42 62 | 22.0 59 | 0.30 60 | 5.55 86 | 29.5 86 | 0.52 88 | 11.9 89 | 29.7 90 | 0.54 90 |
GroupFlow [9] | 84.1 | 2.80 89 | 11.2 89 | 0.04 86 | 4.49 69 | 10.5 73 | 0.43 72 | 3.45 87 | 9.80 89 | 0.88 87 | 5.90 83 | 13.7 86 | 1.21 85 | 15.1 87 | 24.6 87 | 1.24 86 | 6.24 88 | 25.2 89 | 0.49 88 | 5.51 84 | 28.7 82 | 0.21 75 | 10.6 87 | 26.4 87 | 0.24 83 |
Periodicity [86] | 88.6 | 2.65 88 | 10.3 88 | 0.09 90 | 9.86 90 | 13.0 90 | 0.95 89 | 7.07 90 | 15.7 90 | 2.07 90 | 9.47 89 | 22.6 89 | 1.94 89 | 16.9 90 | 27.6 90 | 1.35 90 | 6.22 87 | 24.5 85 | 0.41 79 | 5.73 87 | 30.9 89 | 0.58 89 | 12.2 90 | 29.3 89 | 0.40 89 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |