Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A95 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 6.2 | 4.97 2 | 9.42 5 | 2.00 1 | 6.68 8 | 11.0 8 | 2.08 1 | 5.69 2 | 9.04 4 | 1.73 1 | 8.19 1 | 12.0 3 | 5.10 16 | 17.5 2 | 23.5 3 | 5.07 6 | 9.95 22 | 24.7 22 | 3.74 12 | 8.60 3 | 36.4 2 | 2.45 1 | 13.9 10 | 21.5 12 | 2.16 1 |
ComplexFlow [81] | 12.4 | 5.07 6 | 10.1 19 | 2.00 1 | 6.40 1 | 10.0 3 | 2.08 1 | 5.69 2 | 9.00 1 | 1.73 1 | 8.66 25 | 14.5 56 | 5.10 16 | 17.6 4 | 23.8 10 | 5.07 6 | 10.4 46 | 25.8 44 | 3.74 12 | 8.66 4 | 37.5 12 | 2.45 1 | 13.9 10 | 21.6 15 | 2.16 1 |
NN-field [73] | 12.8 | 5.07 6 | 10.4 29 | 2.00 1 | 6.45 3 | 10.0 3 | 2.08 1 | 5.97 30 | 9.00 1 | 1.73 1 | 8.76 34 | 15.0 61 | 5.10 16 | 17.6 4 | 23.7 7 | 5.07 6 | 10.1 30 | 25.0 28 | 3.74 12 | 8.54 2 | 36.9 6 | 2.45 1 | 13.9 10 | 21.6 15 | 2.16 1 |
IROF++ [58] | 15.1 | 5.23 35 | 10.8 44 | 2.00 1 | 6.88 15 | 11.5 11 | 2.08 1 | 6.00 31 | 10.0 17 | 1.73 1 | 8.19 1 | 11.9 1 | 5.07 1 | 17.9 30 | 24.4 37 | 5.10 20 | 9.49 4 | 24.2 17 | 3.74 12 | 9.09 33 | 37.2 10 | 2.45 1 | 14.0 14 | 22.1 25 | 2.16 1 |
Deep-Matching [85] | 18.0 | 5.07 6 | 9.54 9 | 2.08 38 | 7.62 36 | 13.1 37 | 2.16 41 | 5.69 2 | 10.0 17 | 1.73 1 | 9.06 55 | 13.2 29 | 5.10 16 | 17.6 4 | 23.8 10 | 5.20 46 | 9.13 1 | 22.8 1 | 3.87 69 | 8.76 7 | 35.7 1 | 2.45 1 | 13.6 2 | 21.0 3 | 2.16 1 |
ADF [67] | 18.5 | 4.93 1 | 9.43 6 | 2.00 1 | 7.07 22 | 12.3 24 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.23 3 | 12.0 3 | 5.07 1 | 18.0 38 | 24.5 41 | 5.20 46 | 10.0 28 | 25.1 31 | 3.70 1 | 9.13 36 | 39.9 38 | 2.45 1 | 14.5 46 | 23.1 56 | 2.16 1 |
COFM [59] | 19.0 | 5.07 6 | 10.7 38 | 2.00 1 | 6.86 14 | 11.4 10 | 2.08 1 | 5.69 2 | 9.75 12 | 1.73 1 | 8.35 4 | 12.5 9 | 5.07 1 | 18.1 46 | 24.7 49 | 5.03 4 | 11.0 70 | 27.5 73 | 3.70 1 | 8.06 1 | 39.1 31 | 2.45 1 | 14.4 39 | 22.7 42 | 2.16 1 |
LME [72] | 20.0 | 5.07 6 | 10.1 19 | 2.00 1 | 7.05 18 | 12.0 22 | 2.16 41 | 5.69 2 | 10.7 47 | 1.73 1 | 8.35 4 | 12.8 19 | 5.10 16 | 18.0 38 | 24.4 37 | 5.29 83 | 10.2 37 | 25.3 36 | 3.74 12 | 8.70 6 | 36.4 2 | 2.45 1 | 14.0 14 | 21.7 17 | 2.16 1 |
SuperFlow [89] | 20.0 | 5.00 3 | 9.35 2 | 2.16 56 | 7.85 40 | 13.1 37 | 2.38 61 | 6.00 31 | 9.47 8 | 2.00 48 | 8.70 30 | 12.7 15 | 5.20 36 | 17.6 4 | 23.7 7 | 5.20 46 | 9.27 2 | 23.9 11 | 3.70 1 | 8.81 12 | 37.6 14 | 2.45 1 | 13.8 6 | 21.2 8 | 2.16 1 |
Layers++ [37] | 20.5 | 5.10 16 | 10.1 19 | 2.08 38 | 6.45 3 | 9.88 1 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.37 9 | 12.7 15 | 5.10 16 | 18.1 46 | 24.9 62 | 5.10 20 | 10.7 60 | 28.3 81 | 3.74 12 | 8.76 7 | 38.0 19 | 2.45 1 | 14.1 22 | 21.9 24 | 2.16 1 |
Aniso. Huber-L1 [22] | 20.8 | 5.26 37 | 10.0 16 | 2.08 38 | 8.81 58 | 14.5 57 | 2.16 41 | 6.00 31 | 9.75 12 | 1.73 1 | 8.72 32 | 13.0 21 | 5.16 30 | 17.6 4 | 23.8 10 | 5.10 20 | 9.87 18 | 23.2 3 | 3.70 1 | 9.26 43 | 37.8 16 | 2.45 1 | 13.8 6 | 21.0 3 | 2.16 1 |
Brox et al. [5] | 20.9 | 5.20 21 | 9.83 10 | 2.00 1 | 7.62 36 | 12.6 28 | 2.16 41 | 6.00 31 | 10.2 32 | 2.00 48 | 8.76 34 | 12.6 12 | 5.07 1 | 17.5 2 | 23.6 4 | 5.16 40 | 10.1 30 | 25.3 36 | 3.74 12 | 9.00 23 | 40.1 40 | 2.45 1 | 13.8 6 | 21.3 11 | 2.16 1 |
IROF-TV [53] | 21.0 | 5.20 21 | 10.7 38 | 2.08 38 | 7.05 18 | 11.9 20 | 2.08 1 | 6.00 31 | 10.3 36 | 1.73 1 | 8.37 9 | 12.6 12 | 5.16 30 | 17.8 23 | 24.1 25 | 5.23 75 | 10.1 30 | 25.0 28 | 3.70 1 | 9.04 28 | 39.1 31 | 2.45 1 | 13.7 4 | 21.0 3 | 2.16 1 |
Sparse-NonSparse [56] | 21.4 | 5.20 21 | 10.7 38 | 2.00 1 | 6.78 10 | 11.6 12 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.43 16 | 12.5 9 | 5.07 1 | 18.1 46 | 24.7 49 | 5.10 20 | 10.5 49 | 26.7 59 | 3.74 12 | 8.76 7 | 42.1 54 | 2.45 1 | 14.3 35 | 23.0 51 | 2.16 1 |
nLayers [57] | 21.5 | 5.16 19 | 10.5 34 | 2.00 1 | 6.66 7 | 10.9 7 | 2.08 1 | 5.69 2 | 9.00 1 | 1.73 1 | 8.49 19 | 13.0 21 | 5.10 16 | 18.3 68 | 25.2 75 | 5.20 46 | 10.4 46 | 25.6 41 | 3.74 12 | 8.66 4 | 38.5 25 | 2.45 1 | 14.2 30 | 22.4 37 | 2.16 1 |
TV-L1-MCT [64] | 22.1 | 5.48 69 | 11.4 64 | 2.00 1 | 7.35 27 | 13.1 37 | 2.08 1 | 5.48 1 | 10.3 36 | 1.73 1 | 8.35 4 | 12.4 7 | 5.07 1 | 18.3 68 | 25.3 77 | 5.10 20 | 9.49 4 | 23.5 6 | 3.79 49 | 8.81 12 | 39.2 34 | 2.45 1 | 13.7 4 | 21.1 6 | 2.16 1 |
Epistemic [84] | 23.0 | 5.07 6 | 11.2 61 | 2.00 1 | 6.81 11 | 11.6 12 | 2.08 1 | 5.72 27 | 9.81 16 | 1.73 1 | 8.37 9 | 13.2 29 | 5.07 1 | 18.1 46 | 24.7 49 | 5.10 20 | 9.90 19 | 24.9 26 | 3.74 12 | 9.20 40 | 44.1 72 | 2.45 1 | 14.2 30 | 23.3 61 | 2.16 1 |
CLG-TV [48] | 23.4 | 5.20 21 | 9.49 7 | 2.08 38 | 8.43 50 | 14.3 52 | 2.16 41 | 6.00 31 | 10.1 28 | 2.00 48 | 8.76 34 | 13.1 26 | 5.20 36 | 17.6 4 | 23.8 10 | 5.10 20 | 9.59 11 | 23.1 2 | 3.74 12 | 9.20 40 | 38.4 23 | 2.45 1 | 14.0 14 | 21.5 12 | 2.16 1 |
MDP-Flow [26] | 23.8 | 5.03 5 | 9.95 14 | 2.00 1 | 6.68 8 | 11.3 9 | 2.08 1 | 5.69 2 | 9.04 4 | 1.73 1 | 8.89 50 | 13.7 36 | 5.20 36 | 17.8 23 | 24.2 30 | 5.20 46 | 11.3 78 | 27.9 77 | 3.74 12 | 9.27 44 | 39.3 35 | 2.45 1 | 14.1 22 | 22.3 34 | 2.16 1 |
Levin3 [90] | 24.3 | 5.35 48 | 11.0 49 | 2.00 1 | 7.05 18 | 11.8 17 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.35 4 | 12.2 5 | 5.20 36 | 18.0 38 | 24.5 41 | 5.07 6 | 10.6 55 | 26.8 63 | 3.74 12 | 9.00 23 | 43.1 66 | 2.45 1 | 14.4 39 | 22.6 39 | 2.16 1 |
ALD-Flow [68] | 25.2 | 5.20 21 | 10.7 38 | 2.08 38 | 7.35 27 | 12.9 30 | 2.16 41 | 6.00 31 | 10.1 28 | 1.73 1 | 8.39 13 | 13.0 21 | 5.16 30 | 17.9 30 | 24.3 33 | 5.20 46 | 9.56 8 | 23.5 6 | 3.79 49 | 8.79 11 | 36.8 5 | 2.45 1 | 14.5 46 | 23.0 51 | 2.16 1 |
Second-order prior [8] | 25.6 | 5.20 21 | 9.83 10 | 2.08 38 | 8.43 50 | 14.5 57 | 2.08 1 | 6.35 62 | 11.0 62 | 2.00 48 | 8.83 46 | 13.8 43 | 5.07 1 | 17.7 16 | 23.8 10 | 5.07 6 | 9.70 13 | 24.1 14 | 3.74 12 | 9.33 46 | 38.4 23 | 2.45 1 | 14.0 14 | 21.8 19 | 2.16 1 |
CBF [12] | 26.4 | 5.00 3 | 9.40 4 | 2.08 38 | 7.77 39 | 13.0 33 | 2.16 41 | 6.00 31 | 9.68 9 | 1.73 1 | 8.68 27 | 12.5 9 | 5.35 75 | 17.6 4 | 23.4 2 | 5.20 46 | 9.85 17 | 24.3 18 | 3.74 12 | 9.11 34 | 39.3 35 | 2.52 64 | 14.0 14 | 21.1 6 | 2.38 71 |
Local-TV-L1 [65] | 26.5 | 5.20 21 | 9.38 3 | 2.16 56 | 8.96 62 | 14.5 57 | 2.38 61 | 5.69 2 | 9.35 6 | 1.73 1 | 8.70 30 | 13.0 21 | 5.45 78 | 17.6 4 | 23.8 10 | 5.16 40 | 9.54 7 | 24.0 12 | 4.08 86 | 8.76 7 | 37.2 10 | 2.45 1 | 13.6 2 | 20.9 2 | 2.31 57 |
SIOF [69] | 26.8 | 5.42 61 | 10.4 29 | 2.08 38 | 8.83 59 | 15.0 67 | 2.38 61 | 5.69 2 | 10.4 46 | 1.73 1 | 8.68 27 | 13.1 26 | 5.20 36 | 17.3 1 | 23.2 1 | 5.07 6 | 9.83 14 | 23.6 8 | 3.74 12 | 9.00 23 | 36.9 6 | 2.45 1 | 14.3 35 | 22.1 25 | 2.31 57 |
Ramp [62] | 26.8 | 5.29 43 | 10.8 44 | 2.00 1 | 6.83 12 | 11.6 12 | 2.08 1 | 5.69 2 | 10.1 28 | 1.73 1 | 8.35 4 | 12.2 5 | 5.07 1 | 18.1 46 | 24.7 49 | 5.10 20 | 10.9 66 | 27.8 76 | 3.79 49 | 8.83 14 | 43.0 64 | 2.45 1 | 14.5 46 | 23.2 57 | 2.16 1 |
p-harmonic [29] | 26.8 | 5.07 6 | 9.98 15 | 2.00 1 | 8.68 56 | 14.4 54 | 2.16 41 | 6.00 31 | 10.7 47 | 1.91 44 | 9.20 60 | 13.7 36 | 5.20 36 | 17.8 23 | 24.0 19 | 5.10 20 | 9.90 19 | 23.7 9 | 3.74 12 | 9.61 57 | 38.5 25 | 2.45 1 | 14.0 14 | 21.7 17 | 2.16 1 |
LDOF [28] | 27.9 | 5.35 48 | 9.83 10 | 2.16 56 | 7.94 41 | 12.1 23 | 2.52 71 | 6.00 31 | 10.3 36 | 2.00 48 | 8.91 53 | 13.6 35 | 5.23 55 | 17.6 4 | 23.6 4 | 5.20 46 | 9.49 4 | 24.5 20 | 3.74 12 | 8.96 19 | 37.9 18 | 2.45 1 | 14.0 14 | 21.8 19 | 2.16 1 |
ComplOF-FED-GPU [35] | 28.8 | 5.20 21 | 11.1 58 | 2.00 1 | 7.19 24 | 12.6 28 | 2.08 1 | 6.35 62 | 10.0 17 | 2.00 48 | 8.68 27 | 14.0 48 | 5.10 16 | 17.9 30 | 24.5 41 | 5.10 20 | 9.97 24 | 25.1 31 | 3.74 12 | 9.40 48 | 38.8 28 | 2.45 1 | 14.5 46 | 23.2 57 | 2.16 1 |
DPOF [18] | 28.8 | 5.35 48 | 11.7 73 | 2.08 38 | 6.56 6 | 10.4 5 | 2.08 1 | 6.00 31 | 9.71 11 | 1.91 44 | 8.76 34 | 14.4 53 | 5.20 36 | 17.7 16 | 24.1 25 | 5.07 6 | 10.3 41 | 26.7 59 | 3.70 1 | 9.33 46 | 39.1 31 | 2.45 1 | 14.4 39 | 22.8 45 | 2.16 1 |
SCR [74] | 29.4 | 5.35 48 | 11.0 49 | 2.00 1 | 6.83 12 | 11.6 12 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.45 18 | 12.7 15 | 5.20 36 | 18.2 61 | 24.9 62 | 5.20 46 | 10.6 55 | 26.7 59 | 3.74 12 | 9.04 28 | 43.9 71 | 2.45 1 | 14.5 46 | 23.0 51 | 2.16 1 |
LSM [39] | 29.5 | 5.35 48 | 11.5 68 | 2.00 1 | 6.98 16 | 11.9 20 | 2.08 1 | 5.80 29 | 10.7 47 | 1.73 1 | 8.58 21 | 13.4 32 | 5.07 1 | 18.1 46 | 24.9 62 | 5.10 20 | 10.6 55 | 27.1 67 | 3.74 12 | 8.83 14 | 42.2 56 | 2.45 1 | 14.4 39 | 23.0 51 | 2.16 1 |
Classic+NL [31] | 29.8 | 5.35 48 | 11.0 49 | 2.08 38 | 6.98 16 | 11.7 16 | 2.08 1 | 5.69 2 | 10.2 32 | 1.73 1 | 8.43 16 | 12.4 7 | 5.20 36 | 18.1 46 | 24.8 56 | 5.10 20 | 10.6 55 | 26.8 63 | 3.79 49 | 8.83 14 | 42.9 61 | 2.45 1 | 14.4 39 | 22.9 49 | 2.16 1 |
OFLADF [82] | 30.1 | 5.07 6 | 10.6 37 | 2.00 1 | 6.48 5 | 10.5 6 | 2.08 1 | 5.69 2 | 10.0 17 | 1.73 1 | 8.37 9 | 12.6 12 | 5.07 1 | 18.4 74 | 25.4 80 | 5.20 46 | 10.9 66 | 27.4 71 | 3.74 12 | 9.59 56 | 44.9 75 | 2.45 1 | 15.1 72 | 24.1 71 | 2.16 1 |
FC-2Layers-FF [77] | 30.2 | 5.26 37 | 11.0 49 | 2.00 1 | 6.40 1 | 9.88 1 | 2.08 1 | 5.69 2 | 10.3 36 | 1.73 1 | 8.39 13 | 12.8 19 | 5.10 16 | 18.2 61 | 25.0 67 | 5.20 46 | 11.0 70 | 28.1 78 | 3.79 49 | 8.91 18 | 42.8 60 | 2.45 1 | 14.5 46 | 23.0 51 | 2.16 1 |
F-TV-L1 [15] | 30.8 | 5.35 48 | 10.3 26 | 2.16 56 | 8.83 59 | 14.6 61 | 2.16 41 | 6.00 31 | 10.3 36 | 2.00 48 | 8.76 34 | 13.2 29 | 5.26 66 | 17.6 4 | 23.8 10 | 5.03 4 | 9.57 10 | 23.2 3 | 3.79 49 | 9.18 39 | 37.6 14 | 2.45 1 | 13.8 6 | 21.2 8 | 2.31 57 |
TC/T-Flow [80] | 31.5 | 5.45 66 | 11.5 68 | 2.00 1 | 7.42 33 | 13.0 33 | 2.08 1 | 5.69 2 | 9.76 14 | 1.73 1 | 8.60 23 | 13.7 36 | 5.16 30 | 18.3 68 | 24.9 62 | 5.20 46 | 10.1 30 | 24.9 26 | 3.74 12 | 9.75 59 | 42.6 57 | 2.45 1 | 14.5 46 | 22.6 39 | 2.16 1 |
TC-Flow [46] | 32.8 | 5.07 6 | 10.8 44 | 2.00 1 | 7.39 30 | 13.2 40 | 2.16 41 | 6.00 31 | 10.3 36 | 1.73 1 | 8.66 25 | 13.7 36 | 5.23 55 | 18.2 61 | 25.0 67 | 5.20 46 | 10.2 37 | 24.5 20 | 3.79 49 | 9.04 28 | 38.1 21 | 2.45 1 | 14.5 46 | 23.5 65 | 2.16 1 |
Modified CLG [34] | 33.8 | 5.07 6 | 9.49 7 | 2.16 56 | 9.42 72 | 14.2 49 | 2.65 75 | 6.00 31 | 11.5 69 | 2.00 48 | 9.15 58 | 14.3 51 | 5.10 16 | 17.7 16 | 23.9 18 | 5.10 20 | 10.1 30 | 24.7 22 | 3.74 12 | 9.31 45 | 37.5 12 | 2.45 1 | 14.1 22 | 21.8 19 | 2.31 57 |
Classic++ [32] | 34.1 | 5.20 21 | 10.3 26 | 2.08 38 | 7.94 41 | 13.8 42 | 2.08 1 | 6.00 31 | 10.1 28 | 1.73 1 | 8.89 50 | 13.7 36 | 5.23 55 | 18.0 38 | 24.5 41 | 5.10 20 | 10.3 41 | 25.8 44 | 3.87 69 | 9.13 36 | 40.1 40 | 2.45 1 | 14.2 30 | 22.2 31 | 2.31 57 |
Fusion [6] | 34.1 | 5.20 21 | 10.4 29 | 2.00 1 | 7.14 23 | 11.8 17 | 2.08 1 | 5.74 28 | 9.68 9 | 1.73 1 | 9.33 61 | 14.2 49 | 5.20 36 | 18.3 68 | 24.7 49 | 5.07 6 | 11.6 80 | 28.1 78 | 3.70 1 | 9.63 58 | 41.4 47 | 2.45 1 | 15.3 81 | 24.2 73 | 2.16 1 |
FastOF [78] | 34.5 | 5.48 69 | 11.7 73 | 2.08 38 | 8.35 49 | 14.2 49 | 2.38 61 | 6.00 31 | 11.3 66 | 2.00 48 | 9.35 62 | 15.3 65 | 5.07 1 | 17.8 23 | 24.2 30 | 5.16 40 | 9.40 3 | 23.2 3 | 3.79 49 | 8.98 22 | 38.0 19 | 2.45 1 | 14.0 14 | 21.5 12 | 2.16 1 |
Sparse Occlusion [54] | 35.0 | 5.26 37 | 10.5 34 | 2.08 38 | 8.04 43 | 14.4 54 | 2.08 1 | 6.00 31 | 10.0 17 | 1.73 1 | 8.83 46 | 13.7 36 | 5.20 36 | 18.1 46 | 24.7 49 | 5.20 46 | 11.0 70 | 26.5 55 | 3.74 12 | 9.42 49 | 42.0 53 | 2.45 1 | 14.4 39 | 22.8 45 | 2.16 1 |
BlockOverlap [61] | 35.7 | 5.20 21 | 9.29 1 | 2.16 56 | 8.74 57 | 14.1 47 | 2.65 75 | 6.00 31 | 9.35 6 | 2.00 48 | 8.52 20 | 11.9 1 | 5.60 83 | 17.8 23 | 24.0 19 | 5.32 85 | 9.83 14 | 25.0 28 | 4.04 82 | 8.83 14 | 37.1 8 | 2.52 64 | 13.5 1 | 20.6 1 | 2.38 71 |
FESL [75] | 36.4 | 5.42 61 | 11.0 49 | 2.00 1 | 7.05 18 | 11.8 17 | 2.08 1 | 5.69 2 | 10.7 47 | 1.73 1 | 8.81 42 | 13.5 34 | 5.20 36 | 18.4 74 | 25.1 72 | 5.20 46 | 11.0 70 | 27.0 66 | 3.74 12 | 9.06 32 | 42.9 61 | 2.45 1 | 14.8 63 | 23.7 67 | 2.16 1 |
PMF [76] | 36.5 | 5.20 21 | 11.4 64 | 2.00 1 | 7.35 27 | 12.4 26 | 2.08 1 | 6.00 31 | 12.0 74 | 1.73 1 | 8.76 34 | 14.4 53 | 5.07 1 | 18.4 74 | 25.0 67 | 5.10 20 | 10.2 37 | 25.8 44 | 3.87 69 | 9.04 28 | 41.3 46 | 2.45 1 | 15.2 79 | 24.5 76 | 2.16 1 |
TCOF [71] | 37.0 | 5.35 48 | 10.7 38 | 2.00 1 | 9.27 66 | 15.4 74 | 2.16 41 | 5.69 2 | 10.2 32 | 1.73 1 | 8.74 33 | 13.1 26 | 5.23 55 | 17.7 16 | 23.8 10 | 5.07 6 | 10.7 60 | 26.6 58 | 3.70 1 | 10.0 66 | 44.7 74 | 2.45 1 | 14.6 58 | 22.9 49 | 2.38 71 |
OFH [38] | 37.6 | 5.35 48 | 11.0 49 | 2.08 38 | 8.06 45 | 13.7 41 | 2.08 1 | 6.00 31 | 11.6 70 | 1.73 1 | 8.58 21 | 13.9 46 | 5.07 1 | 18.2 61 | 24.9 62 | 5.16 40 | 10.3 41 | 25.1 31 | 3.74 12 | 9.88 62 | 42.7 59 | 2.45 1 | 14.8 63 | 24.7 77 | 2.16 1 |
CRTflow [88] | 37.8 | 5.29 43 | 10.5 34 | 2.16 56 | 8.43 50 | 14.5 57 | 2.16 41 | 6.35 62 | 11.1 65 | 2.00 48 | 8.64 24 | 13.0 21 | 5.29 69 | 18.0 38 | 24.5 41 | 5.20 46 | 9.68 12 | 23.8 10 | 3.74 12 | 9.00 23 | 40.9 44 | 2.45 1 | 14.1 22 | 22.2 31 | 2.31 57 |
2D-CLG [1] | 38.4 | 5.16 19 | 10.0 16 | 2.16 56 | 9.90 75 | 14.2 49 | 2.83 82 | 6.35 62 | 10.7 47 | 2.00 48 | 10.0 73 | 15.2 63 | 5.10 16 | 17.7 16 | 24.1 25 | 5.20 46 | 10.1 30 | 24.1 14 | 3.74 12 | 9.81 60 | 43.6 69 | 2.45 1 | 14.1 22 | 21.8 19 | 2.16 1 |
EP-PM [83] | 38.5 | 5.23 35 | 12.6 80 | 2.00 1 | 7.39 30 | 13.0 33 | 2.08 1 | 6.35 62 | 14.0 86 | 1.91 44 | 8.83 46 | 15.3 65 | 5.10 16 | 18.0 38 | 24.5 41 | 5.10 20 | 10.5 49 | 27.6 74 | 3.74 12 | 9.11 34 | 41.9 51 | 2.45 1 | 14.5 46 | 23.2 57 | 2.16 1 |
Efficient-NL [60] | 38.8 | 5.35 48 | 10.7 38 | 2.00 1 | 7.42 33 | 13.0 33 | 2.08 1 | 6.35 62 | 10.7 47 | 2.00 48 | 8.81 42 | 13.4 32 | 5.10 16 | 18.1 46 | 24.7 49 | 5.10 20 | 11.2 76 | 27.6 74 | 3.70 1 | 9.47 51 | 43.6 69 | 2.45 1 | 15.1 72 | 23.8 69 | 2.16 1 |
Occlusion-TV-L1 [63] | 39.8 | 5.20 21 | 10.2 23 | 2.08 38 | 8.89 61 | 15.3 72 | 2.16 41 | 6.00 31 | 10.3 36 | 2.00 48 | 9.15 58 | 15.4 67 | 5.26 66 | 17.6 4 | 23.7 7 | 5.10 20 | 9.98 25 | 25.5 40 | 3.87 69 | 10.3 71 | 39.3 35 | 2.52 64 | 14.1 22 | 22.3 34 | 2.16 1 |
IAOF [50] | 40.4 | 5.60 75 | 11.0 49 | 2.16 56 | 12.0 88 | 16.9 89 | 2.52 71 | 5.69 2 | 11.0 62 | 2.00 48 | 9.76 71 | 14.3 51 | 5.20 36 | 17.7 16 | 24.0 19 | 5.07 6 | 10.0 28 | 25.2 35 | 3.74 12 | 9.47 51 | 41.4 47 | 2.45 1 | 14.2 30 | 22.1 25 | 2.16 1 |
Complementary OF [21] | 41.9 | 5.20 21 | 12.0 78 | 2.00 1 | 7.19 24 | 12.9 30 | 2.08 1 | 6.68 75 | 10.8 58 | 2.00 48 | 8.76 34 | 14.6 57 | 5.16 30 | 18.2 61 | 25.2 75 | 5.10 20 | 10.3 41 | 25.9 47 | 3.74 12 | 9.97 65 | 42.6 57 | 2.45 1 | 15.6 83 | 28.0 86 | 2.16 1 |
Adaptive [20] | 42.0 | 5.32 46 | 10.3 26 | 2.16 56 | 9.29 69 | 15.4 74 | 2.16 41 | 6.00 31 | 10.7 47 | 1.73 1 | 8.81 42 | 13.8 43 | 5.20 36 | 17.9 30 | 24.3 33 | 5.07 6 | 10.4 46 | 26.0 48 | 3.79 49 | 9.83 61 | 44.6 73 | 2.45 1 | 14.5 46 | 22.8 45 | 2.31 57 |
Ad-TV-NDC [36] | 42.0 | 5.66 77 | 9.88 13 | 2.52 84 | 10.1 77 | 15.1 68 | 2.71 78 | 6.00 31 | 10.7 47 | 1.73 1 | 9.49 67 | 14.2 49 | 5.35 75 | 17.7 16 | 24.0 19 | 5.20 46 | 9.56 8 | 24.0 12 | 3.87 69 | 9.56 55 | 38.6 27 | 2.45 1 | 13.9 10 | 21.2 8 | 2.38 71 |
Black & Anandan [4] | 43.0 | 5.45 66 | 10.1 19 | 2.16 56 | 10.2 80 | 15.3 72 | 2.45 69 | 6.68 75 | 11.3 66 | 2.00 48 | 10.2 74 | 15.6 68 | 5.20 36 | 17.8 23 | 24.0 19 | 5.16 40 | 9.83 14 | 24.7 22 | 3.74 12 | 10.2 70 | 41.9 51 | 2.45 1 | 14.2 30 | 21.8 19 | 2.16 1 |
CostFilter [40] | 43.9 | 5.32 46 | 13.2 84 | 2.00 1 | 7.33 26 | 12.3 24 | 2.08 1 | 6.06 60 | 13.5 85 | 1.73 1 | 8.96 54 | 16.1 73 | 5.07 1 | 18.6 80 | 25.6 84 | 5.16 40 | 9.98 25 | 24.8 25 | 4.04 82 | 9.20 40 | 43.5 68 | 2.45 1 | 15.1 72 | 24.9 79 | 2.16 1 |
HBpMotionGpu [43] | 45.5 | 5.48 69 | 10.8 44 | 2.38 79 | 10.1 77 | 15.4 74 | 2.71 78 | 5.69 2 | 10.0 17 | 1.73 1 | 9.40 63 | 16.2 75 | 5.23 55 | 17.9 30 | 24.3 33 | 5.20 46 | 10.5 49 | 26.4 54 | 3.83 65 | 8.96 19 | 37.8 16 | 2.45 1 | 14.3 35 | 22.6 39 | 2.38 71 |
Nguyen [33] | 46.2 | 5.42 61 | 10.0 16 | 2.38 79 | 10.9 83 | 15.1 68 | 2.65 75 | 6.00 31 | 12.0 74 | 2.00 48 | 10.4 78 | 16.1 73 | 5.20 36 | 17.8 23 | 24.1 25 | 5.07 6 | 9.98 25 | 25.3 36 | 3.70 1 | 10.9 82 | 46.9 78 | 2.52 64 | 14.1 22 | 22.1 25 | 2.16 1 |
TV-L1-improved [17] | 48.2 | 5.10 16 | 10.2 23 | 2.08 38 | 9.20 65 | 15.4 74 | 2.16 41 | 6.35 62 | 10.3 36 | 2.00 48 | 8.85 49 | 13.8 43 | 5.23 55 | 18.0 38 | 24.4 37 | 5.10 20 | 10.6 55 | 26.5 55 | 3.79 49 | 9.93 64 | 46.9 78 | 2.52 64 | 14.3 35 | 22.7 42 | 2.38 71 |
Bartels [41] | 48.7 | 5.35 48 | 11.4 64 | 2.16 56 | 7.72 38 | 14.0 46 | 2.38 61 | 6.00 31 | 10.3 36 | 2.00 48 | 9.11 56 | 15.0 61 | 5.69 84 | 17.6 4 | 23.6 4 | 5.45 88 | 10.7 60 | 27.2 68 | 4.55 90 | 8.96 19 | 36.4 2 | 2.65 87 | 14.1 22 | 22.1 25 | 2.38 71 |
GraphCuts [14] | 49.4 | 5.66 77 | 11.9 77 | 2.16 56 | 7.53 35 | 12.5 27 | 2.38 61 | 7.68 85 | 10.2 32 | 2.00 48 | 9.47 66 | 14.9 60 | 5.23 55 | 18.1 46 | 24.5 41 | 5.00 1 | 10.1 30 | 25.7 43 | 3.70 1 | 9.02 27 | 42.1 54 | 2.52 64 | 15.1 72 | 24.1 71 | 2.31 57 |
SimpleFlow [49] | 50.0 | 5.35 48 | 11.0 49 | 2.00 1 | 8.04 43 | 13.9 44 | 2.08 1 | 6.56 74 | 11.3 66 | 2.00 48 | 8.41 15 | 12.7 15 | 5.20 36 | 18.4 74 | 25.4 80 | 5.20 46 | 11.4 79 | 28.9 83 | 3.74 12 | 10.1 68 | 53.7 88 | 2.52 64 | 15.3 81 | 26.5 84 | 2.16 1 |
Filter Flow [19] | 51.3 | 5.42 61 | 10.2 23 | 2.16 56 | 9.40 71 | 14.7 62 | 2.71 78 | 6.00 31 | 10.7 47 | 2.00 48 | 9.49 67 | 13.9 46 | 5.35 75 | 18.1 46 | 24.3 33 | 5.26 79 | 10.2 37 | 25.6 41 | 3.83 65 | 9.52 54 | 41.4 47 | 2.45 1 | 14.6 58 | 22.3 34 | 2.38 71 |
Shiralkar [42] | 53.2 | 5.48 69 | 12.7 81 | 2.08 38 | 9.06 64 | 14.7 62 | 2.08 1 | 6.00 31 | 12.8 81 | 2.00 48 | 10.7 79 | 19.7 84 | 5.20 36 | 18.1 46 | 24.8 56 | 5.00 1 | 10.8 65 | 26.1 50 | 3.87 69 | 10.8 80 | 47.5 82 | 2.45 1 | 14.9 69 | 25.8 82 | 2.16 1 |
TriangleFlow [30] | 53.2 | 5.60 75 | 11.6 72 | 2.16 56 | 8.50 53 | 14.4 54 | 2.08 1 | 6.35 62 | 10.7 47 | 2.00 48 | 9.42 64 | 15.8 70 | 5.23 55 | 18.0 38 | 24.5 41 | 5.00 1 | 11.1 75 | 27.2 68 | 3.74 12 | 10.4 72 | 47.2 81 | 2.52 64 | 15.6 83 | 26.7 85 | 2.16 1 |
Rannacher [23] | 53.5 | 5.26 37 | 10.8 44 | 2.16 56 | 9.27 66 | 15.5 80 | 2.16 41 | 6.35 62 | 10.9 60 | 2.00 48 | 8.76 34 | 14.4 53 | 5.23 55 | 17.9 30 | 24.4 37 | 5.20 46 | 10.5 49 | 26.7 59 | 3.79 49 | 9.90 63 | 45.9 77 | 2.52 64 | 14.4 39 | 23.5 65 | 2.38 71 |
Correlation Flow [79] | 54.1 | 5.42 61 | 11.7 73 | 2.00 1 | 8.58 55 | 15.4 74 | 2.08 1 | 5.69 2 | 9.80 15 | 1.73 1 | 8.89 50 | 14.7 58 | 5.32 72 | 18.1 46 | 24.8 56 | 5.32 85 | 12.3 88 | 30.3 86 | 3.83 65 | 10.5 75 | 48.8 84 | 2.52 64 | 14.8 63 | 23.7 67 | 2.31 57 |
Direct ZNCC [66] | 54.8 | 5.26 37 | 11.1 58 | 2.00 1 | 8.54 54 | 15.2 71 | 2.08 1 | 6.00 31 | 10.3 36 | 1.83 43 | 9.11 56 | 16.3 76 | 5.32 72 | 18.1 46 | 24.8 56 | 5.26 79 | 12.1 86 | 29.5 84 | 3.83 65 | 10.8 80 | 50.8 87 | 2.52 64 | 14.8 63 | 23.8 69 | 2.16 1 |
Horn & Schunck [3] | 55.6 | 5.48 69 | 10.4 29 | 2.16 56 | 10.5 82 | 15.4 74 | 2.52 71 | 6.68 75 | 12.0 74 | 2.00 48 | 11.5 85 | 17.6 80 | 5.23 55 | 17.9 30 | 24.0 19 | 5.20 46 | 9.93 21 | 24.1 14 | 3.79 49 | 11.1 84 | 42.9 61 | 2.52 64 | 14.5 46 | 22.2 31 | 2.38 71 |
IAOF2 [51] | 55.9 | 5.74 79 | 11.5 68 | 2.16 56 | 9.49 73 | 15.9 87 | 2.38 61 | 5.69 2 | 11.0 62 | 2.00 48 | 9.61 70 | 15.8 70 | 5.26 66 | 18.7 82 | 25.3 77 | 5.20 46 | 10.9 66 | 27.4 71 | 3.74 12 | 9.47 51 | 41.1 45 | 2.45 1 | 14.5 46 | 22.8 45 | 2.31 57 |
TI-DOFE [24] | 57.5 | 5.80 80 | 11.0 49 | 2.52 84 | 11.5 86 | 15.8 85 | 3.11 86 | 6.35 62 | 12.3 78 | 2.00 48 | 11.4 84 | 17.4 78 | 5.29 69 | 17.9 30 | 24.2 30 | 5.07 6 | 9.95 22 | 24.4 19 | 3.79 49 | 10.5 75 | 39.9 38 | 2.52 64 | 14.8 63 | 22.1 25 | 2.38 71 |
LocallyOriented [52] | 58.4 | 5.45 66 | 11.2 61 | 2.16 56 | 9.49 73 | 15.7 83 | 2.16 41 | 6.06 60 | 11.7 71 | 1.91 44 | 9.42 64 | 17.0 77 | 5.23 55 | 18.2 61 | 24.8 56 | 5.07 6 | 11.0 70 | 26.5 55 | 4.04 82 | 10.4 72 | 43.0 64 | 2.45 1 | 14.8 63 | 23.4 64 | 2.31 57 |
SegOF [10] | 58.7 | 5.10 16 | 11.4 64 | 2.16 56 | 8.29 47 | 13.9 44 | 2.38 61 | 7.00 81 | 12.1 77 | 2.00 48 | 9.81 72 | 21.0 85 | 5.20 36 | 18.2 61 | 25.1 72 | 5.20 46 | 10.9 66 | 26.1 50 | 3.79 49 | 10.4 72 | 48.4 83 | 2.58 81 | 14.7 61 | 25.1 80 | 2.16 1 |
SPSA-learn [13] | 59.7 | 5.29 43 | 10.4 29 | 2.16 56 | 9.04 63 | 14.1 47 | 2.45 69 | 6.68 75 | 11.7 71 | 2.00 48 | 10.3 77 | 15.8 70 | 5.10 16 | 18.4 74 | 25.3 77 | 5.20 46 | 10.5 49 | 26.8 63 | 3.74 12 | 12.3 89 | 58.4 90 | 2.71 90 | 17.6 88 | 35.0 89 | 2.16 1 |
StereoFlow [44] | 61.1 | 8.68 90 | 20.4 90 | 2.45 82 | 10.3 81 | 16.1 88 | 2.71 78 | 6.00 31 | 10.7 47 | 1.73 1 | 8.81 42 | 13.7 36 | 5.16 30 | 22.6 88 | 31.6 88 | 5.26 79 | 14.3 90 | 35.7 90 | 3.79 49 | 9.13 36 | 38.8 28 | 2.45 1 | 15.6 83 | 25.3 81 | 2.31 57 |
ACK-Prior [27] | 61.5 | 5.35 48 | 11.7 73 | 2.00 1 | 7.39 30 | 12.9 30 | 2.08 1 | 6.68 75 | 10.8 58 | 2.00 48 | 9.54 69 | 15.7 69 | 5.32 72 | 18.7 82 | 25.5 83 | 5.29 83 | 11.9 84 | 29.5 84 | 3.87 69 | 10.1 68 | 41.7 50 | 2.52 64 | 16.1 86 | 24.8 78 | 2.38 71 |
Dynamic MRF [7] | 63.0 | 5.26 37 | 11.5 68 | 2.00 1 | 8.12 46 | 14.3 52 | 2.16 41 | 6.68 75 | 12.8 81 | 2.00 48 | 10.9 82 | 18.3 82 | 5.51 82 | 18.3 68 | 25.0 67 | 5.20 46 | 11.6 80 | 28.6 82 | 3.87 69 | 10.7 78 | 45.7 76 | 2.52 64 | 14.9 69 | 23.3 61 | 2.31 57 |
NL-TV-NCC [25] | 64.5 | 6.03 82 | 12.8 83 | 2.00 1 | 8.29 47 | 14.7 62 | 2.16 41 | 6.35 62 | 11.7 71 | 2.00 48 | 10.7 79 | 18.6 83 | 5.45 78 | 18.1 46 | 24.1 25 | 5.45 88 | 12.0 85 | 28.2 80 | 3.79 49 | 13.0 90 | 43.4 67 | 2.58 81 | 15.1 72 | 23.2 57 | 2.38 71 |
SILK [87] | 66.4 | 5.80 80 | 12.7 81 | 2.38 79 | 11.1 84 | 15.6 82 | 2.83 82 | 7.35 84 | 13.0 83 | 2.00 48 | 10.8 81 | 17.5 79 | 5.48 81 | 18.3 68 | 24.8 56 | 5.20 46 | 10.5 49 | 26.0 48 | 4.20 88 | 10.0 66 | 37.1 8 | 2.52 64 | 14.6 58 | 22.7 42 | 2.31 57 |
Learning Flow [11] | 66.5 | 5.57 74 | 11.1 58 | 2.16 56 | 9.27 66 | 15.1 68 | 2.16 41 | 7.00 81 | 13.3 84 | 2.00 48 | 10.2 74 | 15.2 63 | 5.45 78 | 18.5 79 | 25.1 72 | 5.32 85 | 10.7 60 | 26.2 52 | 3.87 69 | 10.6 77 | 40.8 43 | 2.52 64 | 15.1 72 | 23.3 61 | 2.38 71 |
Adaptive flow [45] | 71.9 | 6.24 85 | 11.3 63 | 2.71 86 | 11.2 85 | 15.7 83 | 3.42 88 | 6.35 62 | 10.9 60 | 2.00 48 | 10.2 74 | 14.7 58 | 5.72 85 | 18.7 82 | 25.4 80 | 5.23 75 | 11.7 83 | 30.8 87 | 3.87 69 | 9.42 49 | 38.8 28 | 2.58 81 | 14.9 69 | 24.3 74 | 2.38 71 |
GroupFlow [9] | 72.5 | 6.56 87 | 19.6 89 | 2.16 56 | 9.38 70 | 14.7 62 | 2.52 71 | 7.68 85 | 16.8 89 | 2.00 48 | 11.1 83 | 23.5 88 | 5.29 69 | 20.7 87 | 29.3 87 | 5.23 75 | 12.4 89 | 32.8 88 | 3.87 69 | 11.3 86 | 49.6 86 | 2.45 1 | 16.8 87 | 30.4 88 | 2.16 1 |
FOLKI [16] | 72.7 | 6.14 84 | 12.4 79 | 3.11 88 | 11.5 86 | 15.5 80 | 3.32 87 | 7.00 81 | 14.7 87 | 2.38 86 | 13.5 86 | 18.2 81 | 6.27 88 | 18.6 80 | 25.0 67 | 5.23 75 | 10.3 41 | 25.1 31 | 4.04 82 | 11.0 83 | 38.3 22 | 2.58 81 | 14.7 61 | 22.4 37 | 2.38 71 |
SLK [47] | 77.3 | 6.03 82 | 13.6 85 | 2.45 82 | 10.1 77 | 13.8 42 | 2.89 84 | 7.68 85 | 12.4 80 | 2.38 86 | 13.8 88 | 21.0 85 | 5.77 86 | 19.1 86 | 26.4 86 | 5.20 46 | 11.2 76 | 26.2 52 | 3.87 69 | 11.8 87 | 46.9 78 | 2.58 81 | 15.2 79 | 26.1 83 | 2.38 71 |
PGAM+LK [55] | 79.5 | 6.56 87 | 16.0 87 | 2.71 86 | 10.0 76 | 14.7 62 | 3.00 85 | 7.75 88 | 15.7 88 | 2.38 86 | 13.7 87 | 21.1 87 | 6.27 88 | 18.8 85 | 25.8 85 | 5.26 79 | 11.6 80 | 27.2 68 | 4.08 86 | 10.7 78 | 40.3 42 | 2.58 81 | 15.1 72 | 24.4 75 | 2.38 71 |
Pyramid LK [2] | 81.7 | 6.24 85 | 13.7 86 | 3.16 89 | 12.7 89 | 15.8 85 | 3.79 89 | 11.8 89 | 12.3 78 | 3.00 89 | 25.5 90 | 41.4 89 | 7.14 90 | 22.9 89 | 33.6 89 | 5.20 46 | 10.7 60 | 25.4 39 | 3.92 81 | 11.2 85 | 49.2 85 | 2.65 87 | 19.6 90 | 37.8 90 | 2.38 71 |
Periodicity [86] | 89.0 | 6.81 89 | 17.5 88 | 3.27 90 | 15.3 90 | 16.9 89 | 4.24 90 | 13.7 90 | 22.7 90 | 4.36 90 | 18.0 89 | 41.4 89 | 6.16 87 | 23.9 90 | 34.4 90 | 5.60 90 | 12.2 87 | 34.5 89 | 4.51 89 | 11.8 87 | 55.6 89 | 2.65 87 | 17.9 89 | 29.7 87 | 2.71 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |