Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A99 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 7.8 | 11.0 1 | 20.7 3 | 2.71 1 | 13.9 7 | 19.9 6 | 3.46 2 | 10.3 1 | 20.3 11 | 3.00 1 | 16.7 3 | 30.0 12 | 7.35 4 | 41.0 3 | 50.7 3 | 10.1 23 | 27.1 24 | 44.9 14 | 4.97 10 | 33.6 2 | 70.1 4 | 3.92 2 | 29.2 15 | 47.0 27 | 3.42 7 |
ComplexFlow [81] | 14.8 | 11.4 12 | 21.6 6 | 2.71 1 | 12.8 1 | 18.4 2 | 3.56 4 | 10.4 2 | 20.0 9 | 3.00 1 | 19.8 45 | 37.3 66 | 7.35 4 | 41.5 8 | 51.4 7 | 10.0 13 | 28.2 44 | 47.3 29 | 5.07 32 | 34.5 9 | 71.9 16 | 4.04 5 | 29.1 14 | 46.1 23 | 3.37 1 |
NN-field [73] | 16.5 | 11.5 19 | 22.9 17 | 2.71 1 | 13.0 3 | 18.6 3 | 3.42 1 | 12.3 52 | 19.7 5 | 3.00 1 | 21.1 56 | 39.8 73 | 7.44 16 | 41.4 7 | 51.4 7 | 10.0 13 | 27.5 30 | 46.4 23 | 4.97 10 | 33.8 5 | 71.0 9 | 4.04 5 | 29.3 16 | 46.2 24 | 3.37 1 |
SuperFlow [89] | 19.5 | 11.0 1 | 22.1 14 | 3.11 46 | 17.1 39 | 22.7 30 | 4.69 53 | 11.7 30 | 18.7 1 | 3.37 39 | 18.7 30 | 27.4 2 | 7.70 43 | 41.3 5 | 51.2 6 | 9.98 9 | 26.3 16 | 46.9 25 | 4.80 1 | 34.7 11 | 76.0 29 | 4.08 21 | 28.1 6 | 41.5 3 | 3.42 7 |
CBF [12] | 21.0 | 11.0 1 | 19.8 1 | 3.00 39 | 17.1 39 | 22.9 34 | 4.24 41 | 12.0 42 | 19.0 2 | 3.00 1 | 17.8 15 | 28.0 4 | 7.85 55 | 40.6 2 | 49.9 1 | 9.97 6 | 26.2 12 | 44.6 9 | 4.97 10 | 36.3 33 | 76.3 32 | 4.12 53 | 27.9 2 | 41.2 2 | 3.70 67 |
Deep-Matching [85] | 21.0 | 11.3 10 | 24.2 30 | 3.00 39 | 16.9 38 | 22.9 34 | 4.69 53 | 10.8 4 | 20.4 14 | 3.00 1 | 19.6 42 | 28.8 5 | 7.70 43 | 43.0 22 | 55.1 29 | 10.2 36 | 24.8 1 | 43.7 5 | 5.03 30 | 33.1 1 | 68.6 1 | 4.04 5 | 28.2 7 | 44.3 13 | 3.56 41 |
Aniso. Huber-L1 [22] | 21.8 | 11.4 12 | 21.7 7 | 3.11 46 | 19.7 63 | 24.7 63 | 4.55 51 | 12.0 42 | 19.7 5 | 3.11 35 | 18.4 23 | 29.8 11 | 7.55 29 | 42.5 15 | 54.4 19 | 9.98 9 | 25.2 4 | 42.2 1 | 4.83 2 | 35.6 22 | 71.5 12 | 4.04 5 | 27.9 2 | 42.0 5 | 3.56 41 |
CLG-TV [48] | 23.0 | 11.1 6 | 21.8 9 | 3.11 46 | 18.8 50 | 24.0 50 | 4.43 48 | 11.3 16 | 20.0 9 | 3.70 52 | 18.6 28 | 28.9 6 | 7.72 48 | 42.8 19 | 55.0 28 | 10.0 13 | 25.0 2 | 42.9 3 | 4.93 7 | 36.0 28 | 71.6 13 | 4.04 5 | 29.0 13 | 44.0 11 | 3.56 41 |
LME [72] | 23.5 | 11.4 12 | 22.0 12 | 2.71 1 | 15.1 16 | 21.8 20 | 3.87 33 | 11.3 16 | 36.0 81 | 3.00 1 | 17.4 7 | 32.0 27 | 7.48 19 | 44.5 45 | 57.0 43 | 11.4 86 | 27.6 33 | 47.2 27 | 4.97 10 | 33.6 2 | 69.7 2 | 4.04 5 | 30.0 24 | 48.6 35 | 3.42 7 |
IROF++ [58] | 23.6 | 11.9 36 | 24.1 28 | 2.83 12 | 14.7 12 | 21.3 11 | 3.56 4 | 12.1 49 | 29.0 57 | 3.00 1 | 16.3 1 | 27.9 3 | 7.35 4 | 43.9 35 | 56.0 35 | 11.1 70 | 26.4 17 | 47.0 26 | 4.93 7 | 34.5 9 | 72.3 17 | 4.08 21 | 30.3 31 | 49.3 40 | 3.56 41 |
Brox et al. [5] | 25.1 | 11.4 12 | 24.9 44 | 2.94 31 | 15.9 27 | 22.2 27 | 4.04 36 | 11.3 16 | 21.0 16 | 3.37 39 | 18.4 23 | 27.0 1 | 7.59 32 | 42.2 12 | 53.3 13 | 10.0 13 | 28.2 44 | 51.5 70 | 5.00 26 | 36.8 36 | 88.0 58 | 4.04 5 | 28.4 9 | 42.3 6 | 3.42 7 |
IROF-TV [53] | 25.5 | 11.7 26 | 24.7 40 | 3.00 39 | 15.5 23 | 22.0 25 | 3.70 17 | 11.0 5 | 23.7 31 | 3.00 1 | 17.3 6 | 31.3 18 | 7.57 31 | 43.8 33 | 56.0 35 | 11.2 75 | 27.6 33 | 48.4 38 | 4.97 10 | 35.9 26 | 74.5 27 | 4.08 21 | 28.0 4 | 42.6 7 | 3.56 41 |
ALD-Flow [68] | 26.4 | 12.0 37 | 28.4 66 | 3.11 46 | 16.3 31 | 22.8 32 | 3.83 28 | 11.0 5 | 21.7 21 | 3.00 1 | 17.9 17 | 33.6 40 | 7.39 10 | 43.4 31 | 54.6 22 | 10.8 59 | 25.8 8 | 44.8 13 | 5.00 26 | 34.1 7 | 70.4 5 | 4.04 5 | 31.9 51 | 50.3 48 | 3.46 24 |
ADF [67] | 26.8 | 11.0 1 | 21.8 9 | 2.83 12 | 15.5 23 | 22.1 26 | 3.79 25 | 11.3 16 | 24.0 33 | 3.00 1 | 16.4 2 | 29.5 7 | 7.39 10 | 45.3 57 | 58.6 61 | 11.2 75 | 27.5 30 | 44.9 14 | 4.90 3 | 37.1 38 | 77.4 37 | 4.08 21 | 32.3 55 | 52.0 62 | 3.46 24 |
p-harmonic [29] | 27.3 | 11.4 12 | 23.5 21 | 2.83 12 | 19.1 53 | 24.3 54 | 4.80 58 | 11.3 16 | 22.0 22 | 3.70 52 | 20.9 54 | 31.7 23 | 7.62 35 | 42.6 17 | 54.2 17 | 10.1 23 | 25.7 7 | 43.5 4 | 5.07 32 | 36.1 30 | 71.8 14 | 4.08 21 | 29.6 21 | 46.5 25 | 3.51 33 |
nLayers [57] | 27.6 | 11.8 32 | 22.9 17 | 2.83 12 | 14.1 8 | 20.4 8 | 3.56 4 | 11.0 5 | 19.7 5 | 3.00 1 | 18.3 21 | 34.2 45 | 7.39 10 | 46.7 78 | 60.1 74 | 11.0 65 | 27.9 38 | 50.1 52 | 5.20 48 | 35.5 20 | 72.6 18 | 4.08 21 | 30.8 34 | 49.3 40 | 3.42 7 |
Second-order prior [8] | 27.9 | 11.3 10 | 22.0 12 | 3.11 46 | 19.0 52 | 24.2 53 | 4.32 44 | 13.3 59 | 27.7 51 | 3.70 52 | 18.8 33 | 31.6 22 | 7.51 22 | 42.9 21 | 54.7 24 | 10.0 13 | 26.2 12 | 45.0 16 | 4.97 10 | 35.6 22 | 71.2 10 | 4.04 5 | 29.5 19 | 45.4 21 | 3.56 41 |
SIOF [69] | 27.9 | 11.7 26 | 23.1 19 | 3.11 46 | 19.4 58 | 24.8 66 | 4.76 55 | 11.3 16 | 25.7 42 | 3.11 35 | 18.4 23 | 31.4 20 | 8.04 65 | 40.3 1 | 50.3 2 | 9.95 4 | 25.8 8 | 45.3 18 | 4.97 10 | 33.9 6 | 71.2 10 | 4.08 21 | 30.0 24 | 47.4 28 | 3.70 67 |
LDOF [28] | 28.3 | 11.4 12 | 22.5 15 | 3.56 76 | 16.1 28 | 21.4 16 | 6.35 82 | 12.0 42 | 20.3 11 | 3.70 52 | 19.0 36 | 29.7 9 | 7.94 60 | 41.2 4 | 50.9 4 | 10.1 23 | 26.8 19 | 50.2 54 | 4.90 3 | 34.8 13 | 80.2 43 | 4.08 21 | 29.4 18 | 44.5 15 | 3.46 24 |
Local-TV-L1 [65] | 28.7 | 11.2 8 | 21.5 5 | 3.56 76 | 19.6 61 | 24.4 57 | 5.57 73 | 11.0 5 | 19.1 4 | 3.00 1 | 18.3 21 | 30.4 15 | 7.87 58 | 42.8 19 | 54.5 20 | 10.2 36 | 26.2 12 | 44.7 10 | 5.45 70 | 34.2 8 | 76.1 31 | 4.08 21 | 28.0 4 | 42.8 9 | 3.65 65 |
MDP-Flow [26] | 28.9 | 11.2 8 | 21.2 4 | 2.71 1 | 14.2 9 | 20.5 9 | 3.70 17 | 10.7 3 | 19.0 2 | 3.00 1 | 19.7 43 | 32.4 30 | 7.70 43 | 44.2 37 | 57.0 43 | 11.2 75 | 30.0 73 | 51.4 69 | 5.51 81 | 36.1 30 | 72.9 21 | 4.08 21 | 30.8 34 | 48.4 32 | 3.42 7 |
Layers++ [37] | 29.1 | 11.4 12 | 21.7 7 | 2.94 31 | 12.8 1 | 18.2 1 | 3.46 2 | 11.0 5 | 26.7 49 | 3.00 1 | 17.7 13 | 32.9 35 | 7.53 25 | 46.6 76 | 60.9 81 | 10.6 53 | 30.9 81 | 60.2 85 | 5.00 26 | 34.9 17 | 72.7 19 | 3.87 1 | 29.9 23 | 47.5 30 | 3.46 24 |
COFM [59] | 29.4 | 11.8 32 | 24.3 31 | 2.94 31 | 14.5 10 | 20.9 10 | 3.65 16 | 11.0 5 | 26.4 48 | 3.00 1 | 17.4 7 | 32.3 28 | 7.35 4 | 44.2 37 | 55.1 29 | 10.1 23 | 30.0 73 | 54.4 80 | 5.20 48 | 35.8 24 | 79.3 40 | 4.08 21 | 31.2 38 | 48.8 37 | 3.51 33 |
Levin3 [90] | 30.9 | 12.0 37 | 23.8 24 | 2.83 12 | 15.2 18 | 21.5 17 | 3.74 24 | 11.7 30 | 28.7 55 | 3.00 1 | 17.1 5 | 30.4 15 | 7.53 25 | 44.5 45 | 56.8 41 | 10.1 23 | 29.1 63 | 49.1 45 | 5.07 32 | 39.8 59 | 89.1 62 | 4.08 21 | 31.2 38 | 49.7 43 | 3.42 7 |
BlockOverlap [61] | 32.0 | 11.1 6 | 20.1 2 | 3.56 76 | 19.3 57 | 23.7 45 | 6.16 78 | 11.3 16 | 20.4 14 | 3.70 52 | 18.4 23 | 29.6 8 | 8.72 79 | 43.1 26 | 54.5 20 | 10.2 36 | 27.4 28 | 48.6 40 | 5.35 65 | 34.8 13 | 72.8 20 | 4.08 21 | 27.2 1 | 40.9 1 | 3.56 41 |
TV-L1-MCT [64] | 32.2 | 12.4 67 | 24.7 40 | 2.83 12 | 16.4 32 | 23.1 36 | 3.83 28 | 11.9 41 | 32.7 73 | 3.00 1 | 17.6 10 | 31.7 23 | 7.53 25 | 47.0 82 | 61.2 82 | 11.0 65 | 25.5 6 | 44.7 10 | 4.97 10 | 36.0 28 | 80.7 47 | 4.04 5 | 28.4 9 | 44.8 18 | 3.46 24 |
Sparse-NonSparse [56] | 33.1 | 12.0 37 | 24.3 31 | 2.83 12 | 15.0 15 | 21.3 11 | 3.56 4 | 11.7 30 | 29.0 57 | 3.00 1 | 17.6 10 | 29.7 9 | 7.39 10 | 45.7 62 | 59.3 66 | 11.0 65 | 28.8 55 | 48.7 42 | 5.07 32 | 38.6 50 | 90.1 67 | 4.04 5 | 32.4 57 | 51.8 59 | 3.42 7 |
Modified CLG [34] | 33.9 | 11.0 1 | 21.9 11 | 3.11 46 | 19.6 61 | 23.9 48 | 5.94 76 | 12.4 53 | 26.3 47 | 3.87 65 | 19.8 45 | 30.8 17 | 8.12 70 | 42.1 10 | 52.9 11 | 10.1 23 | 27.0 22 | 48.1 36 | 5.23 52 | 34.7 11 | 70.8 7 | 4.08 21 | 29.5 19 | 45.3 20 | 3.56 41 |
F-TV-L1 [15] | 34.2 | 12.0 37 | 26.5 55 | 3.56 76 | 19.2 55 | 24.7 63 | 4.83 59 | 11.7 30 | 21.5 19 | 4.00 66 | 19.3 37 | 32.7 33 | 7.68 40 | 43.1 26 | 55.3 31 | 9.83 1 | 25.1 3 | 42.8 2 | 5.07 32 | 34.8 13 | 74.0 25 | 4.16 58 | 28.5 11 | 42.7 8 | 3.56 41 |
FastOF [78] | 34.5 | 12.9 76 | 28.0 63 | 3.11 46 | 18.6 49 | 23.7 45 | 4.76 55 | 12.0 42 | 24.0 33 | 3.37 39 | 22.0 61 | 36.1 59 | 7.35 4 | 44.2 37 | 56.3 38 | 11.0 65 | 25.4 5 | 44.0 6 | 4.97 10 | 35.3 19 | 73.7 23 | 4.08 21 | 28.6 12 | 44.2 12 | 3.42 7 |
Epistemic [84] | 35.1 | 12.0 37 | 29.6 71 | 2.71 1 | 14.5 10 | 21.3 11 | 3.56 4 | 11.0 5 | 22.0 22 | 3.00 1 | 18.8 33 | 36.2 61 | 7.33 2 | 45.5 60 | 58.2 57 | 10.7 56 | 27.2 25 | 46.3 21 | 4.97 10 | 40.5 66 | 93.3 74 | 4.12 53 | 34.4 75 | 58.3 80 | 3.42 7 |
TC/T-Flow [80] | 36.2 | 12.4 67 | 26.4 54 | 2.83 12 | 16.5 35 | 23.1 36 | 3.83 28 | 11.0 5 | 22.4 25 | 3.00 1 | 18.9 35 | 34.5 46 | 7.33 2 | 45.5 60 | 58.1 55 | 11.4 86 | 27.3 27 | 47.6 31 | 4.93 7 | 41.1 68 | 80.4 45 | 4.20 62 | 30.9 37 | 49.7 43 | 3.37 1 |
DPOF [18] | 36.5 | 12.3 61 | 29.4 70 | 3.11 46 | 13.3 5 | 19.1 5 | 3.56 4 | 15.7 65 | 25.2 40 | 3.70 52 | 19.4 38 | 37.5 67 | 7.59 32 | 43.1 26 | 54.6 22 | 10.0 13 | 29.1 63 | 49.7 48 | 4.90 3 | 36.6 34 | 77.0 34 | 4.08 21 | 31.5 44 | 50.5 49 | 3.51 33 |
Ad-TV-NDC [36] | 37.0 | 12.2 56 | 22.5 15 | 4.32 85 | 20.6 79 | 24.8 66 | 5.80 74 | 11.7 30 | 21.6 20 | 3.37 39 | 21.6 60 | 31.8 25 | 8.04 65 | 42.5 15 | 53.4 14 | 9.97 6 | 26.4 17 | 47.6 31 | 5.16 46 | 36.8 36 | 70.9 8 | 4.08 21 | 28.3 8 | 41.8 4 | 3.70 67 |
Ramp [62] | 37.5 | 12.0 37 | 24.6 37 | 2.94 31 | 14.8 13 | 21.3 11 | 3.70 17 | 11.7 30 | 29.4 64 | 3.00 1 | 16.9 4 | 30.3 13 | 7.39 10 | 45.4 58 | 58.5 58 | 11.0 65 | 30.2 76 | 50.9 66 | 5.23 52 | 39.8 59 | 89.6 64 | 4.04 5 | 32.4 57 | 52.5 66 | 3.42 7 |
ComplOF-FED-GPU [35] | 37.8 | 12.0 37 | 27.9 62 | 2.94 31 | 15.7 26 | 22.2 27 | 3.79 25 | 16.0 66 | 21.4 17 | 3.70 52 | 18.4 23 | 33.6 40 | 7.48 19 | 44.9 51 | 57.7 49 | 10.7 56 | 27.4 28 | 45.9 19 | 5.00 26 | 36.6 34 | 78.7 39 | 4.08 21 | 32.6 62 | 52.3 64 | 3.51 33 |
SCR [74] | 38.1 | 12.1 49 | 24.6 37 | 2.83 12 | 15.1 16 | 21.7 19 | 3.56 4 | 11.7 30 | 29.3 62 | 3.00 1 | 17.9 17 | 32.5 32 | 7.59 32 | 46.1 69 | 59.8 72 | 11.2 75 | 29.0 59 | 49.3 47 | 5.03 30 | 40.4 65 | 91.3 72 | 4.08 21 | 31.7 47 | 50.2 45 | 3.37 1 |
PMF [76] | 38.2 | 12.2 56 | 25.9 49 | 2.71 1 | 15.4 21 | 21.8 20 | 3.56 4 | 12.7 55 | 35.7 79 | 3.00 1 | 20.2 51 | 35.9 57 | 7.51 22 | 44.4 43 | 54.9 27 | 10.1 23 | 28.4 48 | 50.5 60 | 5.32 60 | 37.9 42 | 81.1 48 | 4.04 5 | 34.2 74 | 54.1 70 | 3.37 1 |
Classic++ [32] | 38.5 | 11.6 21 | 23.7 22 | 3.11 46 | 17.8 42 | 24.4 57 | 4.08 38 | 11.7 30 | 20.3 11 | 3.37 39 | 20.1 49 | 33.8 42 | 7.62 35 | 44.7 49 | 57.8 52 | 10.0 13 | 28.0 39 | 49.7 48 | 5.35 65 | 37.4 39 | 81.4 50 | 4.08 21 | 30.7 33 | 49.5 42 | 3.56 41 |
OFLADF [82] | 39.3 | 11.7 26 | 24.5 36 | 2.71 1 | 13.6 6 | 20.3 7 | 3.56 4 | 11.0 5 | 23.0 28 | 3.00 1 | 17.6 10 | 31.3 18 | 7.39 10 | 47.3 83 | 61.7 84 | 11.2 75 | 29.6 70 | 51.9 73 | 5.32 60 | 41.8 72 | 95.6 78 | 4.16 58 | 33.6 68 | 52.1 63 | 3.42 7 |
Classic+NL [31] | 39.5 | 12.1 49 | 24.3 31 | 3.00 39 | 15.3 20 | 21.8 20 | 3.70 17 | 11.7 30 | 29.4 64 | 3.00 1 | 17.4 7 | 31.4 20 | 7.53 25 | 45.7 62 | 59.4 68 | 10.8 59 | 29.0 59 | 49.8 51 | 5.10 44 | 39.6 56 | 90.4 69 | 4.08 21 | 32.2 54 | 51.8 59 | 3.46 24 |
CRTflow [88] | 40.7 | 11.7 26 | 24.4 35 | 3.32 65 | 19.5 60 | 24.9 68 | 4.51 49 | 12.0 42 | 22.7 26 | 4.00 66 | 18.1 20 | 30.3 13 | 7.68 40 | 45.0 52 | 58.1 55 | 11.3 83 | 26.0 10 | 45.1 17 | 4.97 10 | 37.7 41 | 87.9 57 | 4.08 21 | 30.8 34 | 50.2 45 | 3.56 41 |
TCOF [71] | 40.8 | 12.0 37 | 24.7 40 | 2.83 12 | 20.3 74 | 26.4 87 | 5.07 63 | 11.1 15 | 29.0 57 | 3.00 1 | 17.7 13 | 32.4 30 | 7.68 40 | 43.2 29 | 55.5 32 | 9.97 6 | 28.8 55 | 46.3 21 | 5.07 32 | 41.2 71 | 94.9 76 | 4.08 21 | 31.8 48 | 51.3 53 | 3.70 67 |
FC-2Layers-FF [77] | 41.0 | 12.1 49 | 26.0 53 | 2.83 12 | 13.0 3 | 18.7 4 | 3.56 4 | 11.4 29 | 25.7 42 | 3.00 1 | 17.8 15 | 33.5 39 | 7.48 19 | 46.5 73 | 60.3 78 | 11.2 75 | 30.4 79 | 52.3 76 | 5.32 60 | 39.8 59 | 90.0 66 | 4.08 21 | 31.8 48 | 51.6 56 | 3.46 24 |
Fusion [6] | 41.2 | 11.6 21 | 24.3 31 | 2.89 29 | 15.6 25 | 21.9 23 | 3.83 28 | 11.0 5 | 23.7 31 | 3.37 39 | 21.0 55 | 33.4 38 | 7.62 35 | 44.1 36 | 56.3 38 | 10.1 23 | 30.3 78 | 54.1 78 | 5.45 70 | 38.0 43 | 83.7 55 | 4.08 21 | 34.0 73 | 54.7 72 | 3.56 41 |
LSM [39] | 41.2 | 12.3 61 | 24.7 40 | 2.83 12 | 15.4 21 | 21.9 23 | 3.56 4 | 12.0 42 | 30.3 68 | 3.00 1 | 18.7 30 | 33.2 37 | 7.44 16 | 46.1 69 | 59.4 68 | 11.1 70 | 29.3 65 | 51.9 73 | 5.07 32 | 39.2 53 | 91.0 71 | 4.04 5 | 32.3 55 | 52.5 66 | 3.42 7 |
Sparse Occlusion [54] | 41.4 | 11.7 26 | 25.9 49 | 3.00 39 | 18.1 45 | 24.6 62 | 3.83 28 | 11.3 16 | 22.7 26 | 3.11 35 | 18.7 30 | 34.1 44 | 7.70 43 | 45.0 52 | 58.0 54 | 11.1 70 | 28.5 53 | 44.2 7 | 5.26 55 | 39.3 54 | 83.7 55 | 3.92 2 | 31.9 51 | 51.7 57 | 3.56 41 |
Black & Anandan [4] | 43.0 | 12.3 61 | 24.0 26 | 3.46 75 | 21.2 81 | 25.4 75 | 5.35 70 | 18.1 73 | 25.0 39 | 5.35 75 | 24.4 75 | 34.9 49 | 7.77 51 | 42.2 12 | 53.5 15 | 10.1 23 | 26.9 21 | 46.5 24 | 4.97 10 | 39.5 55 | 77.2 35 | 4.08 21 | 29.3 16 | 42.8 9 | 3.56 41 |
TC-Flow [46] | 43.2 | 12.0 37 | 30.3 76 | 2.89 29 | 16.8 37 | 23.4 41 | 3.92 34 | 11.7 30 | 21.4 17 | 3.00 1 | 19.5 40 | 36.1 59 | 8.12 70 | 46.5 73 | 59.8 72 | 11.3 83 | 27.0 22 | 48.4 38 | 5.26 55 | 35.5 20 | 74.6 28 | 4.04 5 | 33.3 65 | 54.5 71 | 3.51 33 |
FESL [75] | 44.9 | 12.2 56 | 25.1 46 | 2.83 12 | 14.9 14 | 21.6 18 | 3.70 17 | 12.1 49 | 33.7 76 | 3.00 1 | 19.7 43 | 35.0 50 | 7.72 48 | 46.2 71 | 60.2 77 | 11.3 83 | 29.3 65 | 50.4 59 | 5.32 60 | 39.6 56 | 88.6 60 | 3.92 2 | 32.4 57 | 51.2 51 | 3.42 7 |
CostFilter [40] | 45.0 | 13.1 79 | 33.1 82 | 2.71 1 | 15.2 18 | 21.3 11 | 3.56 4 | 14.0 61 | 42.7 87 | 3.00 1 | 22.0 61 | 44.4 81 | 7.26 1 | 45.8 66 | 57.2 47 | 10.4 47 | 27.2 25 | 48.1 36 | 5.45 70 | 39.9 62 | 89.4 63 | 4.08 21 | 35.6 78 | 56.1 77 | 3.37 1 |
Efficient-NL [60] | 45.2 | 11.8 32 | 23.8 24 | 2.83 12 | 16.7 36 | 23.3 39 | 3.70 17 | 18.4 75 | 29.0 57 | 3.70 52 | 19.4 38 | 34.0 43 | 7.51 22 | 45.1 54 | 58.5 58 | 11.1 70 | 30.0 73 | 51.5 70 | 5.07 32 | 40.1 63 | 88.9 61 | 4.08 21 | 33.0 64 | 52.4 65 | 3.42 7 |
2D-CLG [1] | 45.3 | 11.6 21 | 24.1 28 | 3.11 46 | 19.4 58 | 23.3 39 | 6.24 80 | 18.7 76 | 24.3 36 | 4.69 71 | 22.4 65 | 31.8 25 | 8.66 78 | 43.3 30 | 56.1 37 | 10.4 47 | 26.0 10 | 44.2 7 | 5.35 65 | 40.2 64 | 91.5 73 | 4.20 62 | 29.6 21 | 44.5 15 | 3.51 33 |
Bartels [41] | 45.4 | 12.2 56 | 29.9 73 | 3.37 69 | 17.4 41 | 24.3 54 | 4.83 59 | 11.3 16 | 24.7 37 | 3.70 52 | 21.2 57 | 35.4 53 | 9.15 82 | 41.3 5 | 51.0 5 | 9.87 2 | 29.7 71 | 50.2 54 | 6.32 89 | 33.7 4 | 70.7 6 | 4.20 62 | 30.2 28 | 48.4 32 | 3.79 82 |
Filter Flow [19] | 45.6 | 11.8 32 | 23.1 19 | 3.37 69 | 20.0 69 | 25.1 70 | 5.23 68 | 12.2 51 | 26.0 44 | 3.70 52 | 22.1 63 | 32.7 33 | 7.94 60 | 42.1 10 | 51.9 9 | 10.4 47 | 28.1 41 | 49.0 44 | 5.07 32 | 38.4 46 | 81.6 51 | 4.16 58 | 30.0 24 | 45.5 22 | 3.74 80 |
Occlusion-TV-L1 [63] | 47.4 | 11.6 21 | 25.0 45 | 3.11 46 | 19.8 66 | 26.0 84 | 4.83 59 | 11.3 16 | 23.0 28 | 3.46 48 | 22.5 68 | 43.0 78 | 7.94 60 | 43.0 22 | 54.8 26 | 9.88 3 | 28.0 39 | 50.7 63 | 5.32 60 | 39.6 56 | 76.6 33 | 4.62 82 | 31.5 44 | 50.5 49 | 3.56 41 |
OFH [38] | 47.8 | 12.0 37 | 27.3 58 | 3.00 39 | 18.1 45 | 23.4 41 | 4.20 40 | 12.4 53 | 32.7 73 | 3.00 1 | 18.6 28 | 35.4 53 | 7.35 4 | 46.5 73 | 60.1 74 | 10.8 59 | 27.5 30 | 47.2 27 | 5.26 55 | 41.1 68 | 81.1 48 | 4.20 62 | 35.7 79 | 56.1 77 | 3.46 24 |
EP-PM [83] | 47.8 | 12.7 73 | 30.9 78 | 2.71 1 | 16.1 28 | 23.1 36 | 3.70 17 | 17.7 72 | 42.4 86 | 3.70 52 | 21.3 59 | 42.5 77 | 7.70 43 | 43.0 22 | 53.1 12 | 10.3 42 | 30.2 76 | 57.1 82 | 4.97 10 | 38.5 48 | 89.6 64 | 4.12 53 | 32.4 57 | 51.3 53 | 3.42 7 |
Adaptive [20] | 48.9 | 11.6 21 | 26.7 56 | 3.11 46 | 20.2 73 | 25.9 81 | 5.07 63 | 12.0 42 | 23.0 28 | 3.37 39 | 20.4 52 | 36.6 63 | 7.77 51 | 44.3 40 | 58.5 58 | 9.98 9 | 28.3 46 | 49.1 45 | 5.16 46 | 42.5 75 | 90.6 70 | 4.08 21 | 31.6 46 | 48.8 37 | 3.65 65 |
Horn & Schunck [3] | 50.0 | 12.1 49 | 23.7 22 | 3.32 65 | 21.4 83 | 25.6 78 | 5.89 75 | 17.0 69 | 28.2 54 | 5.35 75 | 27.3 80 | 37.9 68 | 8.04 65 | 42.4 14 | 54.3 18 | 10.3 42 | 26.2 12 | 44.7 10 | 5.07 32 | 40.9 67 | 81.7 52 | 4.20 62 | 30.2 28 | 44.3 13 | 3.70 67 |
IAOF [50] | 50.3 | 13.0 77 | 29.2 69 | 3.37 69 | 23.7 88 | 27.4 90 | 6.45 83 | 16.4 67 | 28.7 55 | 3.46 48 | 22.7 69 | 33.1 36 | 8.37 74 | 43.4 31 | 55.6 33 | 10.0 13 | 27.6 33 | 50.1 52 | 4.97 10 | 38.3 44 | 82.7 54 | 4.08 21 | 30.0 24 | 46.8 26 | 3.56 41 |
TV-L1-improved [17] | 51.4 | 11.5 19 | 25.4 47 | 3.11 46 | 20.1 72 | 26.0 84 | 5.26 69 | 16.8 68 | 19.7 5 | 4.04 68 | 19.5 40 | 32.3 28 | 7.79 53 | 43.8 33 | 56.5 40 | 10.0 13 | 28.9 58 | 51.1 68 | 5.07 32 | 43.2 78 | 98.9 82 | 4.43 76 | 31.4 42 | 50.2 45 | 3.70 67 |
Nguyen [33] | 51.6 | 12.0 37 | 25.9 49 | 3.37 69 | 21.2 81 | 24.5 60 | 6.27 81 | 12.7 55 | 28.0 53 | 3.70 52 | 23.8 72 | 34.7 47 | 8.58 76 | 43.0 22 | 54.7 24 | 10.1 23 | 27.7 37 | 50.7 63 | 4.97 10 | 43.4 80 | 93.7 75 | 4.43 76 | 30.2 28 | 47.4 28 | 3.56 41 |
GraphCuts [14] | 52.0 | 13.9 84 | 30.2 75 | 3.32 65 | 16.4 32 | 22.5 29 | 4.36 45 | 33.4 86 | 24.1 35 | 5.35 75 | 22.3 64 | 34.7 47 | 7.87 58 | 44.5 45 | 57.0 43 | 9.98 9 | 28.3 46 | 50.3 57 | 4.90 3 | 38.5 48 | 88.2 59 | 4.20 62 | 33.9 72 | 53.6 69 | 3.56 41 |
HBpMotionGpu [43] | 52.1 | 12.3 61 | 32.0 81 | 3.79 81 | 20.6 79 | 25.4 75 | 6.00 77 | 11.3 16 | 26.1 46 | 3.00 1 | 23.2 71 | 44.0 80 | 7.85 55 | 44.3 40 | 56.9 42 | 10.8 59 | 29.0 59 | 53.5 77 | 5.26 55 | 34.9 17 | 69.8 3 | 4.04 5 | 31.8 48 | 51.4 55 | 3.70 67 |
TI-DOFE [24] | 53.8 | 12.7 73 | 27.6 61 | 3.87 84 | 22.2 86 | 25.3 72 | 6.66 84 | 14.1 62 | 25.3 41 | 4.36 70 | 27.7 81 | 38.7 71 | 9.06 81 | 42.7 18 | 53.6 16 | 10.1 23 | 26.8 19 | 48.8 43 | 4.97 10 | 38.3 44 | 76.0 29 | 4.24 70 | 31.9 51 | 44.7 17 | 3.87 84 |
NL-TV-NCC [25] | 56.0 | 13.7 83 | 27.3 58 | 2.94 31 | 18.5 47 | 24.7 63 | 4.04 36 | 15.0 64 | 29.0 57 | 3.70 52 | 25.6 77 | 46.4 83 | 7.94 60 | 42.0 9 | 51.9 9 | 10.4 47 | 30.6 80 | 51.9 73 | 5.29 59 | 41.9 73 | 81.7 52 | 4.40 72 | 31.3 41 | 48.6 35 | 3.79 82 |
TriangleFlow [30] | 56.0 | 12.5 70 | 25.9 49 | 3.11 46 | 18.8 50 | 24.3 54 | 4.24 41 | 13.2 58 | 29.7 66 | 3.46 48 | 21.2 57 | 35.4 53 | 7.94 60 | 44.4 43 | 57.7 49 | 9.95 4 | 29.4 68 | 48.6 40 | 5.07 32 | 43.9 81 | 99.9 83 | 4.43 76 | 42.1 86 | 69.7 88 | 3.56 41 |
Complementary OF [21] | 56.6 | 12.4 67 | 34.5 85 | 2.83 12 | 16.4 32 | 23.5 43 | 3.79 25 | 30.7 81 | 32.2 72 | 7.05 83 | 19.9 48 | 43.9 79 | 7.44 16 | 46.9 80 | 60.4 79 | 10.7 56 | 28.1 41 | 47.7 33 | 5.23 52 | 41.1 68 | 80.3 44 | 4.12 53 | 42.0 85 | 62.0 83 | 3.56 41 |
LocallyOriented [52] | 56.9 | 12.2 56 | 28.1 65 | 3.27 63 | 20.5 77 | 25.9 81 | 5.07 63 | 14.3 63 | 30.0 67 | 3.37 39 | 24.2 74 | 41.7 76 | 7.66 39 | 44.7 49 | 57.1 46 | 10.1 23 | 28.8 55 | 47.4 30 | 5.48 78 | 42.4 74 | 80.6 46 | 4.12 53 | 32.4 57 | 51.2 51 | 3.56 41 |
Correlation Flow [79] | 57.2 | 12.6 72 | 28.0 63 | 2.71 1 | 20.0 69 | 25.8 80 | 4.36 45 | 11.3 16 | 22.3 24 | 3.00 1 | 20.7 53 | 38.6 70 | 7.72 48 | 45.7 62 | 59.0 65 | 10.3 42 | 33.4 86 | 60.4 86 | 5.45 70 | 45.6 85 | 99.9 83 | 4.40 72 | 33.4 66 | 54.9 74 | 3.56 41 |
IAOF2 [51] | 57.5 | 12.7 73 | 28.7 67 | 3.32 65 | 20.4 75 | 25.9 81 | 4.76 55 | 12.7 55 | 31.7 71 | 3.11 35 | 22.4 65 | 35.8 56 | 8.06 69 | 45.9 67 | 59.6 70 | 10.8 59 | 29.9 72 | 51.5 70 | 5.10 44 | 39.0 52 | 79.7 41 | 4.08 21 | 31.2 38 | 49.0 39 | 3.56 41 |
ACK-Prior [27] | 59.5 | 12.5 70 | 29.7 72 | 2.83 12 | 16.1 28 | 22.7 30 | 4.00 35 | 25.6 78 | 27.7 51 | 5.72 79 | 22.4 65 | 36.0 58 | 10.7 84 | 45.7 62 | 59.3 66 | 11.4 86 | 31.8 84 | 50.6 61 | 5.35 65 | 38.8 51 | 79.9 42 | 4.16 58 | 33.5 67 | 51.7 57 | 3.70 67 |
Rannacher [23] | 60.8 | 11.7 26 | 28.7 67 | 3.16 62 | 20.4 75 | 26.3 86 | 5.07 63 | 19.0 77 | 26.0 44 | 4.80 73 | 19.8 45 | 38.1 69 | 7.79 53 | 44.5 45 | 57.4 48 | 10.1 23 | 29.0 59 | 50.3 57 | 5.20 48 | 42.6 76 | 97.0 79 | 4.40 72 | 33.7 69 | 55.9 76 | 3.70 67 |
Learning Flow [11] | 60.9 | 12.1 49 | 24.6 37 | 3.27 63 | 19.7 63 | 25.2 71 | 5.00 62 | 39.7 88 | 47.7 89 | 7.68 84 | 24.6 76 | 35.0 50 | 8.19 72 | 45.2 56 | 58.6 61 | 10.5 52 | 28.4 48 | 48.0 35 | 5.45 70 | 38.4 46 | 77.8 38 | 4.40 72 | 32.6 62 | 48.4 32 | 3.92 85 |
SimpleFlow [49] | 62.7 | 12.0 37 | 24.0 26 | 2.94 31 | 18.5 47 | 24.4 57 | 4.24 41 | 32.7 84 | 39.0 82 | 5.69 78 | 18.0 19 | 36.2 61 | 7.55 29 | 46.9 80 | 60.8 80 | 11.1 70 | 31.4 83 | 58.1 83 | 5.35 65 | 49.4 88 | 99.9 83 | 5.16 87 | 40.0 84 | 63.0 86 | 3.46 24 |
Direct ZNCC [66] | 62.8 | 12.1 49 | 27.5 60 | 2.83 12 | 19.9 68 | 25.6 78 | 4.36 45 | 11.7 30 | 24.8 38 | 3.46 48 | 22.7 69 | 49.2 85 | 7.85 55 | 45.4 58 | 58.9 64 | 10.2 36 | 32.4 85 | 59.9 84 | 5.51 81 | 48.2 87 | 99.9 83 | 4.43 76 | 33.8 71 | 57.3 79 | 3.70 67 |
FOLKI [16] | 63.2 | 13.0 77 | 30.9 78 | 4.97 89 | 22.2 86 | 24.9 68 | 9.00 88 | 17.3 71 | 33.0 75 | 7.00 81 | 33.4 85 | 38.7 71 | 17.0 88 | 44.3 40 | 55.8 34 | 10.4 47 | 27.6 33 | 49.7 48 | 5.48 78 | 36.2 32 | 74.2 26 | 4.80 84 | 30.4 32 | 44.9 19 | 4.08 87 |
StereoFlow [44] | 63.6 | 22.8 90 | 48.3 88 | 3.74 80 | 20.5 77 | 26.8 88 | 5.07 63 | 11.3 16 | 29.3 62 | 3.37 39 | 20.1 49 | 37.0 65 | 7.62 35 | 59.3 88 | 75.2 88 | 10.8 59 | 39.3 90 | 71.4 89 | 5.45 70 | 35.8 24 | 73.9 24 | 4.08 21 | 35.7 79 | 55.1 75 | 3.70 67 |
SILK [87] | 64.2 | 13.3 81 | 30.7 77 | 3.83 83 | 22.0 85 | 25.3 72 | 7.16 85 | 34.7 87 | 40.0 84 | 7.77 86 | 26.6 78 | 36.6 63 | 8.60 77 | 45.1 54 | 57.9 53 | 10.0 13 | 28.4 48 | 50.9 66 | 6.03 88 | 34.8 13 | 71.8 14 | 4.51 81 | 31.4 42 | 48.0 31 | 3.74 80 |
Shiralkar [42] | 65.7 | 13.2 80 | 31.6 80 | 3.00 39 | 19.7 63 | 24.5 60 | 4.65 52 | 17.0 69 | 30.7 69 | 4.08 69 | 32.1 83 | 53.1 86 | 8.04 65 | 46.3 72 | 59.7 71 | 10.3 42 | 28.4 48 | 50.2 54 | 5.45 70 | 45.5 84 | 95.2 77 | 4.24 70 | 39.2 83 | 62.6 84 | 3.42 7 |
Dynamic MRF [7] | 66.6 | 12.1 49 | 26.8 57 | 2.94 31 | 18.0 44 | 23.9 48 | 4.16 39 | 18.3 74 | 30.7 69 | 5.00 74 | 28.9 82 | 39.8 73 | 10.5 83 | 45.9 67 | 58.6 61 | 11.2 75 | 30.9 81 | 56.0 81 | 5.80 87 | 43.0 77 | 90.3 68 | 4.65 83 | 33.7 69 | 51.8 59 | 3.70 67 |
Adaptive flow [45] | 67.5 | 13.4 82 | 25.8 48 | 4.51 86 | 21.8 84 | 25.4 75 | 7.26 86 | 13.7 60 | 27.5 50 | 4.69 71 | 24.1 73 | 35.2 52 | 8.76 80 | 47.3 83 | 61.5 83 | 10.2 36 | 33.8 87 | 61.9 87 | 5.45 70 | 35.9 26 | 73.2 22 | 4.20 62 | 34.7 77 | 54.7 72 | 3.70 67 |
SPSA-learn [13] | 70.7 | 12.3 61 | 33.7 84 | 3.37 69 | 19.2 55 | 23.6 44 | 5.45 71 | 30.0 80 | 39.7 83 | 7.00 81 | 26.9 79 | 41.3 75 | 8.41 75 | 46.7 78 | 60.1 74 | 10.2 36 | 29.4 68 | 50.6 61 | 5.20 48 | 53.7 90 | 99.9 83 | 8.43 90 | 51.4 89 | 72.0 89 | 3.51 33 |
SegOF [10] | 71.7 | 12.3 61 | 33.1 82 | 3.11 46 | 17.9 43 | 23.8 47 | 4.51 49 | 29.0 79 | 34.3 78 | 6.16 80 | 32.8 84 | 78.9 90 | 8.33 73 | 48.1 85 | 63.6 86 | 11.2 75 | 28.5 53 | 54.3 79 | 5.72 84 | 44.6 82 | 99.9 83 | 4.97 85 | 37.9 81 | 61.4 82 | 3.51 33 |
PGAM+LK [55] | 73.0 | 15.5 87 | 39.4 87 | 4.55 87 | 19.8 66 | 24.0 50 | 7.68 87 | 33.1 85 | 43.4 88 | 8.00 87 | 34.5 87 | 45.7 82 | 11.2 85 | 46.6 76 | 57.7 49 | 10.6 53 | 29.3 65 | 50.8 65 | 5.74 86 | 37.4 39 | 77.2 35 | 4.43 76 | 34.4 75 | 53.3 68 | 4.24 88 |
SLK [47] | 74.5 | 13.9 84 | 29.9 73 | 3.79 81 | 20.0 69 | 22.8 32 | 6.22 79 | 32.0 83 | 33.7 76 | 7.72 85 | 33.4 85 | 46.4 83 | 16.1 87 | 48.5 86 | 61.7 84 | 10.3 42 | 28.4 48 | 47.9 34 | 5.72 84 | 43.2 78 | 97.9 80 | 4.97 85 | 38.7 82 | 59.8 81 | 4.04 86 |
GroupFlow [9] | 79.4 | 19.9 89 | 49.6 89 | 3.42 74 | 19.1 53 | 24.1 52 | 5.48 72 | 31.4 82 | 40.0 84 | 8.19 88 | 36.2 88 | 61.9 87 | 12.1 86 | 55.6 87 | 71.3 87 | 11.4 86 | 36.3 88 | 67.0 88 | 5.60 83 | 46.7 86 | 98.5 81 | 4.20 62 | 43.6 87 | 62.8 85 | 3.56 41 |
Pyramid LK [2] | 80.4 | 14.4 86 | 37.3 86 | 4.93 88 | 23.7 88 | 25.3 72 | 9.98 90 | 42.2 89 | 35.7 79 | 12.3 89 | 56.2 90 | 64.2 88 | 35.8 90 | 65.6 89 | 83.9 89 | 10.6 53 | 28.1 41 | 46.1 20 | 5.48 78 | 45.2 83 | 99.9 83 | 5.89 89 | 53.6 90 | 75.1 90 | 5.42 89 |
Periodicity [86] | 89.0 | 17.6 88 | 55.7 90 | 5.45 90 | 26.8 90 | 27.0 89 | 9.75 89 | 49.4 90 | 51.5 90 | 17.7 90 | 51.3 89 | 70.3 89 | 27.9 89 | 66.6 90 | 86.3 90 | 11.7 90 | 38.7 89 | 82.5 90 | 6.38 90 | 51.8 89 | 99.9 83 | 5.48 88 | 44.3 88 | 65.5 87 | 5.80 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |